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Abstract—NPN classification is an essential problem in the
design and verification of digital circuits. Most existing works
explored variable symmetries and cofactor signatures to de-
velop their classification methods. However, cofactor signatures
only consider the face characteristics of Boolean functions.
In this paper, we propose a new NPN classifier using both
face and point characteristics of Boolean functions, including
cofactor, influence, and sensitivity. The new method brings
a new perspective to the classification of Boolean functions.
The classifier only needs to compute some signatures, and the
equality of corresponding signatures is a prerequisite for NPN
equivalence. Therefore, these signatures can be directly used
for NPN classification, thus avoiding the exhaustive transfor-
mation enumeration. The experiments show that the proposed
NPN classifier gains better NPN classification accuracy with
comparable speed.

Index Terms—NPN classifier, cofactor, influence, sensitivity

I. INTRODUCTION

Classification of Boolean functions groups a set of

Boolean functions into equivalent classes. Negation-

Permutation-Negation (NPN) equivalence is the most fre-

quently used one regarding the transformations of input

negation, input permutation, and output negation. It has sig-

nificant applications in logic synthesis, technology mapping,

and verification. Boolean functions that are NPN equivalent

define an NPN equivalence class.

Boolean matching and classification have been widely

studied in the past decades. Previous methods could be

classified into three categories: algorithms based on Boolean

satisfiability (SAT), algorithms utilizing search with sig-

nature pruning, and algorithms based on canonical forms.

SAT-based methods can handle Boolean functions with a

large number of input variables, but they are slow because of

the NP-completeness [1]. Algorithms utilizing search with

signature pruning are usually used for pair-wise matching. A

signature of a Boolean function is a compact representation

that characterizes some intrinsic structures and serves as

a necessary condition for Boolean matching. Signatures

derived from row sums [2] and cofactor [2]–[5] are two

common types that have been explored extensively. Zhang

et al. [6] explore sensitivity signatures for further pruning.

Spectra like Walsh [7] and Haar [8] have also been used as

signatures for Boolean matching.

Algorithms based on canonical forms are best manifested

in NPN classification. A canonical form is a representative

of NPN equivalent Boolean functions, and two functions

∗These authors contributed equally to this work.

match if and only if their canonical forms are identical.

They work by designing a complete and unique canonical

form of the Boolean functions and then try computing the

canonical form for each Boolean function to check for

NPN equivalence. Many works construct canonical form

considering phase assignment [9], variable symmetries [10],

[11] and high-order symmetries [5], [12], [13]. Abdollahi

et al. [3] utilize cofactor signatures to define signature-

based canonical forms. Zhou et al. [14] combine cofactor

signatures and different types of symmetries to design

hybrid canonical forms.

From the hypercube view of the Boolean functions,

the cofactors only include the face characteristics of the

hypercube. When designing an NPN classifier, it is chal-

lenging to ensure classification accuracy if only the face

characteristics are considered. Exhaustive transformation

enumerations are always required to improve classification

accuracy or achieve exact classification. In this paper, we

develop a new NPN classification method that considers

both face characteristics and point characteristics of Boolean

functions, which are sensitivity [15] and influence [16].

Intuitively, a cofactor considers a face of the hypercube and

counts how many points take the same value in the face,

while sensitivity considers a point of the hypercube and

counts up how many adjacent points take a different value

with the point. The main contributions are summarized as

the following:

• We introduce Boolean sensitivity and influence into

NPN classification. We deeply analyze the relationship

between these two characteristics and the cofactor to

illustrate their different properties. They bring a new

perspective to the NPN classification.

• We design some signature vectors based on these two

characteristics and give some proofs for these vectors

to guide NPN equivalence checking.

• We develop a new NPN classifier based on these

signature vectors. After signatures computation, the

classifier can directly get NPN classes without trans-

formation enumeration. Meanwhile, the classifier has

stable runtime; it does not suffer from variance for

different Boolean function sets.

II. FACE AND POINT CHARACTERISTICS

This section shows some commonly used notations and

concepts and then introduces the three characteristics used

in our NPN classifier.
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Fig. 1: Hypercubes of three 3-variable Boolean functions.

3-majority logic f1 and f2 are NPN equivalent, and their

induced subgraphs(bolded) are isomorphic. f2 and f3 are

not NPN equivalent, and their induced subgraphs are non-

isomorphic.

A. Notations and Basic Concepts

An n-variable Boolean function, f(X) : {0, 1}n →
{0, 1}, maps a binary word X = (x1, x2, · · · , xn) of width

n into a single binary value. A variable xi or its complement

x̄i in f is called a literal, and i denoted the index. A minterm
is a conjunction of n literals of different variables.

Truth table T (f), a binary string of 2n bits, is a

commonly-used representation of Boolean function f . The

i-th bit of T (f) is equal to f((i)2), where (i)2 is the little-

endian binary code of integer i. A subgraph of a hypercube

can also represent a Boolean function. The hypercube Qn

is a graph of order 2n, whose vertices include all minterms

and whose edges connect vertices that differ in exactly

one variable. Boolean function f can be represented as the

induced subgraph of Qn. Fig. 1a shows the hypercube Q3,

and the • nodes, as well as edges between these nodes,

construct the induced subgraph of a 3-Majority logic.

An NP transformation of a Boolean function is com-

posed of variables negations and permutations. Negation,

denoted as ¬, replaces a variable by its complement (e.g.,

x1 → ¬x1). Besides, we denote (¬) as a selective negation.

For simplicity, we denote (¬)X = (¬)x1(¬)x2 · · · (¬)xn

to describe the selective negation of the word X (e.g., for

(¬)(x1x2) = x1x2, we have (¬)x1 = x1 and (¬)x2 = x2).

Permutation, denoted as π, is a reorder of variables (e.g.,

π(x1x2) = x2x1). Besides, we denote X(i) as the i-th
minterm, and Xi as negating the i-th variable in X .

The satisfy count of a function f is the number of nodes

in the induced subgraph, denoted as |f |. An n-input f is

called balanced if |f | = |f̄ | = 2n−1. Fig. 1 shows three

balanced 3-inputs Boolean functions.

B. Face Characteristic – Cofactor

The cofactor is derived from a Boolean function by

substituting constant values for some input variables, and

it has been well explored in Boolean matching and classi-

fication [2]–[5], [11] in the past decades.

Definition 1. (cofactor). The cofactor of f with respect

to literal xi and xi are denoted as fxi=1 and fxi=0,

respectively.

Definition 2. (cofactor signatures). The cofactor signatures
are the satisfy count and the satisfy counts of the cofactors.

Particularly, the satisfy count of a Boolean function is called

the 0-ary cofactor signature. The 1-ary cofactor signatures
are a set of satisfy counts of the cofactors with respect

to each literal. The higher-ary cofactor signatures (a.k.a

higher-order cofactor signatures) are composed of the sat-

isfy counts of the cofactors with respect to a set of variables.

A face in the hypercube represents a cofactor with respect

to one variable or multiple variables of a Boolean function.

In Fig. 2a, the blue face is fx1=0. Moreover, the blue

face in Fig. 2b represents the cofactor fx1x2=00. Therefore,

cofactor signatures are the number of 1-minterms on the

face in the hypercube. They contain the face character-
istics of Boolean functions. Higher-ary cofactor signatures

correspond to lower-ary faces. Symmetry can be deduced

by cofactor, which can also be seen as a property of faces

in a Boolean function.

C. Point Characteristic – Sensitivity

Sensitivity considers a hypercube point and counts how

many adjacent points take a different value from this point.

Definition 3. (sensitive). Given a word X , Boolean function

f is sensitive at literal xi for the word X , if the output flips

when the xi flips (i.e., f(X) �= f(Xi)).

Take the word X=100 for the 3-Majority logic f1 in

Fig. 1a as an example. If the second bit flips, f1 will also

flip. Thus, f1 is sensitive at x2 for the word 100.

Definition 4. (sensitivity). The sensitivity of f on the

given word X , a.k.a. local sensitivity, is the number

of input literals that are sensitive for X: sen(f,X) =
|i : f(X) �= f(Xi)|. Further we have the sensitivity of f
as sen(f) = max{sen(f,X) : X ∈ {0, 1}n}. The 0-

sensitivity of f as sen0(f) = max{sen(f,X) : X ∈
{0, 1}n, f(X) = 0} and the 1-sensitivity of f as sen1(f) =
max{sen(f,X) : X ∈ {0, 1}n, f(X) = 1}.

Sensitivity reflects the relation between neighboring

points. In Fig. 2c, the local sensitivity sen(f, 110) indicates

the property between the blue points and their neighboring

points. Therefore, sensitivity signatures contain the point
characteristics of a Boolean function.

D. Point-Face Characteristic – Influence

Influence is the probability that points in one face have a

different value than the corresponding points in the opposite

face.

Definition 5. (influence). The influence of input xi on

Boolean function f is defined to be the probability that f is

sensitive at xi for a word X: inf(f, i) = Pr
X∈{0,1}n

[f(X) �=
f(Xi)] = 1

2n |f(X) �= f(Xi) : X ∈ {0, 1}n| 1. Further-

more, the total influence of f can be further defined as

inf(f) =
∑n

i=1 inf(f, i).

Boolean influence derives from the sensitive definition.

The sensitive property captures the relation of neighboring

points. Influence indicates the sensitive properties between

two opposite faces. It calculates the number of minterms in

a face with different values compared to the opposite face.

In Fig. 2d, the influence of variable x1 reflects on the blue

and the grey face. Therefore, influence signatures contain

the point-face characteristics of a Boolean function.

From the above analysis, it is evident that the structural

information of a Boolean function contained in the influence

1For convenience, we denote in the rest of this paper that inf(f, i) =
1
2
|f(X) �= f(Xi) : X ∈ {0, 1}n|. It is clear that |f(X) �= f(Xi) :

X ∈ 0, 1n| is an even integer. For example, if f(000) �= f(100), then
f(100) �= f(000). Once the factor 1

2n
is removed, inf(f, i) will be an

integer. It is easier to compute integers than floating point numbers.
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Fig. 2: Cofactor, Influence and Sensitivity Signatures Visualization.

and sensitivity signatures is of a different perspective com-

pared to the cofactor signatures. Most previous works only

considered the role of cofactor signatures in constructing

the NPN classification method while ignoring the influence

and sensitivity features. These two characteristics have great

potential to guide NPN classification. We will explore them

in the following two sections.

III. SIGNATURE VECTORS AND NPN EQUIVALENCE

In this section, we first design several signature vectors

from the point and face characteristics of Boolean functions

and then give some theorems and their proofs of these

signature vectors and NPN equivalence.

A. Signature Vectors

We can further define several signature vectors from the

definition of the face and point characteristics.

Definition 6. (ordered cofactor vector). The 1-ary ordered
cofactor vector of an n-variable Boolean function f is

OC V1 = {|fz=v| : z ∈ {x1, x2, ..., xn}, v ∈ {0, 1}}≤,

where {·}≤ is the sorted multi-set (of all cofactors’ sat-

isfy counts) in non-decreasing order and |OC V1| = 2n.

Furthermore, the �-ary ordered cofactor vector of an n-

variable Boolean function f is the sorted multi-set OC V� =
{|fz=v| : z ∈ {x1, x2, ..., xn}�, v ∈ {0, 1}�}≤, where

Z� = {z ⊆ Z : |z| = �} and |co f�| =
(
n
�

) · 2�.
Definition 7. (ordered influence vector). The ordered in-
fluence vector of Boolean function f is OIV (f) =
{inf(f, z) : z ∈ {x1, x2, ..., xn}}≤.

Definition 8. (ordered sensitivity vector). For all words

X in truth table T (f), we denote the sorted multi-set

OSV (f) = {sen(f,X) : X ∈ {0, 1}n}≤ as the or-
dered sensitivity vector of function f . Similarly, we can

define OSV 0(f) = {sen(f,X) : X ∈ {0, 1}n, f(X) =
0}≤ as the ordered 0 -sensitivity vector and OSV 1(f) =
{sen(f,X) : X ∈ {0, 1}n, f(X) = 1}≤ as the or-
dered 1 -sensitivity vector. Obviously, we have OSV (f) =

{OSV 1(f), OSV 0(f)}≤.

Definition 9. (sensitivity distance). Hamming distance
h(X,Y ) is a metric for comparing two binary strings

X and Y . It is the number of bit positions in which

X and Y differ. The sensitivity distance is defined as

the Hamming distance of two words X and Y that

have the same local sensitivity, denoted as a tuple

{〈sen(f,X), sen(f, Y ), h(X,Y )〉|sen(f,X)=sen(f, Y )}.

Definition 10. (ordered sensitivity distance vector). For a

given n-variable Boolean function f , we define OSDV (f)

= (σ0, σ1, · · · , σn), where σi = (δi1, δi2, · · · , δin) and δij =

|{(X,Y ) : sen(f,X)=sen(f, Y )=i, h(X,Y )=j, and X <
Y }|. δij is the number of pairs (X,Y ) with sensitivity i and

distance h(X,Y )=j. Similarly, we can define OSDV 1(f)
and OSDV 0(f) based on Definition 4.

TABLE I: Examples of different signature vectors.

Signatures f1 in Fig. 1a f3 in Fig. 1c
OCV1 (1,1,1,3,3,3) (0,2,2,2,2,4)
OCV2 (0,0,0,1,1,1,1,1,1,2,2,2) (0,0,0,0,1,1,1,1,2,2,2,2)
OIV (2,2,2) (0,0,4)

OSV 1 (0,2,2,2) (1,1,1,1)

OSV 0 (0,2,2,2) (1,1,1,1)
OSV (0,0,2,2,2,2,2,2) (1,1,1,1,1,1,1,1)

OSDV 1 (0,0,0,0,0,0,0,3,0,0,0,0) (0,0,0,4,2,0,0,0,0,0,0,0)
OSDV (0,0,1,0,0,0,6,6,3,0,0,0) (0,0,0,12,12,4,0,0,0,0,0,0)

Table I shows some examples of different signature

vectors of two 3-input Boolean functions in Fig. 1.

We will use this example to explain further how to

get OSDV 1. For f1 in Fig. 1a, there is no word X
such that sen1(f,X)=1 and sen1(f,X)=3. Moreover,

only one word X=111 satisfies sen1(f,X)=0. Thus,

σ0=σ1=σ3=(0, 0, 0). For the three words that local sensi-

tivity equal to 2, 011, 101, and 110, we can obtain δ21=0,

δ22=3 and δ23=0 according to Definition 10. In summary,

OSDV 1(f1)=(0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0).

B. Signature Vectors and NPN Equivalence

Previous work [3] has demonstrated that equality of

OCV� is a prerequisite for NPN equivalence, so we only

consider OIV , OSV , and OSDV in this subsection. The

sensitive property of Boolean functions inherently considers

the polarity of the output (output negation). For unbalanced

Boolean functions, we only need to consider input phase

assignment and input variables order. That is to say, NPN

equivalence is simplified to the PN equivalence problem.

Therefore, we only need to concentrate on PN equivalence

to give the following theorems.

Lemma 1. If Boolean function f is PN-equivalent to
Boolean function g, that is f(π((¬)x)) = g(x), then for
any input i, we have inf(f, π((¬)i)) = inf(g, i).

Proof. If f is PN-equivalent to g, it is clear that inf(g, i) =
1
2 |g(X) �= g(Xi) : X ∈ {0, 1}n| = 1

2 |f(π((¬)X) �=
f(π((¬)Xi)) : X ∈ {0, 1}n)| = inf(f, π((¬)i)).
Theorem 1. Two PN-equivalent functions f and g have the
same ordered influence vector: if f is PN-equivalent to g,
then OIV (f) = OIV (g).

Proof. According to Definition 5 and Lemma 1, it is clear
that negation of a variable will not change its influence and
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(a) OSV 1(f) = {1, 1, 1, 1, 2, 2, 3, 3}
OSV 0(f) = {0, 1, 2, 2, 2, 2, 2, 3}.
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(b) OSV 1(g) = {0, 1, 2, 2, 2, 2, 2, 3}
OSV 0(g) = {1, 1, 1, 1, 2, 2, 3, 3}.

Fig. 3: Two NPN equivalent balanced Boolean functions.

OSV 1(f) = OSV 0(g) and OSV 0(f) = OSV 1(g) in these

two functions.

inf(f, π(i)) = inf(g, i) under permutation of variable xi.
Therefore, the ordered OIV will not change if two functions
f and g are PN-equivalent to each other.

Lemma 2. If Boolean function f is PN-equivalent to
Boolean function g, that is f(π((¬)x) = g(x), then for
any input X , we have sen(f, π((¬)X)) = sen(g,X).

Proof. Since f(π((¬)x1, (¬)x2, · · · , (¬)xn)) = g(x1, x2,
· · · , xn), it is clear that if f is sensitive at index i for
input word π((¬)X), then g is sensitive at index j for input
word X where π(j)=i. The sensitive property inherently
considers negations of the variables so that flipping an input
can not change anything of a Boolean function’s sensitivity.

For example, let f(x) be a 4-bit Boolean function,
permutation π(x1x2x3x4) = x4x3x2x1, selective nega-
tion (¬)x1x2x3x4 = x1x2x3x4, and f(π((¬)x1x2x3x4))
= f(x4, x3, x2, x1) = g(x1, x2, x3, x4). Assume that f is
sensitive at index 2 for word (x4, x3, x2, x1) (i.e., at where
x3 locates), we have g(x1, x2, x3, x4) = f(x4, x3, x2, x1)
= ¬f(x4, x3, x2, x1) = ¬g(x1, x2, x3, x4). Function g is
sensitive at index 3=π(2) for input word (x1, x2, x3, x4).

Therefore, for any X , sen(f, π((¬)X)) = sen(g,X).

Theorem 2. Two PN-equivalent unbalanced functions f
and g have the same ordered sensitivity vector, ordered
0-sensitivity vector, and ordered 1-sensitivity vector: if f
is PN-equivalent to g, then (OSV,OSV 0, OSV 1)(f) =
(OSV,OSV 0, OSV 1)(g).

A similar theorem has been proved by Zhang et
al. [6]. However, they ignored balanced Boolean func-

tions. The two Boolean functions in Fig. 3 are NPN

equivalent. For these two functions, OSV 1(f)=OSV 0(g)
and OSV 0(f)=OSV 1(g). We split 1-sensitivity and 0-

sensitivity to handle balanced Boolean functions. Given two

NPN-equivalent unbalanced Boolean functions f and g, it is

easy to check whether g is transformed from f by negation.

We can use the 0-ary cofactor of the functions to find out

the potential negation. However, if f and g are balanced,

it cannot find out the potential negation just by using their

0-ary cofactor. In such cases, we calculate both 1-sensitivity

and 0-sensitivity of the functions to deal with the potential

negation.

Theorem 3. Given two balanced Boolean functions f and
g, if f is NPN-equivalent to g, then OSV 1(f)=OSV 1(g),
OSV 0(f)=OSV 0(g) or OSV 1(f)=OSV 0(g), OSV 0(f)
=OSV 1(g).

Proof. According to Theorem 2, if f PN-equivalent to g,
that is f(π((¬)x)) = g(x), we have OSV 1(f) = OSV 1(g)
and OSV 0(f) = OSV 0(g). If ¬f(π((¬)x)) = g(x), it
is clear that OSV 0(f) = OSV 1(g) and OSV 1(f) =
OSV 0(g).

In order to deal with balanced Boolean functions in our

algorithms, if OSV 1(f) is smaller than OSV 0(f), we will

exchange these two vectors and always put the smaller one

in OSV 0(f).

Lemma 3. Given two inputs X and Y , if f is PN-
equivalent to g, then 〈sen(f, π((¬)X)), sen(f, π((¬)Y )),
h(π((¬)X), π((¬)Y ))〉=〈sen(g,X), sen(g, Y ), h(X,Y )〉.
Proof. It is easy to see that h(X,Y ) = h(π((¬)X, (¬)Y )).
According to Lemma 2 and Definition 9, the theorem holds.

Theorem 4. Two PN-equivalent unbalanced functions
f and g have the same ordered sensitivity dis-
tance vector, ordered 0-sensitivity distance vector, and
ordered 1-sensitivity distance vector: if f is PN-
equivalent to g, then (OSDV,OSDV 0, OSDV 1)(f) =
(OSDV,OSDV 0, OSDV 1)(g). For two balanced Boolean
functions f and g, if f is NPN-equivalent to g, then
OSDV 1(f) = OSDV 1(g), OSDV 0(f) = OSDV 0(g) or
OSDV 1(f) = OSDV 0(g), OSDV 0(f) = OSDV 1(g).

Proof. Given two inputs x and y, if f is PN-
equivalent to g, according to Lemma 3, we have that
〈h(X,Y ), sen(f,X), sen(f, Y )〉=〈h(X ′, Y ′), sen(g,X ′),
sen(g, Y ′)〉, where X ′ and Y ′ is the NP transforma-
tion of X and Y . According to Definition 9 and Defi-
nition 10, it is clear that for unbalanced Boolean func-
tions f and g, we have (OSDV,OSDV 0, OSDV 1)(f)
= (OSDV,OSDV 0, OSDV 1)(g). Similar to the proof of
Theorem 3, we can prove the results of the rest of the
theorem for balanced Boolean functions.

IV. CLASSIFIER

In this section, we first show the effect of influence and

sensitivity signature vectors on NPN classification and then

present our classification algorithm.

A. Signature Vectors Selection

All aries of cofactor signature vectors have been proved

to be a canonical form [3]. However, computing all-ary

cofactor signatures are time-consuming. Next, we will show

that OIV , OSV , and OSDV are strong discriminators of

NPN non-equivalence over OCV1 and OCV2.

Fig. 4 shows four hypercubes of two pairs of

nonequivalent 4-input Boolean functions g1, g2 and h1,

h2. The OCV1(g1)=OCV1(g2)=(3, 4, 4, 4, 4, 4, 4, 5) and

OCV2(g1)=OCV2(g2)=(1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 3, 3, 3) are identical, respectively. However,

OIV1(g1)=(6, 6, 6, 8) and OIV2(g2)=(2, 6, 6, 8) of these

two functions are different. The ordered influence

vector can distinguish nonequivalent Boolean functions

that cannot be classified by OCV1 and OCV2.

Moreover, the OCV1(h1)=OCV1(h2)=(2, 3, 3, 3, 4, 4, 4, 5),
OCV2(h1)=OCV2(h2)=(0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3) and OIV1(h1)=OIV1(h2)=(3, 5, 5, 5)
are identical, respectively. But OSV 1(h1)=(2, 2, 2, 2, 3, 3,
4) and OSV 1(h2)=(1, 2, 3, 3, 3, 3, 3) of these two functions
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(d) h2.

Fig. 4: Hypercubes of two pairs of nonequivalent 4-input Boolean functions g1, g2 and h1, h2.

Algorithm 1 NPN Classifer

Input: input variables n, truth table set tts
Output: NPN equivalent classes

1: for tt in tts do
2: get OCV1(tt) and OCV2(tt);
3: get OIV (tt);
4: get OSV (tt);
5: compute OSDV (tt) using OSV (tt);
6: construct MSV (tt) using OCV1(tt), OCV2(tt),

OIV1(tt), OSV (tt) and OSDV (tt);
7: class ← hash(MSV (tt));
8: end for

are different. Therefore, the ordered sensitivity vector can

distinguish nonequivalent Boolean functions that can not

be classified by OCV1 and OCV2. More evaluations will

be seen in Section V-B.

B. Classification Method

As the property of cofactor, influence, and sensitivity

mentioned above, it is very convenient to implement the

computation of the signature based on the binary string

as the representation. We adopt several bitwise operation

techniques in [17] for fast signatures computation. For

example, to calculate the cofactor signature of a certain

literal, we only need to keep the relevant bits in the truth

table and count the number of 1s.

Algorithm 1 gives the overall algorithm for NPN clas-

sification. First, we compute several signature vectors as

the definitions above (line 2 to line 5). Then, we construct

the MSV (Mixed Signature Vector) (line 6). At last, a hash

function is used to finish the classification (line 7) of this

Boolean function. For runtime saving, we can use OSV 1,

OSV 0 replacing OSV and OSDV 1, OSDV 0 replacing

OSDV . When considering balanced Boolean functions, it

should be noted that different OSV need to be constructed

according to the Theorem 4. Most NPN classification meth-

ods define a canonical form utilizing cofactor signatures

and hierarchical symmetry properties first and then propose

a complex algorithm to compute it. Boolean functions

with different symmetric properties further increase the

complexity. Our classification method only needs bitwise

operations and hash to finish the classification.

V. EXPERIMENTAL EVALUATIONS

A. Setup

We implement our classifier algorithm in C++ and com-

pare our work with some state-of-the-art NPN classification

works. All procedure runs on an Intel Xeon 2-CPU 20-

core computer with 60GB RAM. The input of a benchmark

consists of a list of Boolean functions (in the truth-table

form) to be classified under NPN equivalence. And the

output consists of the number of equivalence classes, as

well as the classified truth tables.

We use EPFL benchmarks [18] to test the effectiveness of

our algorithm on real synthesis applications. The truth tables

are extracted from these benchmarks using cut enumeration.

We deleted the Boolean functions of the same truth table.

B. Evaluation of the Signature Vectors

We evaluate the effectiveness of each signature vector

part and different combinations. Table II shows the results.

The number of exact classes in the third column is run

using Kitty when n ≤ 6 and the exact version in [19] when

n > 6. In general, cofactor signatures are more effective in

classification than influence but worse than sensitivity. The

combination of influence and sensitivity signature vectors is

better than cofactor signature vectors. It performs an exact

classification when n ≤ 7. Therefore, point characteristics

and face characteristics have different properties, and their

combination can effectively complete NPN classification.

C. Evaluation of NPN Classifier

We evaluate our classification algorithm and compare the

results with Kitty in EPFL logic synthesis libraries [21]

and several state-of-the-art works [13], [14], [20], which

are implemented in ABC [19] as command testnpn with

different arguments. Due to some methods in [14] using

an exhaustive enumeration for exact classification at the

end, we modified ABC and removed this part for a fair

comparison. Table III shows the results. Kitty can gain

exact NPN classification, but it runs slowly and will not

work when n > 6. The command testnpn -7 fails when

n ≤ 5. So we omit these parts of the results. The number

of exact classes runs using Kitty when n ≤ 6 and the exact

version in [19] when n > 6. Our classification gains up to

325x speedup over Kitty (6-bit) with the same classification

accuracy. Although the algorithm in [13] is ultra-fast, it fails

inaccurate classification. Algorithms in [20] and [14] show

speed and classification accuracy improvements.

Previous classification methods need a canonical form

and computation algorithm to get NPN classes. The runtime

of such methods is related to the properties of Boolean

functions, such as symmetries. If the Boolean functions

have bad properties, then the computation of the canonical

form will become complicated, leading to unstable runtime.

The classifier proposed in this paper needs only bitwise

computation and hash operations, so the runtime is only

related to the bitwidth and the total number of Boolean

!
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TABLE II: The results of classification using different signature vectors.

n
#Exact
Classes

#Classes
by OIV

#Classes
by OCV1

#Classes
by OSV

#Classes by
OIV +OSV

#Classes by
OCV1+OSV

#Classes by
OCV1+OCV2

+OSV

#Classes by
OIV +OSV

+OSDV

#Classes
by All

4 49 28 41 48 48 49 49 49 49
5 312 173 251 305 310 311 311 312 312
6 1673 1175 1380 1619 1654 1668 1671 1673 1673
7 6071 5224 5498 5985 6052 6057 6057 6052 6071
8 48895 44497 44183 48584 48876 48876 48876 48877 48887
9 92741 87485 87080 92381 92721 92723 92723 92721 92725
10 184832 178155 177799 184428 184794 184794 184795 184796 184796

TABLE III: Runtime and accuracy comparison of different NPN classifiers.

n #Func
#Exact
Class

Kitty testnpn -6 [13] testnpn -7 [20] testnpn -11 [14] Ours
#Class Time #Class Time #Class Time #Class Time #Class Time

4 1146 49 49 0.031 251 0.0003 - - 52 0.0024 49 0.0013
5 6824 312 312 0.858 1586 0.0026 - - 322 0.015 312 0.0049
6 28672 1673 1673 39.453 7375 0.006 1752 0.021 1690 0.046 1673 0.121
7 80123 6071 - - 23318 0.216 6249 0.067 6115 0.194 6071 0.773
8 480516 48895 - - 190708 0.13 50066 0.554 49577 4.701 48887 12.350
9 691474 92741 - - 278090 0.296 94283 1.438 93575 128.926 92725 51.86
10 1153464 184832 - - 500911 0.881 187117 4.193 186098 1329.995 184796 318.56
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Fig. 5: Our classifier has stable runtime.

functions. Fig. 5 shows the runtime of our classifier and

testnpn -11 testing on randomly generated 5-bit and 7-

bit Boolean functions. The horizontal axis is the number

of generated Boolean functions. We randomly generate a

fixed number of Boolean functions with truth tables in

consecutive binary encoding for each bit. This figure shows

that the runtime of our classifier is almost linear with the

total number of Boolean functions, while testnpn -11

fluctuates widely with different sets of Boolean functions.

Actually, our classifier cannot return exact matching solu-

tions. Influence and sensitivity still have great potential to

be extended to the traditional method to achieve exact NPN

classification, and we will explore them in the future.

VI. CONCLUSION

This paper rethought the NPN classification problem in

terms of face and point characteristics of Boolean func-

tions. We introduced Boolean sensitivity and influence, two

concepts considering point and face-point characteristics in

NPN classification. We designed some signature vectors

based on these two characteristics. Combined with cofactor

signatures, we develop a new classifier that only relies on

signature vector computation. The experiments showed that

the proposed NPN classifier gains better NPN classification

accuracy with comparable and stable speed.
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