
Out-of-channel data placement for balancing
wear-out and I/O workloads in RAID-enabled SSDs

Fan Yang, Chengqi Xiao, Jun Li, Zhibing Sha, Zhigang Cai, Jianwei Liao
College of Computer and Information Science, Southwest Univer sity, Chongqing, China

Corresponding author: J. Liao (liaotoad@gmail.com)

Abstract—Channel-level RAID implementation SSDs can fight
against channel failures inside SSDs, but greatly suffer from
imbalanced wear-out (i.e. erase) and I/O workloads across all SSD
channels, due to the nature of in-channel updates on data/parity
chunks of data stripes. This paper proposes exchanging channel
locations of data/parity chunks belonging to the same stripe
when satisfying update (write) requests, termed as out-of-channel
data placement. Consequently, it can smooth wear-out and I/O
workloads across SSD channels, thus reducing I/O response time.
Through a series of emulation experiments on several realistic
disk traces, we show that our proposal can greatly improve I/O
performance, as well as noticeably balance the wear-out and I/O
workloads, in contrast to related methods.

Index Terms—RAID-enabled SSDs, Imbalanced workloads,
Out-of-channel placement, Modeling, I/O performance.

I. INTRODUCTION

Thanks to the advantages of small size, high performance,

random-access and low energy consumption, NAND flash-

based Solid-State Drives (SSDs) are becoming the mainstream

storage in a wide range of embedded systems, personal

computers, and high performance platforms [1], [2]. On the

other hand, modern high density SSD devices are prone to

errors caused by read/write disturb and data retention [3], [4].

Error correction codes (ECCs) (e.g., low density parity code)

have been applied to SSDs for correcting read errors and thus

preventing uncorrectable bit errors [5].

However, ECCs cannot recover the corrupted data from

device-level failures [3]. To enhance SSD reliability, RAID

(Redundant Array of Independent Disks) has been applied

inside SSD, as parallelism between chips or channels1 can

offer supports to implement RAID into a single SSD [4].

Moreover, some vendors have applied the RAID technology

in their SSD products [6], and several researches have studied

optimization on RAID-enabled SSDs [7], [8].

As a level of RAID, specially, RAID-4 organizes the data

as stripes, where each stripe has N data chunks and 1 parity

chunk (termed as the N+1 structure), and the parity chunk is

XORed with the corresponding data chunks. Because of the

nature of in-channel update, all updates on data/parity chunks

must be completed on the same channels for maintaining the

stripe structure. Moreover, all data chunk updates must renew

the corresponding parity chunk of stripe, which results in

bottleneck on the parity channel of SSD. Therefore, RAID-5

has been introduced, which divides the parity chunks to each

1We use channel-level RAID as the illustration in the paper, and a
(data/parity) chunk is normally referred to a page in RAID-enabled SSDs.

Fig. 1: Observations in the RAID-5 implementation of 7+1.(a)

the wear-out distribution in term of erase among SSD chan-

nels (normalized to CH0), with standard deviations. (b) the

comparison of the number of parity chunks and the number

of hot data chunks that have more updates than the average

updates on parity.

channel, to address the issue of balancing parity distribution

among all RAID components [9].

However, the RAID-5 implementation ignores that different

stripes have varied access hotness on their data, so that the

channels allocated with more hot data/parity chunks must

endure more I/O workloads and even wear out faster [10]. In

order to balance wear-out (in term of erase) and I/O workloads

over all channels of RAID-5 enabled SSDs, we propose out-

of-channel data placement to satisfy an update (write) request,

by considering the wear-out status and I/O intensity of SSD

channels, as well as the access hotness of data/parity chunks.

In summary, it makes the following three contributions:

• We introduce out-of-channel data placement to reallocate the

data/parity chunk(s) when updating the relevant data stripes,

for balancing both workloads of wear-out and I/O across all

RAID components (i.e. channels) in SSDs.

• We build a mathematical model to separately measure the

balance levels of wear-out and I/O workloads over all RAID

components. After that, we exchange channel locations of

parity/data chunks in the same stripe, if it can better balance

the workloads in RAID-enabled SSDs.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

D0 D1 P01

WD0

Receive a write on D0

D0 D1 P01

P‘01 D1 D’0

Case 1

Exchanging D0 and P01

Switch into varied cases according the factors of channel workloads and the hotness of data chunks
Case 2 Case 3 Default

CH0 CH1 CH2

Cold data Hot data Channel workloadCH

D0 D1 P01

D’0 P‘01 D1

Exchanging D1 and P01

CH0 CH1 CH2

D0 D1 P01

D1 D’0 P‘01

Exchanging D0 and D1

CH0 CH1 CH2

D0 D1 P01

D’0 D1 P‘01

No Exchange

CH0 CH1 CH2

Fig. 2: The high level overview of out-of-channel data placement. For illustration simplicity, we assume the RAID-enabled

SSD consists of 3 channels, with the 2+1 stripe structure.

• We evaluate our proposal by replaying several disk traces

of real-world applications on the simulated RAID-enabled

SSDs. As measurements indicate, our method reduces I/O

response time by 29.9%, and cuts down the coefficient of

variation for the number of channel-level wear-outs and I/Os

by between 15.0% and 90.4%, compared to state-of-the-

art methods.

The rest of paper is organized as follows. Section II intro-

duces related work and our motivations. Section III designs

the proposed method of out-of-channel data placement. The

evaluation methodology and experimental results are presented

Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND AND MOTIVATION

A. Background and Related Work

ECCs have been commonly used in modern high density

SSDs to recover the bit errors, for example, Low Density

Parity Check Code (LDPC) can easily cover RBERs at the cost

of additional latency through read retries [11]. However, ad-

vanced ECCs cannot correct chip/channel-level failures inside

SSDs [7], [12]. Thus, parity-based RAID schemes have been

introduced to address the problem. Though enabling RAID-5
seems to increase SSD reliability, it doubles write operations

as every write operation on the data chunk leads to another

write on the parity chunk (termed as write penalty) [7].

On the other side, the memory updates follow the spatial

locally of reference, so that a majority of writes are destined to

only a small portion of application data, creating an extremely

unbalanced write distribution [13]. Consequently, the blocks

holding the frequently updated data/parity chunks will wear

out much sooner than the rest of blocks, leading to less

available capacity of SSDs and shorter lifetime.

With respect to this issue of wear-out unevenness, Change

et al. [14] have proposed to migrated static or infrequently

updated data so as to spread out the wear-leveling actions

over the entire physical address space. Considering the parity

chunks are frequently updated and the RAID components may

have varied wear-out states in RAID systems, Du et al. [10]

proposed enhancing the endurance and performance of SSD

RAID, by allocating more parity to younger RAID components

and less parity to older ones, We cannot ignore, but, hot stripes

have more updates on their data chunks, in contrast to that on

the parity chunks of cold stripes.

B. Motivation

Because all updates data/parity chunks have to be completed

on their original channels (i.e. in-channel updates), which

cause imbalanced I/O workloads across all RAID compo-

nents [15]. Figure 1(a) shows wear-out differences among

channels in a conventional RAID5-enabled SSD after running

some benchmarks (see Section IV-A for details), and we see

significant wear-out dissimilarity among channels.

Furthermore, in order to verify that certain hot data chunks

may endure more updates than the parity chunks of cold

stripes, we recorded the update frequency of data chunks and

parity chunks separately. Figure 1(b) presents the distribution

results of data chunk updates, when comparing to the average

updates of all parity chunks. As seen, 11.4%-17.1% of

data chunks endured more update operations, in contrast to

the average updates on all parity chunks.

Such observations motivate us to study on balancing work-

loads of wear-outs and I/O requests across all RAID compo-

nents, through adaptively exchanging channel locations of the

parity chunk and data chunks belonging to the same stripe,

according to their access frequency and SSD use states.

III. DESIGN AND IMPLEMENTATION OF Out-of-channel

A. System Overview

The basic idea of our approach, called as Out-of-channel,
is to swap channel locations of the data/parity chunks asso-

ciating with the same data stripe in accordance with certain

conditions, when servicing an update request. To this end, we

first build an assessment model to measure balance levels of

all channels of RAID-enabled SSDs, including the wear-out

balance and the I/O balance. Then, it supports exchanging

channel locations of data/parity chunks of the same stripe,

according to the different balance scenarios. Consequently, our

method can achieve a balanced state over all channels.

Figure 2 shows a high-level overview of servicing an update

request of WD0, with the support of our proposed scheme

of Out-of-channel. As seen, it classifies the balance state of

stripe-involved channels into 4 cases. Then, we can decide

triggering a location exchange or not in the data stripe in three

!

!

TABLE I: Notation Descriptions

Symbol Explanation
N The number of channel in SSDs

P The number of stripes in SSDs

α The coefficient of wear-out workload

β The coefficient of I/O workload

CHi The ith channel of SSD

ars Write counts of sth page in rth stripe

brs Read counts of sth page in rth stripe

Wr Wear-out (erase) workload on CHr

Lr I/O workload on CHr

W̄ Average wear-out workload of all CH

L̄ Average I/O workload of all CH

Ut The imbalance degree of wear-out in SSDs

Vt The imbalance degree of I/O in SSDs

of cases, according to the current balance state of wear-out and

I/O workloads over all relevant channels.

B. Balance Assessment Model

To precisely guide out-of-channel data placement, we con-

struct a mathematical model for assessing the balance degree

of wear-out and I/O workloads over stripe-involved channels.

Table I summarizes the symbols and their definitions used in

the model.

Assuming the SSD device consists of N channel, labelling

as CH0, CH1, ..., CHN−1, the stripe structure spans K
channels, and there are P stripes in total. The number of

occurred write and read requests on the sth page of rth stripe,

are represented as ars and brs.

Equations 1 and 2 define the level of wear-outworkload and

I/O workload on CHr, respectively.

Wr =

P−1∑
S=0

ars (1)

Lr =

P−1∑
S=0

(ars + δbrs) (2)

where δ is hardware dependent, and means the ratio of write

latency to read latency with the page granularity.

Next, we can get the average wear-out and I/O workloads

of all channel in SSDs, with Equations 3 and 4:

W̄ =
1

N

N−1∑
r=0

Wr (3)

L̄ =
1

N

N−1∑
r=0

Lr (4)

After that, we can use two indicators of Ut and Vt to assess

the wear-out and I/O balance level of all channels in the RAID-

enabled SSDs, at the time point of t.

Ut =

{
0, |Wi −Wj | ≤ αW̄ ∀(i, j)

1
N

∑N−1
i=0

∣∣Wi − W̄
∣∣, other cases

(5)

where the coefficient of α represents the endurable degree of

imbalanced wear-out workload.

Vt =

{
0, |Li − Lj | ≤ βL̄ ∀(i, j)

1
N

∑N−1
i=0

∣∣Li − L̄
∣∣, other cases

(6)

where the coefficient of β means the endurable degree of

imbalanced I/O workload.

We argue that the SSD device is in an even state of channel-

level wear-out, if Ut is equal to 0. Otherwise, we regard

the wear-out distribution is imbalanced, and a larger value

of Ut indicates a greater difference of wear-out among SSD

channels. Similarly, the value of Vt addresses the balance level

of I/O workload across all channels of SSD.

C. Out-of-channel Placement with Data Exchanges

When servicing an update request on the stripe, our proposal

considers whether exchanging channel locations of data/parity

chunks or not, according to the balance state of SSD and the

access hotness of data/parity chunks. Specifically, it compares

the reduction of balance indicators of Ut and Vt after location

exchange. Note that we use the historical access frequency to

reflect the future access frequency when estimating the bal-

ance indicators after exchange. Then, it triggers an exchange

operation if the exchange can yield the largest reduction of

two balance indicators.

By referring back to Figure 2, we depict four scenarios of

out-of-channel data placement, by considering the workload

balance of SSD channels and the access frequency of the

involved data/parity chunks:

• Case 1 of swapping the update chunk and the parity
chunk. The updated data chunk is not frequently accessed

and located in a light wear-out workload channel, meanwhile

the parity chunk of stripe is frequently updated and located

in a heavy workload channel.

Since every update request must lead to a parity update,

there is no extra cost of read/write caused by swapping the

locations of the updated data chunk and the parity chunk.

Then, we only refer to the factor of wear-out balance, when

deciding whether triggering location exchange or not. That

is, if the current value of Ut becomes smaller after the

exchange operation, we conduct an exchange operation, by

inserting WD0 to the waiting queue of CH2, and creating a

write request on CH0 to update the parity chunk.

• Case 2 of swapping other data chunk and the parity
chunk. The data update channel of CH0 endures more

wear-out and I/O workloads than CH1 that holds another

data chunk of the stripe, while the parity chunk is located

in the heaviest workload channel of CH2.

We prefer to consider the exchange operation on the data

chunk of D1 and the parity chunk of P01, if the balance

indicators will become less than before. Since this kind of

location exchange will lead to one more write request, we

apply stronger constraints on triggering such exchanges, see

Algorithm 1 for details.

!

!

• Case 3 of swapping the update chunk and other data
chunk. Although the parity chunk of P01 is the hottest data

in the stripe, the relevant channel (i.e. CH2) has a light

workload. On the other side, two data chunks of D0 and

D1 has distinct access frequency and located in the channels

having varied balance level of workloads.

Then, we will perform an location exchange on the update

chunk of D0 and another data chunk of D1 in the stripe, if

it can contribute to reductions of balance indicators.

• Default: There are no obvious differences in wear-out and

I/O workload balance across all channels, or the access hot-

ness of data/parity chunks of stripe is not noticeably distinct.

In the default situation, we do not carry out exchange of

channel locations, when responding an update request.

D. Implementation Specifications

Algorithm 1 presents the implementation specifications on

the newly proposed Out-of-channel method, which intends

to yield a balanced workload across all channels in RAID-

enabled SSDs. As seen, Lines 2-10 identify the process of

obtaining the values of balance indicators of Ut or Vt, with rel-

evant inputs. Then, Lines 15 and 16 compute the results (i.e.

Ut0 and Vt0) of wear-out balance indicator before exchange.

Corresponding to Case 1, Lines 18-21 show computing the

difference between Ut0 and Ut1 (i.e. the future wear-out

balance indicator assuming the exchange was done.), to decide

whether a location exchange of the update data chunk and the

parity data chunk should be triggered or not. Corresponding

to Cases 2 and 3, it calculates the values of Ut1 and Vt1 ,

and carries out relevant data exchanges indeed, if the gap is

beyond the threshold, as illustrated in Lines 23-33. Otherwise,

it chooses the common way to update the stripe.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Settings

Since the SSDSim simulator has a diverse set of config-

urations and its validation accuracy against a real hardware

platform [16], we employed it replaying the selected disk

traces of real-world applications, for evaluating our proposed

scheme. We applied our method as a part of SSDsim, for

supporting location exchanges of data/parity chunk on SSD

channels, by considering both wear-out and I/O workload

balance, and the access frequency of chunks. Table II presents

the settings of SSDsim in our experiments.

We employed 6 widely used block I/O traces in the tests

that cover a wide range of write ratios. Among them, three

traces of usr 2, web 0 and prn 0 are from the block I/O trace

collection of Microsoft Research Cambridge [17]. Another

three recently block I/O traces are collected from a part

of an enterprise virtual desktop infrastructure (VDI) [18].

Specifically, they are additional-01-2016021620-LUN6 (lun0),
additional-03-2016021618-LUN3 (lun1), and additional-03-

2016021614-LUN0 (lun2). The specifications on the selected

traces are reported in Table III, and the metric of Freq Wr
means the ratio of data pages that have been updated not

less than 4 times, to all data pages. We set α and β as the

Algorithm 1: Out-of-channel data placement

Input: args of Req, W Ar, L Ar, α, β
Output: null;

1 /*Compute Ut or Vt with inputs*/

2 Function get_balance(WL Ar, α β val)
3 threshold = Avg(WL Ar)× α β val;
4 /*Traverse all channel to get max/min value*/

5 W_L_MAX=find_max(WL_Ar);

6 W_L_MIN=find_min(WL_Ar);

7 if |W_L_MAX− W_L_MIN| ≤ threshold then
8 return 0; // Balance

9 end
10 return 1

N

∑N−1
i=1 |WL_Ar[i]−Avg(WL_Ar)|;

11

12 /*Main function starts*/

13 if Req is write on Di then
14 /*Compute Ut0 and Vt0 (current value)*/

15 Ut0 = get_balance(W_Arnow, α);
16 Vt0 = get_balance(L_Arnow, β);
17 /*Compute Ut1 (the future value after exchange of

update chunk and parity chunk) */

18 Ut1 = get_balance(W_Arafter1, α);
19 if Ut0 · (Ut0 − Ut1) > 0 then
20 SwapCase1(Di,P,Req); return;
21 end
22 /*Compute Ut1 and Vt1 (future vlaues after

exchange of other data and parity chunk) */

23 Ut1 = get_balance(W_Arafter2, α);
24 Vt1 = get_balance(L_Arafter2, β);
25 if Ut0 · (Ut0 − Ut1) > 0 and Vt0 · (Vt0 − Vt1) > 0

then
26 SwapCase2(Dj,P,Req); return;
27 end
28 /*Compute Ut1 and Vt1 (future values after

exchange of two data chunks) */

29 Ut1 = get_balance(W_Arafter3, α);
30 Vt1 = get_balance(L_Arafter3, β);
31 if Ut0 · (Ut0 − Ut1) > 0 and Vt0 · (Vt0 − Vt1) > 0

then
32 SwapCase3(Di,Dj,Req); return;
33 end
34 /*Default routine to update stripe*/

35 CommonUpdate(Req);
36 end

outcomes of the pre-defined thresholds of Tα and Tβ divided

by the average request size in the previous time window. After

sensitive analysis, we suggest configuring the time window

size as 8,192, Tα as 500, and Tβ as 2,000.

Besides, we used the following comparison counterparts for

measuring the performance of our proposed mechanism:

• Baseline: which is the conventional RAID-5 implementa-

tion. It distributes parity onto all SSD channels evenly, to en-

sure wearing out balance across of RAID components [19].

!

!

TABLE II: Experimental settings of SSDsim
Parameters Values Parameters Values
Channel size 8 Read latency 0.045ms

Chip size 4 Write latency 0.7ms

Plane size 1 Erase latency 3.5ms

Block per plane 512 XOR latency 0.019ms

Page per block 64 GC threshold 10%

Page size 8KB RAID level 5

FTL scheme Page level Stripe struct. 7+1

TABLE III: Specifications on traces (ordered by write ratio)

Traces Req # Wr Ratio Wr Size Freq Wr
usr 2 10,570,046 18.9% 43.8KB 35.7%

lun0 944,526 31.5% 21.1KB 6.1%

lun1 1,289,238 49.3% 22.1KB 8.5%

lun2 949,064 52.8% 20.1KB 10.7%

web 0 2,029,945 70.1% 15.0KB 60.7%

prn 0 5,585,886 89.2% 11.1KB 32.6%

• CSWL: which adopts age-driven parity distribution, to make

all channels of RAID-enabled SSD achieving an even wear-

out distribution [10]. The main idea is to let the younger

channels undertaking more parity chunks.

We argue CSWL is the most related work, aiming at yielding

a wear-out balance across all RAID components. But it

ignores that many data chunks are more frequently updated

than the parity chunks of cold stripes.

• Out-of-channel: which is the proposed data placement

scheme. More specially, the native design of Out-of-channel
needs recording the read/write counts with the fine granular-

ity of data page, which must result in non-negligible space

overhead. Thus, we offer an empirical implementation, la-

beled as Out-of-channel∗, that records the read/write counts

with the granularity of block, by regarding all data pages in

the block have a similar read/write frequency.

B. Results and Discussions

To measure validity of the proposed mechanism that sup-

ports reallocating the parity/data chunks, we use the following

three metrics in our tests: (a) Wear-out and I/O workload
balance, (b) I/O latency, and (c) Exchange case distribution.

1) Wear-out and I/O workloads balance: We compute the

metric of coefficient of variation (cv) [20] for wear-outs and

I/Os in all channels, to quantify the degree of imbalance level

over all SSD channels. A larger value of cv implies that all

channels have varied workloads, while a smaller value of cv
indicates that all channels have a similar workload level.

Figures 3(a) and 3(b) respectively show the cv results of

wear-out and I/O workloads over all channels. As seen, Out-
of-channel performs the best, and reduces cv values of wear-

out by 59.4% and 43.5% on average, compared to RAID-5 and

CSWL. Besides, our proposal reduces cvs of I/Os by 17.0%-

84.1% in contrast to CSWL. This is because Out-of-channel
supports location exchanges, which can better improve the

wear-out and I/O workload balance.

Another clue is that our empirical implementation of Out-
of-channel∗ yields a comparable improvement on workload

Fig. 3: Comparison of balance across all channels with respect

to wear-out workload (a) and I/O workload (b).

Fig. 4: Comparison of I/O response time.

balance, to Out-of-channel after replaying the traces, verifying

it is practicable to take the count of workload on the block to

reflect the access hotness of its pages.

2) I/O performance: I/O response time is the most critical

indicator to reflect SSD performance, and Figure 4 reports

the normalized results. As shown, CSWL, Out-of-channel ,

and Out-of-channel* , can cut down the I/O time by 8.5%,

29.9%, and 23.6% respectively. We consider more balanced

workloads can make full use of the inside parallelism of SSDs,

benefiting to faster responses for I/O requests.

Moreover, to reveal the reason for our methods can yield

better I/O performance than CSWL, we recorded the number

of extra writes caused by location exchanges, as the exchange

may require creating an extra write and more extra writes must

impact normal I/O processing. Figure 5 presents the results.

Compared with CSWL, Out-of-channel and Out-of-channel*
reduce the extra writes by 98.8% and 89.1%, respectively.

3) Model verification with exchange cases distribution: We

have analyzed the distribution of exchange cases according to

the assistance of the balance assessment model, and Figure 6

presents the results. As seen, Out-of-channel occupies 96.9%,

1.3%, and 1.7% of total location exchanges in Cases 1-3

respectively. The most interesting clue is that our empirical

implementation of Out-of-channel∗ greatly increases the num-

ber of Case 2 by 11 times, comparing to Out-of-channel. We

argue this is because block-level workload counters weaken

!

!

Fig. 5: Comparison of extra write reduction caused by location

exchanges of data/parity chunks.

Fig. 6: Exchange cases distribution of our proposals.

access difference between pages in the same block, which

transfers more exchanges of Case 1 into Case 2.

4) Overhead: The main memory overhead of our proposals

is due to the additional storage required for the parameters

used by the balance assessment model. Figure 7 presents the

results of space overhead of three optimization schemes. As

seen, CSWL requires the least space overhead, as it only

records erase numbers of each channel,consuming no more

than 0.3KB memory space. The important clue is that our em-

pirical implementation of Out-of-channel∗ can greatly reduce

the space overhead by 98.4%, in contrast to Out-of-channel,
corresponding to less than 54.4KB memory overhead.

With respect to time overhead, the proposed approaches

only require to additionally compute the values of balance

indicators, which does not introduce noticeable time overhead

and remains negligible.

V. CONCLUSION

This paper proposes an out-of-channel data placement

scheme, for achieving wear-out and I/O workload balance

among all RAID components in channel-level RAID SSDs.

To this end, we build an assessment model, for measuring the

workload balance level across all SSD channels. Thus, it can

trigger a location exchange of data/parity chunks in the same

data stripe, if the exchange operation can benefit to workload

balance. The experimental results show our proposal of Out-of-
channel substantially decreases the I/O latency by 29.9% on

average, and smooths workload balance by more than 51.5%,

in contrast to state-of-the-art methods.

Moreover, considering the balance assessment model needs

recording parameters on the granularity of data page, which

results in non-negligible space overhead, we also present

an empirical implementation of Out-of-channel∗, that only

records the parameters on the block granularity. The tests illus-

trate that it is comparable to the model-based implementation

of Out-of-channel when running the most benchmarks.

Fig. 7: Comparison of memory overhead.

ACKNOWLEDGMENT

This work was partially supported by “National Natural

Science Foundation of China (No. 61872299, No. 62032019)”,

and “the Natural Science Foundation Project of CQ CSTC (No.

cstc2021ycjh-bgzxm0199)”.

REFERENCES

[1] Kishani M, Ahmadian S, Asadi H. A modeling framework for reliability
of erasure codes in ssd arrays. In TC, 2019.

[2] Cui J, Liu J, Huang J, et al. SmartHeating: On the performance and
lifetime improvement of self-healing SSDs. In TCAD, 2020.

[3] Balakrishnan M, Kadav A, Prabhakaran V, and Malkhi D. Differential
raid: Rethinking raid for ssd reliability. In TOS, 2010.

[4] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash reliability
in production: The expected and the unexpected. In FAST, 2016.

[5] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu.
Error characterization, mitigation, and recovery in flash-memory-based
solid-state drives. In PIEEE, 2017.

[6] P320h 2.5-Inch PCIe NAND SSD Features. https://www.micron.com/-
/media/client/global/documents/products/data-sheet/ssd/p320h 2 5.pdf

[7] Jun Li, Zhibing Sha, Zhigang Cai, François Trahay, and Jianwei Liao.
Patch-Based Data Management for Dual-Copy Buffers in RAID-Enabled
SSDs. In TCAD, 2020.

[8] Sha Z, Li J, Cai Z, et al. Degraded mode-benefited I/O scheduling to
ensure I/O responsiveness in RAID-enabled SSDs. In TODAES, 2022.

[9] Zhou Y, Wu F, Huang W, et al. LiveSSD: A low-interference RAID
scheme for hardware virtualized SSDs. In TCAD, 2020.

[10] Du Y, et al. CSWL: Cross-ssd wear-leveling method in ssd-based raid
systems for system endurance and performance. In JCST, 2013.

[11] Tanakamaru, S., Yanagihara, Y., & Takeuchi, K. Error-prediction LDPC
and error-recovery schemes for highly reliable solid-state drives (SSDs).
In IEEE journal of solid-state circuits (IJSSC), 2013.

[12] Schroeder B, Merchant A, Lagisetty R. Reliability of NAND-based
SSDs: What field studies tell us. In PIEEE, 2017.

[13] Zhou, P., Zhao, B., Yang, J., and Zhang, Y. A durable and energy
efficient main memory using phase change memory technology. In ACM
SIGARCH computer architecture news, 2019.

[14] Chang Y, Hsieh J, and Kuo T. Improving flash wear-leveling by
proactively moving static data. In TC, 2009.

[15] Pan, W. and Xie, T. A mirroring-assisted channel-RAID5 SSD for
mobile applications. In TECS, 2018.

[16] Hu Y, Jiang H, Feng D, et al. Performance impact and interplay of SSD
parallelism through advanced commands, allocation strategy and data
granularity. In ICS, 2011.

[17] Narayanan D, Donnelly A, Rowstron A. Write off-loading: Practical
power management for enterprise storage. In TOS, 2008.

[18] Lee C, and Kumano T, et al. Understanding storage traffic characteristics
on enterprise virtual desktop infrastructure. In Systor, 2017.

[19] Li H, Putra M, and Shi R, et al. lODA: A Host/Device Co-Design for
Strong Predictability Contract on Modern Flash Storage. In SOSP, 2021.

[20] Kim Y, Lee J, and Oral S, et al. Coordinating garbage collectionfor
arrays of solid-state drives. In TC, 2012.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

