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Abstract—In logic synthesis, Boolean satisfiability (SAT) is
widely used as a reasoning engine, especially for exact syn-
thesis. By representing input formulas as logic circuits instead
of conjunction normal forms (CNFs) as in off-the-shelf CNF-
based SAT solvers, circuit-based SAT solvers enable decoding
after solution to be easier. An exact synthesis method based on
a semi-tensor product (STP) circuit solver is presented in this
paper. As opposed to other SAT-based exact synthesis algorithms,
synthesized Boolean functions are encoded into STP canonical
forms and can be solved by STP-based circuit SAT solver in our
method. It can also obtain all optimal solutions in one pass. In
particular, all solutions are expressed as 2-lookup tables (LUTs),
rather than homogeneous logic representations. Hence, different
costs can be considered when selecting the optimal circuit. In
experiments, we demonstrate that our method accelerates the
runtime up to 225.6X while reducing timeout instances by up
to 88%.

Index Terms—exact synthesis, semi-tensor product of matrices,
Boolean satisfiability, circuit satisfiability

I. INTRODUCTION

Boolean satisfiability (SAT) is the first problem that was
proven to be non-deterministic polynomial (NP)-complete. All
solutions SAT (AllSAT) is a variant of the SAT problem that
consists of determining all satisfying assignments for a given
propositional logic formula. The SAT formula has been solved
by a number of efficient SAT solvers [1], and thus has broad
practical applications. SAT has been used in logic synthesis
to synthesize optimum Boolean chains, also known as exact
synthesis, where network optimality is determined by some
cost function [2]. Specifically, finding the network with the
fewest nodes or logic levels is an example. Exact synthesis can
be made significantly easier by SAT-based implementations.
The reason for this is that SAT-based exact synthesis exploits
the solution space implicitly rather than explicitly enumerating
all candidates. There are attempts, such as the development of
alternative conjunctive normal form (CNF) encoding, demon-
strating the quantitative differences between CNF encoding [3],
and integrating directed acyclic graph (DAG) topology families
into SAT solver [4], to speed up the exact synthesis.

In recent years, circuit-based SAT solvers have achieved
significant progress [5]. Circuit-based SAT represents an input
formula as a logic circuit without converting it into CNF so
it does not lose the topology of the circuit. An evaluation of
assignment satisfaction can be made by relying on structural
information, such as circuit connectivity. In spite of the pop-
ularity of CNF-based encoding, translating from instance to
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CNF increases encoding size [6]. A circuit-based encoding can
also reduce the number of variables in the formulation, making
decoding simpler. Therefore, increased compute power, coupled
with high-speed circuit-based SAT solvers, could lead to more
efficient algorithms for exact synthesis.

In this paper, we propose an exact synthesis algorithm based
on semi-tensor product (STP) circuit solver. The STP method
works on matrices. A logic matrix can be used to define the
Boolean variables in order to prove the basic properties of logic
using the STP method [7]. By combining logical reasoning and
SAT solving, we propose a novel circuit-based SAT solver that
solves the exact synthesis problem. The main contributions of
this paper are as follows.

• We define logic matrices, which convert logical reasoning
into mathematical computation and preserve the topologi-
cal information between circuits, as primitives in the logic
network to solve the circuit SAT problem.

• Synthesized Boolean functions are encoded into STP
canonical forms and can be solved by STP-based circuit
SAT solver. We use the DAG topology families [4] to
reduce the synthesis runtime as well as the solution
spaces. The STP-based exact synthesis can also generate
all optimal solutions under current constraints by one pass.

• Synthesized Boolean functions are represented as STP
canonical forms. These matrices are factored into small
scale logic matrices and assigned to the vertices of DAGs
to realize the specified Boolean function. They are then
used as input to circuit-based SAT solvers.

• The proposed exact synthesis method is implemented in
C++ on top of the logic synthesis framework ALSO1,
in which the source codes are publicly available. Com-
pared with state-of-the-art exact synthesis algorithms, our
method has a CPU time reduction of up to 225.6x and
reduces the number of timeouts by up to 88%.

II. PRELIMINARIES

A. Semi-Tensor Product of Matrices and Its Logical Reasoning

This subsection gives a brief review of the STP calculation
of matrices and its logical reasoning. We refer the reader to [8]
for more details. The real matrices with m×n dimensions are
represented by Mm×n. Consider two matrices X ∈ Mm×n and
Y ∈ Mp×q , the STP can produce matrices in any dimension.

Definition 1. Let X ∈ Mm×n and Y ∈ Mp×q , the STP of X
and Y , denoted by X ⋉ Y , is defined as

1Chu Z. ALSO: Advanced logic synthesis and optimization tool.
https://github.com/nbulsi/also, 2022.
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X ⋉ Y = (X ⊗ It/n) · (Y ⊗ It/p),

where I represents identity matrix, t is the least common
multiple (lcm) of n and p, and ⊗ is Kronecker product of two
arbitrary dimensional matrices [9].

Property 1. The STP of matrices can realize matrix swapping.
Let X be a matrix with any dimensions, if Zr ∈ M1×t is a row
vector, then X⋉Zr = Zr⋉(It⊗X). In contrast, if Zc ∈ M t×1

is a column vector, then Zc ⋉X = (It ⊗X)⋉ Zc.

The matrix form of logic formulas can be used to describe
logic representations in general. It is also useful for solving
SAT problems. We refer to the matrix product as the STP in
this paper and omit the symbol “⋉” hereinafter. First, we denote
the set of Boolean variables SV .

SV :
{
True =

[
1
0

]
, False =

[
0
1

]
.
}

(1)

Definition 2. A 2× 2n matrix is called a logic matrix if all its
columns are elements in SV .

Definition 3. A logic matrix Mσ in which columns are consis-
tent with the truth table (it is read from right to left) of a logic
operation σ is called the structural matrix of σ.

Example 1. Assume a, b ∈ SV and σ is an Boolean operator.
For unary operator “not”, the structural matrix is Mn(¬) =[
0 1
1 0

]
. The inversion of variable a can be converted to matrices

multiplication as ā = Mna. For binary operators, it can be
converted as

a σ b = Mσab. (2)

Therefore, any Boolean function can be converted into its
STP form by their structural matrices.

Example 2. Prove a → b = ā ∨ b using STP forms.

Proof. The structural matrices of the used Boolean operators
are shown as follows,

Md(∨) =
[
1 1 1 0
0 0 0 1

]
, Mi(→) =

[
1 0 1 1
0 1 0 0

]
.

The STP form of left hand side is Miab, while the right hand
side is Md(Mna)b.

MdMn =
[
1 1 1 0
0 0 0 1

] [
0 1
1 0

]
=

[
1 0 1 1
0 1 0 0

]
= Mi.

Hence, the identity holds.

Logic identities can be proved easily using structure matrices
of Boolean operators and STP properties. Moreover, in the case
of multiple logic variable multiplies such as a ·a = a2, we can
consider a variable power-reducing matrix Mr ∈ M4×2 for
further processing. Mr is defined as

Mr =

1 0
0 0
0 0
0 1

 . (3)

Next, the variable swapping matrix Mw ∈ M4×4 is used to
sort the logic variables in order. Mw is defined as

Mw =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (4)

Example 3. Assume a and b are logic variables. We can
implement a2 = Mra with the variable power-reducing matrix
Mr or Mwba = ab with the variable swapping matrix Mw.

A key aspect of Boolean function manipulation is the canon-
ical form, since these functions can be functionally equivalently
represented in several different logic realizations. A canonical
form is also available for STP.

Property 2. Any logic expression Φ(x1, . . . , xn) with Boolean
variables x1, . . . , xn ∈ SV can be calculated into a canonical
form as

Φ(x1, . . . , xn) = MΦx1 . . . xn,

where MΦ ∈ M2×2n . The calculation needs Boolean variable
power-reducing and matrix swapping (see Property 1, (3),
and (4)).

Example 4. We revisit an example in [10] to explain the STP
calculation process. There are three persons a, b, and c. They
are either honest or liar, suppose a liar always said a lie and
the honest man always told the truth. Person a said that person
b is a liar, person b said person c is a liar, and person c said
that both a and b are liars. Who is/are the liar(s)?

First, we define Boolean variable a to indicate person a is
honest. Thus ¬a means a is a liar. The definitions also work
for Boolean variables b and c. The statements result the logic
expression

Φ(a, b, c) = (a ↔ ¬b) ∧ (b ↔ ¬c) ∧ (c ↔ ¬a ∧ ¬b). (5)

The STP form of (5) is

Φ(a, b, c) = MΦabc

= M2
c (MeaMnb)(MebMnc)(MecMcMnaMnb),

where Mc and Me respectively represent the structural matrices
of conjunction (∧) and equivalence (↔). Then, converting the
STP form of logic expression into the canonical form as

Φ(a, b, c) = MΦabc =
[
0 0 0 0 0 1 0 0
1 1 1 1 1 0 1 1

]
abc.

Fig. 1: The STP calculation process.
The SAT problem is to determine in which case Φ(a, b, c) =[

1
0

]
. The calculation is straightforward since we need to find

appropriate values in Sv for each logic variable, shown in
Fig. 1. We can determine the logic values of a, b, and c in
sequence. Each time we assign a logic value, the dimensions
of MΦ is reduced from 2× 2n to 2× 2n−1. In fact, we need to
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extract the column
[
1
0

]
in MΦ to satisfy the SAT problem. If the

assignment makes MΦ contains no
[
1
0

]
column, that means no

satisfiability results can be found and would backtrack to other
assignments. The STP is well suited for solving SAT and AllSAT
problems [11] by extracting the column

[
1
0

]
in the canonical

form. Hence, the only solution is

a =
[
0
1

]
, b =

[
1
0

]
, c =

[
0
1

]
.

Thus, b is honest.
B. Boolean Chains

Boolean chains may be viewed as a precise formal model
of the concept of multi-level logic networks. The definition
of Boolean chains is originally introduced by Knuth [12]. A
Boolean chain is a DAG in which every internal vertex has a
corresponding k-input Boolean operator ϕ : Bk → B. The set
of allowed operators is denoted by B. Let f = (f1, . . . , fm) be
a multiple-output Boolean function, such that f : Bn → Bm

and the functions f1, . . . , fm are defined over common support
x1, . . . , xn. Then, for k ⩾ 1 and a set B, a k-input operator
Boolean chain is a sequence (xn+1, . . . , xn+r), where

xi = ϕi(xj(i,1), . . . , xj(i,k)) (n+ 1 ⩽ i ⩽ n+ r)

such that ϕi ∈ B, 1 ⩽ j(i, ·) < i, and for all 1 ⩽ k ⩽ m,
either fk(x1, . . . , xn) = xl(k) or fk(x1, . . . , xn) = x̄l(k), where
0 ⩽ l(k) ⩽ n+ r, and x0 = 0 the constant zero input.

III. STP-BASED EXACT SYNTHESIS

The runtime of SAT-based exact synthesis has always been
unpredictable and potentially slow. When finding optimum
Boolean chains in [12], the SAT solver can solve faster if it
can perform the following two tasks.

1) To realize the specified Boolean function, find DAG struc-
tures for the Boolean chain, and assign Boolean operators
to their vertices.

2) Solve the SAT problem with circuit information directly
instead of encoding CNF.

Based on these two tasks, we aim to generate possible optimum
Boolean chains in DAG structures, and take them as inputs of
circuit AllSAT solver without encoding to CNF.

The input of our proposed exact synthesis algorithm is a
synthesized Boolean function f and the output is a set of
all optimum Boolean chains candidates So. The algorithm
proceeds as in the following.

(i) Initialize the constraint n, which is equal to the input
number of f minus one, to specific the number of logic gates
in Boolean chain.

(ii) Generate all satisfying the constraint possible DAG
pDAGs, where it will update the constraint n (Section III-A).

(iii) Encode all possible optimum Boolean chain candidates
pBC by STP-based encoding (Section III-B). If there are no
pBC, go to (i) and update the constraint n = n+ 1.

(iv) If the pBC checked by AllSAT solver is satisfying and
the simulation of all satisfying solutions is f , the pBC is the
optimal solution and saved into So (Section III-C). Otherwise,
go to step (i) and update n = n+ 1.

A. DAG Topology Families
Topology-based exact synthesis can reduce the search space

of the SAT solver by providing additional constraints. In order
to obtain all possible DAGs, pDAGs, satisfying the Boolean
function f quickly, our method is based on existing CNF-based
SAT encoding2. Given two integers k and l (1 ≤ l ≤ k), a
Boolean fence is a partition of k nodes over l levels, where
each level contains at least one node. The set of all Boolean
fence family is denoted by F(k, l) and Fk denotes the F(k, l)
of k nodes

Fk = {F(k, l)|1 ≤ l ≤ k}.

Fig. 2(a) shows the fences of F3 in [4].

Level 1

Level 2

Level 3

Level 1

Level 1

Level 2

(a) the fence in [4]
Level 1

Level 2

Level 3

Level 1

Level 2

(b) the fence in our algorithm

Fig. 2: Illustration of fence F3

In order to reduce the synthesis runtime as well as the
solution space, we use some additional constraints. Since all the
functions have a single output, we will prune the DAG in Fk

with more than one node at the top. There should be no more
than two nodes between a higher logic level and each lower
logic level. This is because we want to synthesize operators
with only two inputs in Boolean chains. Fig. 2(b) shows the
fences of F3 in our algorithm. Every fence corresponds to a
family of DAGs with the same distribution of nodes across
levels. We draw an edge here between the first node on each
level in a fence for visualization purposes. Therefore, we can
generate the DAGs with connectivity information based on Fk.
In addition, we use the negation-permutation-negation (NPN)
classification to reduce the size of all valid DAG candidates.
Two Boolean functions are NPN-equivalent if one can be
obtained from the other by negating (i.e., complementing) and
permuting inputs, and negating the output [13]. Fig. 3 shows
all valid DAGs with connectivity information of F3.

(a) F(3, 2) (b) F(3, 3)

Fig. 3: Illustration of all valid DAGs of F3.

B. Encode Boolean Chain Candidates
In this subsection, we assign Boolean operators to the

vertices of the pDAGs. Instead of using SAT solver directly,
we adopt STP theory for possible matrix factorization of the
given synthesized Boolean function f into logic matrices. The
DAGs which can not realize the Boolean function f are pruned.

2Haaswijk W. PERCY: A header-only exact synthesis library.
https://github.com/whaaswijk/percy, 2019.
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First, we consider the f as a STP canonical form. Therefore,
we define the logic matrix MΦ ∈ M2×2n of f as

MΦ =

[
Mx My Mz Mv

M̄x M̄y M̄z M̄v

]
, (6)

where MΦ is divided into four parts, and Mx,My,Mz , and
Mv ∈ M2×2n−2

are also logic matrices (see Definition 2). We
use the logic matrix MΦ in (6) as a known canonical form
hereinafter.

As opposed to the calculation of canonical form in Prop-
erty 1, we propose a STP-based matrix factorization algorithm
to decompose the known canonical form, defined as

MΦ
matrix-factorization−−−−−−−−−−−−−−→

decomposition
MΦa

MΦb
.

The MΦ can be factored to MΦa
and MΦb

if and only if there
are two unique quartering parts of MΦ, which can be verified
by Definition 1. Otherwise, the corresponding pDAG can not
realize the target Boolean function f .

Example 5. 1. If MΦ =

[
Ma Mb Ma Ma

M̄a M̄b M̄a M̄a

]
. The MΦ can be

factored to MΦ1 and MΦ2 as

MΦ1
=

[
Ma Mb

M̄a M̄b

]
, MΦ2

=
[
1 0 1 1
0 1 0 0

]
;

or

MΦ1
=

[
Mb Ma

M̄b M̄a

]
, MΦ2

=
[
0 1 0 0
1 0 1 1

]
.

2. If MΦ =

[
Ma Mb Mc Ma

M̄a M̄b M̄c M̄a

]
. There are three unique

quartering parts, that is,
[
Ma

M̄a

]
,
[
Mb

M̄b

]
, and

[
Mc

M̄c

]
, in MΦ.

Therefore, the MΦ can not be factored.

In addition, if the matrix is swapped m times, n = 2m in In
(see Property 1). Therefore, when the matrices are swapped,
which means MΦ includes In, MΦ will be divided in half.
Then, MΦ can be factored if and only if there are two unique
quartering parts of each half-MΦ, and the position of two
unique quartering parts of each half-MΦ must be consistent.

Example 6. 1. If MΦ is divided into eight parts, denoted by[
Ma Mb Mb Mb Mc Md Md Md

M̄a M̄b M̄b M̄b M̄c M̄d M̄d M̄d

]
, and we have

MΦ = MΦ3(I2 ⊗MΦ4)

=

[
Ma Mb Mb Mb Mc Md Md Md

M̄a M̄b M̄b M̄b M̄c M̄d M̄d M̄d

]
,

MΦ can be factored to MΦ3
and MΦ4

as

MΦ3 =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]
, MΦ4 =

[
1 0 0 0
0 1 1 1

]
;

or

MΦ3 =

[
Mb Ma Md Mc

M̄b M̄a M̄d M̄c

]
, MΦ4 =

[
0 1 1 1
1 0 0 0

]
.

2. If MΦ is divided into eight parts, denoted by[
Ma Mb Mb Mb Mc Mc Md Md

M̄a M̄b M̄b M̄b M̄c M̄c M̄d M̄d

]
, and we have MΦ =

MΦ3(I2⊗MΦ4). Although there are only two unique quartering
parts of each half-MΦ, the position of two unique quartering
parts of each half-MΦ is different. Therefore, the MΦ can not
be factored.

If there are matrix swapping or variable power-reducing in
MΦ, the MΦ can be also factored (see Section (3) and (4)).

Property 3. 1. If MΦ = MΦ5
Mr =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]
. The

matrix MΦ5
can be factored as

MΦ5

1 0
0 0
0 0
0 1

 =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]

MΦ5
=

[
Ma Mb x x x x Mc Md

M̄a M̄b x̄ x̄ x̄ x̄ M̄c M̄d

]
,

where the ‘x’ represents 0 or 1. As a result, the dimensions of
MΦ go from (2× n) to (2× 2n).

2. If MΦ = MΦ6
Mw =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]
. The matrix MΦ6

can be factored as

MΦ6

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]

MΦ6
=

[
Ma Mc Mb Md

M̄a M̄c M̄b M̄d

]
,

where the second and third parts of MΦ are swapped.

Similarly, if there are matrix swapping in MΦ, the MΦ is
first divided in half and then the half-MΦs are swapped or
power-reduced respectively.

Property 4. 1. If MΦ = MΦ7(I2⊗Mr) =

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]
.

The matrix MΦ7 can be factored as

MΦ7

[
Mr 0
0 Mr

]
=

[
Ma Mb Mc Md

M̄a M̄b M̄c M̄d

]
MΦ7

=

[
Ma x x Mb Mc x x Md

M̄a x̄ x̄ M̄b M̄c x̄ x̄ M̄d

]
,

where 0 is the 0 matrix with same dimensions as Mr.
2. If the logic matrix MΦ is divided into eight parts, denoted

by
[
Ma Mb Mc Md Me Mf Mg Mh

M̄a M̄b M̄c M̄d M̄e M̄f M̄g M̄h

]
, and MΦ = MΦ8

(I2⊗
Mw). The matrix MΦ8 can be factored as

MΦ8

[
Mw 0

0 Mw

]
=

[
Ma Mb Mc Md Me Mf Mg Mh

M̄a M̄b M̄c M̄d M̄e M̄f M̄g M̄h

]
MΦ8

=

[
Ma Mc Mb Md Me Mg Mf Mh

M̄a M̄c M̄b M̄d M̄e M̄g M̄f M̄h

]
,

where 0 is the 0 matrix with same dimensions as Mw, and the
second and third parts of each half-MΦ are swapped.

Using these properties, we can get all possible optimum
Boolean chain candidates of DAGs under the constraint n. We
present a simple example to depict it.
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Example 7. In Fig. 3(a), there is a DAG with four inputs, and
the synthesized Boolean function is 0x8ff8 in hexadecimal
representation.

Φ(a, b, c) = M7M6abM5cd = M7M6(I4 ⊗M5)abcd

=
[
1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

]
abcd

M7M6(I4 ⊗M5) =
[
1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

]
(7)

The matrix M7,M6,M5 in (7) can be factored as

M7 =
[
1 1 1 0
0 0 0 1

]
, M6 =

[
1 0 0 0
0 1 1 1

]
, M5 =

[
0 1 1 0
1 0 0 1

]
or

M7 =
[
0 1 1 1
1 0 0 0

]
, M6 =

[
0 1 1 1
1 0 0 0

]
, M5 =

[
1 0 0 1
0 1 1 0

]
Thus, all Boolean chain candidates of this DAG are,{

x7 = 0xe(x5, x6), x6 = 0x8(a, b), x5 = 0x6(c, d);

x7 = 0x7(x5, x6), x6 = 0x7(a, b), x5 = 0x9(c, d).

As for the correctness of solutions, we can convert the
candidates to their corresponding STP form, and compute the
matrices again. However, a power-reducing matrix will result
in x (0 or 1) in Boolean operators, which will cause error
in calculations. Therefore, we need a more efficient engine to
verify the correctness of all possible optimum Boolean chain
candidates, that is, a circuit-based SAT solver.

C. Circuit-based AllSAT Solver

In circuit-based solver, it determines whether an assignment
to the circuit variables causes the circuit be True, that is,
determines whether the assignments of primary inputs (PIs)
can be all primary outputs (POs) true. In STP, the truth table
of a logic operator is consistent with its logic matrix. Thus, we
use the look-up tables (LUTs) as input. The circuit-based SAT
solving algorithm is shown in Algorithm 1.

Algorithm 1: STP-Based Circuit Solving Algorithm.
Input: the LUTs L
Output: a set of solutions (S)

1 #PIs,#POs, T ← 1;
2 S← {(−, ...,−︸ ︷︷ ︸

#PIs

)};

3 for i = 1 to #POs do
4 Si ← TRAVERSE(POi, T);
5 S∗ ← MERGE(Si, S);
6 S← S∗;
7 end
8 if size(S) then
9 return S & SAT;

10 else
11 return UNSAT;
12 end

(i) Initialization. We derive the number of POs (#POs) and
the number of PIs (#PIs). The variable T is initialized to 1 to
ensure that poi ∈ POs have satisfiability assignments (line 1).
The initial solution S is set to a #PIs-length string with each
index value of ‘-’ which means Unassigned (line 2).

(ii) Calculation. The calculation is recursively operated for
each poi ∈ PO until its children nodes reach PIs, shown in

Algorithm 2. Given a circuit node and the target assignment
T, we first get the children of node and convert the logic
expression to its STP form Mi (lines 5-6). New Ts will be
returned for the children nodes by the STP calculation in order
to continue the processing (line 7). Next, the traverse function
continues to work on the two children nodes (lines 8-9).

(iii) Judging. The calculation process continues until all
poi ∈ POs have been traversed. The solver returns SAT and
the set of all solutions S if it finds at least one solution in S,
otherwise returns UNSAT. Then, we simulate all solutions of
S to a Boolean function fs and check whether fs is equal to
target Boolean function f . If fs == f , this Boolean chain is a
optimum Boolean chain.

Algorithm 2: Recursive Traverse Function.
1 Traverse(node, T);
2 if node ∈ PI then
3 return T ;
4 end
5 Children← Get Children( node );
6 Mi ← Convert to STP form(Children);
7 Ts← STP calculation(Mi, T );
8 Traverse(Children[0], Ts[0]);
9 Traverse(Children[1], Ts[1]);

Example 8. We use the Boolean chain generated by Example 7.
There are four PIs (a, b, c, d) and one PO (f1). The initial
solution is a 4-length string of the form S = (−,−,−,−). The
first Target of f1 (T0) is a satisfying assignment “1” and we
can update the Target of x7 (T1 = “1”). The structural matrix
of x7 is

[
1 1 1 0
0 0 0 1

]
, the possible satisfying assignments of x5

and x6 in x7 is “11”, “10”, and “01”. Then we can update
the Target of x5 (T2) and x6 (T3) with (T2 = “1”, T3 = “1”),
(T2 = “1”, T3 = “0”), and (T2 = “0”, T3 = “1”).

f1 =
[
1 0
0 1

]
x7 (T0 = 1)

x7 =
[
1 1 1 0
0 0 0 1

]
x6x5 (T1 = 1)

x6 =
[
1 0 0 0
0 1 1 1

]
ab (T3 = 1, 0, 1)

x5 =
[
0 1 1 0
1 0 0 1

]
cd (T2 = 1, 1, 0)

Again, the structural matrices of x6 and x5 are
[
1 0 0 0
0 1 1 1

]
and

[
0 1 1 0
1 0 0 1

]
. The corresponding Targets T3 and T2 are

(“1”,“1”), (“1”,“0”), and (“0”,“1”). Thus, there are ten pos-
sible satisfying assignments of a, b, c, d, which are (“1,1,0,1”),
(“1,1,1,0”), (“0,1,0,1”), (“0,1,1,0”), (“1,0,0,1”), (“1,0,1,0”),
(“0,0,0,1”), (“0,0,1,0”), (“1,1,1,1”), and (“1,1,0,0”). We sim-
ulate these assignments to a Boolean function fs = 0x8ff8,
which is equal to the target Boolean function f . Hence, the
Boolean chain candidate in Example 7 is the optimal solution.

IV. EXPERIMENTAL RESULTS

All experiments are performed on a 2.40 GHz Intel(R)
Xeon(R) Silver 4210R CPU with 64 GB of main memory.
The results are verified by simulating the truth tables to ensure
correctness.
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TABLE I: Experimental Results

Functions BMS FEN ABC STP

mean(s) #t/o #ok mean(s) #t/o #ok mean(s) #t/o #ok Total(s) mean(s) #t/o #ok number

NPN4 0.235 0 222 0.208 0 222 0.167 0 222 3.264 0.136 0 222 24
FDSD6 0.085 0 1000 0.036 0 1000 0.072 0 1000 0.144 0.012 0 1000 12
FDSD8 10.602 0 100 4.492 0 100 2.337 0 100 2.256 0.047 0 100 48
PDSD6 38.395 256 744 19.340 128 872 51.161 256 744 1554.6 44.290 96 904 64
PDSD8 189.935 14 86 94.211 11 89 128.558 76 24 16795.2 117.475 9 91 192

To evaluate the performance of our method, we measure the
runtime on the following collections of Boolean functions.

• NPN4: All 222 4-input NPN classes [15].
• FDSD6: 1000 fully-DSD decomposable 6-input functions

that occur frequently in practical synthesis and technology
mapping applications [16].

• PDSD6: 1000 common 6-input partially-DSD functions.
• FDSD8: 100 8-input fully-DSD functions.
• PDSD8: 100 8-input partially-DSD functions.
We compare three different approaches as:

1) BMS [17]: Baseline implementation of the SAT-based
exact synthesis algorithm.

2) FEN [3]: The algorithm based on fence enumeration and
the use of additional topological constraints.

3) ABC: The state-of-the-art reference implementation from
the well known ABC3 (command lutexact).

4) STP: Our proposed algorithm based on STP-based SAT
solving and matrix factorization.

The experimental results are shown in Table I. For compar-
ison, we give the mean solving time (mean), the number of
instances that could not be solved in under 3 mins (#t/o), and
the number of solved instances before the timeout (#ok). In
addition, we also list the mean solving time of our algorithm
(Total), the mean solving time of each solution (mean), and the
average number of solutions (number). The #ok is an effective
measure of a practical algorithm. There is obviously a prefer-
ence for algorithms that can solve the most problems within
a given runtime bound. For NPN4 and FDSD, the CPU time
can be reduced up to 225.6x, 95.6x, and 49.7x in comparison
to BMS, FEN, and ABC, respectively. All algorithms find the
solutions for all problem instances. The STP can obtain an
average of 24, 12, and 48 solutions in a shorter time. In terms
of PDSD, our algorithm has only achieved 1.2x acceleration
compared to ABC. But we can solve more instances than the
other three approaches before timing out. Moreover, The STP
can also obtain an average of 64 and 192 solutions.

The results indicate that STP can significantly improve the
number of instances that are solved while maintaining the
CPU time. In fact, it dominates the other implementations with
respect to the number of solved instances. The conventional
SAT-based exact synthesis can only yield one solution, the STP
can obtain all optimal Boolean chains of current topological
constraints in one pass. And all solutions of the STP are not
limited to specific Boolean operators. Therefore, the STP is
more flexible and can select the most cost-effective implemen-
tation according to the actual design costs.

3Mishchenko A. ABC: System for sequential logic synthesis and formal
verification. https://github.com/berkeley-abc/abc, 2022

V. CONCLUSION
An exact synthesis method based on the STP circuit solver

is presented in this paper. In the off-the-shell SAT-based exact
synthesis, logic network structure and node functionality must
be encoded. However, the STP method provides advantages
in logic matrix calculation and circuit connectivity. The main
contributions are that we apply STP decomposition to prune
invalid candidates and a STP-based circuit solver is proposed
to verify the correctness of Boolean chain candidates. Results
show that CPU time can be reduced by up to 225.6x and
timeouts can be reduced by up to 88%.
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