
COMPACT: Co-processor for Multi-mode
Precision-adjustable Non-linear Activation Functions

Wenhui Ou†‡, Zhuoyu Wu†, Zheng Wang†∗, Chao Chen†∗, Yongkui Yang†
†Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

‡School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
∗Zheng Wang and Chao Chen are the corresponding authors, Email: (zheng.wang, chao.chen)@siat.ac.cn

Abstract—Non-linear activation functions imitating neuron be-
haviors are ubiquitous in machine learning algorithms for time
series signals while also demonstrating significant gain in precision
for conventional vision-based deep learning networks. State-of-the-
art implementation of such functions on GPU-like devices incurs
a large physical cost, whereas edge devices adopt either linear
interpolation or simplified linear functions leading to degraded
precision. In this work, we design COMPACT, a co-processor with
adjustable precision for multiple non-linear activation functions
including but not limited to exponent, sigmoid, tangent, loga-
rithm, and mish. Benchmarking with state-of-the-arts, COMPACT
achieves a 26% reduction in the absolute error on a 1.6x widen
approximation range taking advantage of the triple decomposition
technique inspired by Hajduk’s formula of Padé approximation.
A SIMD-ISA-based vector co-processor has been implemented
on FPGA which leads to a 30% reduction in execution latency
but the area overhead nearly remains the same with related
designs. Furthermore, COMPACT is adjustable to 46% latency
improvement when the maximum absolute error is tolerant to the
order of 1E-3.

Index Terms—Approximate computing, non-linear functions,
architecture exploration

I. INTRODUCTION

The previous decade has witnessed the huge success of
artificial neural networks (ANNs), which have been increasingly
deployed on data centers, mobile edges, and terminal devices.
Out of numerous evaluation aspects, inference precision, per-
formance, and energy efficiency are primary considerations for
executing ANNs which motivate the design and fabrication of
customized accelerators. Systolic-Array-based architectures such
as Tensor Processing Unit (TPU) [1] are specialized in executing
linear operations such as convolution and matrix multiplica-
tion with massive parallelism. Attribute to the advancement
of quantization techniques [2] which enables fixed-point (FXP)
inference with tiny precision degradation, the implementation of
processing elements in TPU is extremely compact to house tens
of thousands of multipliers on the same die.

Albeit excellent in performance, TPU has weak support of
non-linear activation functions (NAFs). Consequently, sim-
plified linear activation functions e.g. ReLU/leaky-ReLU are
widely deployed instead of neuroscience-inspired NAFs. Al-
though such simplification is tolerable for early vision-based
ANNs, recent ANNs tend to achieve high precision with the aid
of complex NAFs. For instance, Yolo-v4 [3] and onward versions
[4] are built with Mish functions, while tanhExp significantly
accelerates the training process of lightweight neural network
[5]. Sigmoid and Tanh steadily resides in recurrent networks
for time series signal processing [6]. Such trend implies that
sophisticated NAFs have become the dominant factor to achieve
high precision.

Most current inference accelerators lack architectural support
for NAFs. Piecewise linear (PWL) approximation techniques are
employed in [7] [8] for specific NAFs. In contrast, Graphics
Processing Unit (GPU) such as Fermi equips Special Function
Units (SFU) to support single-precision NAF [9], which inspires
us to augment the baseline architecture with a dedicated co-
processor for NAF. SIMD-based instruction sets can be utilized
with both vector and array-style data-parallel processors to
increase the throughput of execution.

The major design challenge for the co-processor lies in the
programmability to support broad variants of NAFs as well as
the flexibility to adjust the precision and fitting range. It is based
on the observation that the requirement of the numerical gap
between theoretical and approximate values, known as absolute
approximation error (AAE) [10], varies among application sce-
narios. For instance, an AAE of PWL approximation around 1E-
4 is sufficient for Yolo post-processing [7] where neural network
training demands an AAE of less than 1E-6 [11]. Furthermore,
the range of inputs with AAE less than a certain value, known
as approximation range (AR) [10], also varies but is crucial to
application-level accuracy. Adjustable AAE and AR can be used
to trade-off with latency, for instance, low latency upon a relaxed
precision requirement.

In this work, we present COMPACT, a co-processor with
adjustable precision for multiple NAFs. As illustrated in Fig.
1, COMPACT works synergetically with an exploration frame-
work, where applications are first analyzed to extract non-
linear operations. The workbench of COMPACT takes NAFs and
user constraints as inputs and generates co-processor RTL and
associated SIMD instructions to achieve high flexibility. The user
can further integrate COMPACT with conventional TPUs which
execute linear operations, therefore the whole application can be
deployed with both high performance and sufficient precision.

The core of the COMPACT workbench lies in its approxima-
tion engine, where we derive mainstream NAFs from exponent
(exp) and natural logarithm (ln) kernels. AAE and AR of
functions are conveniently adjusted by tuning the expansion
forms of both kernels, while a widened AR can be achieved
with a triple decomposition of exp kernel inspired by Hajduk’s
decomposition [10] of Padé approximation [12]. COMPACT is
evaluated through executing generated SIMD instructions on
an FPGA prototype of the co-processor, which simultaneously
achieves less AAE, wider AR, and lower latency than state-of-
the-art implementations.

The rest of the work is organized as follows. Section II
provides background information on approximation of NAFs.
Section III details the approaches in approximation engine and

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

the exploration of design trade-offs. Section IV illustrates the
proposed vector processor. Section V presents the experiments
and benchmarking results. Section VI concludes the work.

Fig. 1: Framework of COMPACT for co-processor exploration

II. BACKGROUND

NAFs such as sigmoid, hyperbolic tangent (tanh), tanhExp
and mish–as shown in equation (1), (2), (3) and (4)–are widely
adopted in state-of-the-art applications and play an essential role
in enhancing the algorithmic precision.

sigmoid(x) =
1

1 + e−x
(1)

tanh(x) = 1− 2sigmoid(−2x) (2)

tanhExp(x) = x× tanh(ex) (3)

mish(x) = x× tanh(ln(1 + ex)) (4)

PWL approximation is an efficient way to simplify the non-
linear behaviour of a function and it is widely adopted for NAFs
[13] [14]. However, its memory volume requirement is costly
when it comes to highly-precise approximation, as the number
of Look-Up Tables (LUTs) increases with accuracy. For the lack
of flexibility for different functions, the storage overhead will
further increase when implementing various of NAFs.

To amortize this penalty, some studies have narrowed their
focus to the composition of these NAFs. Gomar et al. [15]
proposed an exponential approximation-based method to cal-
culate sigmoid/tanh functions with relatively lower accuracy.
The implementation of exp operation is converted into a base
2 equation so that it can be performed by addition and shift
operations using FXP units. Pan et al. [16] proposed FXP
hardware implementation of the sigmoid function based on the
Newton-Raphson method. As the iterative equation consists of
sigmoid function and exp operation, they used four-segment
PWL to approximate sigmoid and computed exp terms by Taylor
series. In [10], Hajduk applied LUTs with either the Mclaurin
series (i.e. Taylor series at the point zero) or Padé polynomials to
approximate exp operation in a split domain for high precision

realization. However, the argument domain after reduction is
still large, which is not sufficient for a small enough degree of
polynomials while resulting in long latency.

III. APPROXIMATION ENGINE

For a better performance in the high-precise execution of
NAFs, we have developed an approximation engine based on
Hajduk’s exp approximation formula. On the one hand, the
floating-point (FP) representation is exploited to make the
argument decomposition more efficient. On the other hand,
the split domain is further reduced for a lower degree of the
polynomial, which will significantly improve execution time at
a little cost. In addition, we noticed that the various degree of
the approximate equation can offer different levels of speed-
accuracy trade-off via the decomposition method. To this end,
different polynomials are implemented in a combinational way
to reduce the redundant effort from the changing demand of
precision in inference [17]. In addition to exp operations, mish’s
operation includes ln operation, which faces the same challenge
as exp. It should be noted that ln can also be computed in a
similar way to exp operations disassembled, which has rarely
been mentioned in related work.

A. exp triple decomposition
For rational function approximation, the value of ex can

be computed by the Taylor series or Padé polynomial using
equation (5) and (6), respectively.

en(x) = 1 + x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
(5)

R(x) =

∑m
j=0 ajx

j

1 +
∑n

k=1 bkx
k
=

a0 + a1x+ a2x
2 + · · ·+ amxm

1 + b1x+ b2x2 + · · ·+ bnxn

(6)
Unfortunately, the approximate function is valid for a narrow
interval nearby zero and the width of the interval is affected by
the degree of function. In this design, we use equation (7) for a
widened AR.

ex = ep × ed=t+f = ep × et × ef (7)

where p = �x� − 1, d = x − p. With further decomposition,
d can be divided as t and f. As the unit-in-last-place (ulp) of t
is 2−3, f can be limited to (−0.125, 0.125), and ef is satisfied
for equation (5) and (6). For the other items, ep and et can be
computed by storing the numerical value in the LUTs ahead of
time. Fig. 2 displays the overall decomposition with an example
(note, the input x=13.8765 expressed as FP32):

• According to the binary FP representation of input x, eight
exponent bits are acquired. Then subtract the constant offset
(i.e. 127), the binary representation of x can be expressed
as 23×(1+frac). And the calculation of the equation only
needs three left shift operations based on FXP arithmetic.
Therefore, the integer and fraction parts are acquired in
FXP format.

• For the preparation of the next step, the fraction needs to be
extended into FP32. As shown in Fig. 2, where the exponent
part is set as zero (including the constant offset), and also
padding zeros behind the fraction part based on the round
to zero mode. Therefore, the fraction part expressed as d
is transformed from FXP to FP32. As the value of the

!

!

fraction part adds one passively after transformation, the
integer needs to subtract one correspondingly and we use
p to denote that.

• As t is used for reducing the interval of f, the bit-width
of t (represented in n), depends on the required accuracy
and hardware cost. For comprehensive consideration, we
set n = 4, where including one integer bit and the rest
bits refer to the fraction part. With the relative position of
integer bits between d and t, the value of t is received, i.e.
t = 0b1111 = 1.875, as shown in Fig. 2. With a similar
transformation, t can be extended into FP32 format, and f
is acquired by d - t based on FP subtract.

Consequently, we have divided x into three items (i.e x =
p+ t+ f) corresponding to the ex = ep × et × ef . In addition,
the overall decomposition flow only includes an FP operation,
therefore it can be performed in several cycles. Note that e−16

or e16 is directly output for |x| ≥ 16, based on the sign bit. And
for |x| < 2 , ep is omitted.

01000001010111100000011000100101
1 × (2) × 1.10111100000011000100101

1 2

= = () = = . .

= 2 + (1 +)
Ln decomposition

Exp decomposition

3

integer=1101 fraction = 0.11100000011000100101
p=integer-1=12 00111111111100000011000100101000d=

t=1.875 f=d-t=0.0015
1 sign = 0
2 exponent = 130+(-127)= 3
3 fraction(frac)

left shift operation
transformation operation
extracted operation
transformation operation

Fig. 2: Decomposition flow in the approximation engine

B. ln decomposition

The ln operation can be further divided into small instances
by equation (8).

ln(x) = ln(2a × b) = ln(2a) + ln(b) (8)

The value of ln(2a) can be derived from LUTs, and ln(b) is
approximated by Padé or Taylor series. Similarly, the conversion
from x to 2a × b is based on the binary representation of FP as
discussed in subsection III-A. Initially, the exponent part of the
input is extracted and minus the offset value. In the next step, the
rest bits (the fraction part of the binary representation of x), are
converted into FP32 format with the transformation operation

mentioned before. As shown in Fig. 2, the expression can be
rewritten as:

ln(x = 13.8765) = ln(23) + ln(1 + frac) (9)

In the process, b is limited to [1,2) and the range of a is set
as [-16,16] (note, the constant value (i.e. ln(216) or ln(2−16))
is output for overflow). And the overall decomposition can be
completed in one cycle.

C. Analysis of approximation error

To match the needs of programmers as possible, it is necessary
to make effort in the diversity of the precision choices. In this
regard, we have carried out a set of simulation experiments
in Python to analyze the AAE of equation (7) and (8) with
different approximate functions. For better cost-effectiveness,
the propagation of the error in different NAFs will be further
analyzed in the following.

AAE(xi) = |ỹ(xi)− y(xi)| (10)

Emax = max
i=1,··· ,N

(AAE(xi)) (11)

We use equation (10) to define the AAE for value xi, where
ỹ(xi) is the approximate value and y(xi) is the baseline value
obtained using Python. Equation (11) defines the maximum
absolute approximation error (MAAE) as Emax, where N is the
number of sampling points. Fig. 3 displays the MAAE analysis
and they are summarized as follows.

• Fig. 3 (a)(b) compares the Emax of exp and ln operations,
respectively. For exp on the small domain, Padé(2, 2) is
enough. Between the order of E−2 and E−6, the Taylor
series shows better efficiency. But for ln with the larger
AR, Padé provides a balanced approximation instead of
Taylor leading to the error exploding. Out of different
contributions from Padé and Taylor, we wisely adopted
both to provide diversity for mixed accuracy strategies. In
conclusion, Padé(2, 2), Taylor(3), Taylor(2), Taylor(1) are
used as ef approximation formulas for 4-level precision,
and Padé(3, 3), Padé(2, 2) are used as ln(b) approximation
formulas for 2-level precision.

• For sigmoid and tanh that includes exp, MAAE mainly
depends on the precision of exp (Fig. 3 (c)). Even in the
lower approximation level, the MAAE is further reduced.
For instance, the Emax of exp is 3.36 E−4 with precision
level 2, but that of the sigmoid is 8.80 E−5.

• For the remaining NAFs with the more sophisticated com-
ponent, i.e. tanhExp (Fig. 3 (d)) and mish (Fig. 3 (e)),
the errors are slightly magnified. It is mostly attributed
to the approximate operations in chain resulting in error
accumulation. In addition, our profiling has shown that
applying higher precision to the specific operation may
achieve better accuracy for NAFs. For instance, the upper
triangular sections in chart have overall lower errors than
the lower triangular section, albeit consistent in execution
time.

!

!

E-11 E-8 E-6 E-4 E-2 E-1E-3E-10 E-9 E-7 E-5 E0
Emax

(c) The Emax of ex,sigmoid(x) and tanh(x)
for

xe
sigmoid x
tanh x

exp l-1

exp l-2

exp l-3

exp l-4

(a) The latency and Emax of ex for

2.85E-7
1.74E-7
1.19E-7

ULP

E-10

E-8

E-6

E-4

E-2

E0

E2

E m
ax

La
te

nc
y

T1 T2 T3 T4 P1/1 P2/2 P3/3
0

15

25

35

40

5

10

20

30

0.125,0.125x

(b) The latency and Emax of ln(x) for

E-10

E-8

E-6

E-4

E-2

E0

E2
E m

ax

T1 T2 T3 T4 P1/1 P2/2 P3/3

La
te

nc
y

0

15

25

35

40

5

10

20

30

1,2x 16,16x
tanh l-1 tanh l-2 tanh l-3 tanh l-4

exp l-1

exp l-2

exp l-3

exp l-4

E-6

E-1

E-2

E-3

E-4

E-5

Emax

ln l2

ln l1

Upper triangle

Lower triangle

(e) The Emax of mish(x) for 16,16x

tanh l-1 tanh l-2 tanh l-3 tanh l-4

exp l-1

exp l-2

exp l-3

exp l-4

E-7

E-2

E-3

E-4

E-5

E-6

(d) The Emax of tanhExp(x) for
Emax

Upper triangle

Lower triangle

16,16x

Fig. 3: (a), (b) The latency and Emax of ex (x ∈ (−0.125, 0.125)) and ln(x) (x ∈ [1, 2)), with different approximation schemes; (c)
The Emax of ex, sigmoid(x) and tanh(x) for x ∈ (−16, 16) with different exp precision levels; (d), (e) respectively corresponding
to the Emax of tanhExp(x) and mish(x) for x ∈ (−16, 16), calculated with different precision levels of the component. (Note,
Taylor(n) expressed as Tn and Padé(m,n) expressed as Pm/n. The precision level n is expressed as l-n.)

IV. ARCHITECTURE

The proposed System-on-Chip (SoC) consists of the COM-
PACT co-processor, a TPU engine, a DRAM interface, a DMA
controller, and peripherals as illustrated in Fig. 4a. TPU is
mostly equipped with array-style processing elements to work
in a high throughput mode. The weakness in the throughput of
the coprocessor may impact the execution of TPU. COMPACT
encompasses four spatial FPUs and each of them can perform
temporal vector operations, which is contribute to the proper bal-
ance in throughput for most cases. For the elementary arithmetic
support of COMPACT, an FP adder, multiplier, subtractor and
divider are implemented on each FPU, as shown in Fig. 4b.
Although FP operations always refer to long latency in the
generic programming, it can be overlapped by the long vector
operations, for example, the FP division in a pipelined manner
can output per cycle.

Fig. 4c indicates the architecture of the decomposition unit
consisting of two modes corresponding to Fig. 2. A small Rom
is available for exp and ln constant discretization factors in
equation (7) and (8). To limit the resource on-chip for the
Rom, an optimization strategy is utilized that ln(2a) coefficients
can be halved as ln(2−|a|) can be expressed as −ln(2|a|). In
addition, COMPACT offers a variety of complex arithmetic
operations and integrated NAFs-based operations (see Table I).
Those operations can be easily replaced by the simple arithmetic
one, but it can effectively reduce the number of instruction
entries and perform more operations in the same occupancy of
the instruction ram. Furthermore, multiple operations executed
together will achieve better performance compared to those
executed in serialized.

Type Instruction Levels of accuracy
Simple Arithmetic Ops. r = a+ b No precis. loss

r = a− b No precis. loss
r = a× b No precis. loss
r = a/b No precis. loss
r = ex 4
r = ln(x) 2

Complex Arithmetic Ops. r = e−x 4
r = e2x 4
r = 1 + x No precis. loss
r = 1− 2x No precis. loss

Non-linear Activation Funcs. r = 1
1+e−x 4

r = 1− 2
1+e2x

4

TABLE I: COMPACT arithmetic instructions and the corre-
sponding accuracy levels

Unlike most conventional vector architectures, we adopt two
levels of storage instead of a cache to explicitly transfer data
with DDR. The details of memory are completely open and
programmers can manually adjust the generated code for faster
data access. For the “memory wall” is the major challenge
in energy effectiveness, the frequent data movement between
DDR and Compact may lead to significant overhead. A set of
registers in FPUs are utilized for the storage of intermediate
results produced by some arithmetic operations, such as exp and
ln. Therefore, the overflow of storage during execution can be
relieved, avoiding unnecessary data access with DDR.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance metrics of dif-
ferent NAFs in the FP32 data format. The execution of sigmoid
is typically viewed as a basic metric in related works for its

!

!

H
O

ST
 I/

F
co

nt
ro

lle
r /

 P
H

Y
DRAM controller / PHY (Slave)

TPU

DMA
controller

Master 0

Master 1

System-on-Chip

L1
buf

CFG
buf

FSM core

FPU
FSM FPUAX

I i
nt

er
co

nn
ec

t
FSM SoC

COMPACT

(a) System-on-Chip including TPU and COMPACT

Core FPU

Op type Op length Op accuracy

FSM FPU

Operation code register

OPA OPB

FP CONTROL UNIT

AD
D

 A
AD

D
 B

VA
LI

D
AD

D
 Y

R
EA

D
Y

FP MUL

OUTPUT & READY

D
EC

O
M

PO
SI

TI
O

N

U
N

IT
LU

T

O
PA

O
PA

O
PB

FP DIV

FP ADD FP SUB

SU
B-

A
SU

B
B

VA
LI

D
SU

B
Y

R
EA

D
Y

D
IV

_A
D

IV
_B

VA
LI

D
D

IV
_Y

R
EA

D
Y

M
U

L_
A

M
U

L_
B

VA
LI

D
M

U
L_

Y

R
EA

D
Y

OPA
FIFO

OPB
FIFO

FPU

R
eg

is
te

r

(b) Augmented floating point unit (FPU)

Sign bit Exponent bits Fraction bits

Merge Merge

Left shift <<

Transform unit

Extract unit

Transform unit

R
om ()

R
om

Select unit
a[3:0]

Floating point unit

1 8 23 23

4

4
4

4

32 32

24

1

011111111127

X

d (float)

t (float)

fractioninteger

tp

a b

exp mode ln mode Fixed point
subtract

Decomposition Unit

32

1632

(c) Decomposition unit for exp and ln operations (refer to Fig. 2)

Fig. 4: The architecture of COMPACT in the System-on-Chip

universality. Consequently, we compare COMPACT with state-
of-the-art methods from the high accuracy order to the lower
order. The latency of other NAFs at different accuracy levels is
also analyzed to exhibit precision adjustability. Finally, we list
the overall distribution of errors at the highest precision level
as a general evaluation. The architecture was implemented in
Verilog, and the prototype was deployed on a Xilinx Kintex-7
410t FPGA for comprehensive evaluation. Note that, for a fair
comparison, the experiment results are obtained at the lowest

configuration—i.e. a single channel that is a single FPU case.
In addition, the size of the input data is enough to offset the
prologue and epilogue in vector operation, and the number
of sampling points N is set as 1E4, equally spaced within
(−16, 16).

Table II lists the Emax of the sigmoid and the corresponding
resource utilization and performance under different designs. For
the design of Hajduk [18], we selected the McLaurin series
(version B) and the Padé polynomial version (version J). For
Pan [16], the NRA method was chosen. In the high-precise
case, COMPACT achieves a more careful error control which is
reduced by 26% compared with Hajduk (Padé), while the speed
is improved by 30%. The improvement proves the effectiveness
of the further argument reduction in some way, including the
benefits of SIMD operations. For the middle accuracy level,
i.e. the order of E−6 to E−4, our design still maintains a
competitive advantage. Limited by the implementation of FP
units, COMPACT has a lower frequency compared to the other
design deployed in FXP format. However, it can be improved
with the aid of a dedicated FP unit. When it comes to the low
precision level, the PWL approach seems to be more efficient,
but the implementation of NAFs on this level is only suitable
for some scenarios insensitive to accuracy. From an application
point of view, an essential difference between COMPACT and
the other designs is the various precision levels are integrated.
In other words, the adjustment from the order of E−8 to the
order of E−3 is run-time, leading to a 46% reduction in the
latency. Furthermore, our design has a wider AR attributed to
the decomposition method mentioned in Section III.

Table III shows the latency of other NAFs at different Emax

levels. As mish and tanhExp have multiple configuration options
under the same order, we chose the most efficient one for
comparison. Due to a correlation in the formula, tanh is similar
to sigmoid in terms of accuracy and speed. For mish and
tanhExp, there is a rapid increment in latency as the nested exp
and ln operations. Corresponding to the long latency, relaxing
the accuracy constraints can also lead to a significant gain in
performance. For instance, the latency of mish and tanhExp
will be reduced by 240ns and 120ns respectively, when the
precision level is adjusted from the level of E−5 to E−4. In con-
clusion, NAFs including more precision adjustable operations
can achieve better improvement from the relaxation of precision
constraint.

Fig. 5 displays the error distributions of the four NAFs with
the highest accuracy under our design. The error exploded
mostly occurred with the input domain greater than the valid
AR. During the execution of sigmoid and tanh, the input domain
of exp won’t be extended, therefore the errors are not magnified
under the valid AR. In contrast, overflow is prone to occur for
mish and tanhExp, due to the nested exp operations. However,
errors are gradually stable as the input x is farther away from
the origin. Tanh as the basis of mish and tanhExp tends to a
fixed value with the increase of the input, which eliminates the
error caused by overflow.

VI. CONCLUSION

This work presents COMPACT, a precision-adjustable
co-processor for multiple NAFs. Taking advantage of a
decomposition-based approximation engine, COMPACT works

!

!

Hajduk Hajduk Ours Tiwari Pan Ours Ours Wei Tsmots Ours
(McLaurin) (Padé) (level 4) [19] (NRA) (level 3) (level 2) [20] [14] (level 1)
[18] [18] [16]

Accuracy high high high middle middle middle middle low low low
Emax 1.192E-7 1.192E-7 8.84E-8 4.77E-5 5.72E-4 2.75E-6 8.86E-5 1.25E-2 1.85E-2 2.11E-3
Format FP32 FP32 FP32 FXP32 FXP16 FP32 FP32 FXP16[in] FXP16 FP32

FXP12[out]
Latency 940.8 494.4 350 2130(+in) 85 280 220 9.856 27 190
(ns) 1590(-in)
Frequency 89.3 97.1 100 N/A 200 100 100 N/A N/A 100
(MHz)
Resources 1916 LUT 2624 LUT 2735 LUT 1388 LUT 351 LUT 2735 LUT 2735 LUT 140 LUT N/A 2735 LUT
(FPGA) 792 FF 1059 FF 1163 FF 597 FF 325 FF 1163 FF 1163 FF 23 FF 1163 FF

4 DSP 8 DSP 7 DSP 22 DSP 6 DSP 7 DSP 7 DSP 0 DSP 7 DSP
Approxi. (-10, 10) (-10, 10) (-16, 16) (-8, 8) (-8, 8) (-16, 16) (-16, 16) (-5, 5) (-8, 8) (-16, 16)
range (AR)

TABLE II: Benchmarking with state-of-the-art implementations on sigmoid NAF

Emax sigmoid (ns) tanh (ns) mish (ns) tanhExp (ns)
10−8 350 N/A N/A N/A

10−7 N/A 360 N/A N/A

10−6 280 290 1070 630

10−5 220 N/A 930 560

10−4 N/A 230 690 440

10−3 190 200 660 410

TABLE III: Latencies of NAFs on different Emax levels

-16 -12 -8 -4 0 4 8 12 16
E-14

E-13

E-12

E-11

E-10

E-9

E-8

E-7

E-6

E-5

E-4

Er
ro

r

x

 sigmoid
 tanh
 tanhexp
 mish

Sigmoid(x)
Tanh(x)
Tanhexp(x)
Mish(x)

A
bs

ol
ut

e A
pp

ro
xi

m
at

io
n

Er
ro

r (
A

A
E)

x

Fig. 5: Absolute approximation errors of implemented NAFs

together with its framework to efficiently process a variant of
NAFs and explore trade-offs between precision level, fitting
range, and execution latency. An FPGA prototype executing
SIMD instructions demonstrates the design that outperforms
relative works in multiple design metrics.

ACKNOWLEDGMENT

This work was funded by the Key-Area Research and
Development Program of Guangdong Province (Grant No.
2019B010155003), National Natural Science and Foundation of
China (NSFC 61902355), the Guangdong Basic and Applied
Basic Research Foundation (Grant No. 2020B1515120044).

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, and G. A. E. Al, “In-
datacenter performance analysis of a tensor processing unit,” in Computer
architecture news, pp. 1–12, 2017.

[2] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” 2017.

[3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed
and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.

[4] Yolo-v5. https://docs.ultralytics.com/, 2020.
[5] X. Liu and X. Di, “Tanhexp: A smooth activation function with high

convergence speed for lightweight neural networks,” IET Computer Vision,
vol. 15, no. 2, pp. 136–150, 2021.

[6] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Physica D: Nonlinear Phenomena,
vol. 404, p. 132306, 2020.

[7] H. Zhang, W. Wu, Y. Ma, and Z. Wang, “Efficient hardware post processing
of anchor-based object detection on fpga,” in 2020 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 580–585, IEEE, 2020.

[8] Y. Peng, Y. Yang, Z. Wang, and C. Chen, “Anchorcapsule: a datastream-
serving post-processor for object detection in embedded vision soc,” IEEE
Transactions on Circuits and Systems II: Express Briefs, 2022.

[9] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi gf100 gpu
architecture,” IEEE Micro, vol. 31, no. 2, pp. 50–59, 2011.

[10] Z. Hajduk, “High accuracy fpga activation function implementation for
neural networks,” Neurocomputing, vol. 247, pp. 59–61, 2017.

[11] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory
acceleration of deep neural network training with high precision,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), pp. 802–815, IEEE, 2019.

[12] C. Brezinski and J. Van Iseghem, “Padé approximations,” Handbook of
Numerical Analysis, vol. 3, pp. 47–222, 1994.

[13] B. Pasca and M. Langhammer, “Activation function architectures for
fpgas,” in 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pp. 43–437, IEEE, 2018.

[14] I. Tsmots, O. Skorokhoda, and V. Rabyk, “Hardware implementation of
sigmoid activation functions using fpga,” in 2019 IEEE 15th International
Conference on the Experience of Designing and Application of CAD
Systems (CADSM), pp. 34–38, IEEE, 2019.

[15] S. Gomar, M. Mirhassani, and M. Ahmadi, “Precise digital implementa-
tions of hyperbolic tanh and sigmoid function,” in 2016 50th Asilomar
Conference on Signals, Systems and Computers, pp. 1586–1589, IEEE,
2016.

[16] Z. Pan, Z. Gu, X. Jiang, G. Zhu, and D. Ma, “A modular approximation
methodology for efficient fixed-point hardware implementation of the
sigmoid function,” IEEE Transactions on Industrial Electronics, vol. 69,
no. 10, pp. 10694–10703, 2022.

[17] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware auto-
mated quantization with mixed precision,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8612–8620,
2019.

[18] Z. Hajduk, “Hardware implementation of hyperbolic tangent and sigmoid
activation functions,” Bulletin of the Polish Academy of Sciences. Technical
Sciences, vol. 66, no. 5, 2018.

[19] V. Tiwari and N. Khare, “Hardware implementation of neural network
with sigmoidal activation functions using cordic,” Microprocessors and
Microsystems, vol. 39, no. 6, pp. 373–381, 2015.

[20] L. Wei, J. Cai, V. Nguyen, J. Chu, and K. Wen, “P-sfa: Probability based
sigmoid function approximation for low-complexity hardware implemen-
tation,” Microprocessors and Microsystems, vol. 76, p. 103105, 2020.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

