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Abstract—In recent years the automotive industry has been
strongly promoting the development of smart cars, equipped
with multi-modal sensors to gather information about the sur-
roundings, in order to aid human drivers or make autonomous
decisions. While the focus has mostly been on visual sensors,
also acoustic events are crucial to detect situations that require
a change in the driving behavior, such as a car honking, or
the sirens of approaching emergency vehicles. In this paper, we
summarize the results achieved so far in the Marie Skłodowska-
Curie Actions (MSCA) Eruopean Industrial Doctorates (EID)
project ”Intelligent Ultra Low-Power Signal Processing for Au-
tomotive (I-SPOT)”. On the algorithmic side, the I-SPOT Project
aims to enable detecting, localizing and tracking environmental
audio signals by jointly developing microphone array processing
and deep learning techniques that specifically target automotive
applications. Data generation software has been developed to cover
the I-SPOT target scenarios and research challenges. This tool
is currently being used to develop low-complexity deep learning
techniques for emergency sound detection. On the hardware side,
the goal impels workflows for hardware-algorithm co-design to
ease the generation of architectures that are sufficiently flexible
towards algorithmic evolutions without giving up on efficiency, as
well as enable rapid feedback of hardware implications of algo-
rithmic decision. This is pursued though a hierarchical workflow
that breaks the hardware-algorithm design space into reasonable
subsets, which has been tested for operator-level optimizations on
state-of-the-art robust sound source localization for edge devices.
Further, several open challenges towards an end-to-end system
are clarified for the next stage of I-SPOT.

Index Terms—Acoustic Perception, Sound Event Detection,
Sound Source Localization, Embedded AI, Hardware-Algorithm
Co-Design, Autonomous Driving, Microphone Array Processing

I. THE I-SPOT PROJECT

The automotive industry is currently going through radical
innovations that require rethinking the concept of mobility
and the role of new technologies in the development of the
automobile of the future. A key role in this evolving context
is played by smart vehicles, aiming on one side to provide
assistance to human drivers by enhancing their environmental
awareness or supplying useful information in real-time, and on
the other hand to achieve some level of autonomy in taking
decisions and (partially) controlling the driving. At the time of
writing, the first vehicles reaching level 3 of driving automation
[1] begin to appear on the market, while manufacturers strive
to achieve higher autonomy in future years, fueling the devel-
opment of reliable technical solutions to ensure the safety of
automated driving systems. Autonomous cars extensively rely
on perceptual abilities, i.e. on the ability to extract in real time
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Fig. 1. I-SPOT targets the enhancement of smart cars with acoustic environ-
mental awareness, through the addition of a smart sensing array capable of
acoustic localization and detection, supported by custom processing hardware
for efficient always-on operation.

information that is useful for driving safely, from data collected
via different and multi-modal sensors mounted on the car. Most
of the research on how to enhance the situational awareness of
vehicles has been focusing on visual scene analysis, exploiting
computer vision techniques and both long- and short-range
imaging devices such as Light Detection and Ranging sensors
(LiDARs), radars and cameras [2]. Human drivers, however,
also strongly rely on acoustic cues as a way to perceive and
understand what is happening in their surroundings: in certain
scenarios, acoustic events are not accompanied by correspond-
ing visual cues (e.g. a car honking) while in others they can en-
able the detection of objects that are invisible due to occlusions
(e.g. an emergency vehicle behind a corner with an active siren).
Acoustic perception can therefore complement the knowledge
obtained from other sensory devices both in active (drive) and
passive (park) mode, where sensing abilities can be exploited to
continuously monitor the car and the surrounding environment
for possible hazards (always-on operation). Among multiple
potential use cases [3], highlighted in Fig. 1, such technology
could help in: (i) detecting dangerous situations; (ii) identifying
anomalies in car components; (iii) monitoring the acoustic
scene for critical events.

To compensate for the current lack of acoustic awareness in
cars and enhance the perception ability of autonomous vehicles,
the EU MSCA project I-SPOT [4] targets the exploitation of
acoustic sensing in the automotive domain. The project started
in Nov. 2020 and relies on the collaboration between KU
Leuven and Robert Bosch GmbH. Two early-stage researchers
are involved in conducting research at the two partner institu-
tions, working respectively on the algorithmic challenges and
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on the hardware design, with the ultimate goal of merging the
two components within this project. The project is now in its
intermediate stage, and will run until Oct. 2024.

In this paper we describe the I-SPOT Project by introducing
its motivation and goals, the results achieved during the first
project stage and the problems still to be addressed. The rest
of the paper is organized as follows: in Sec. II we introduce
the target goals of I-SPOT, both on the algorithmic side and on
hardware design aspects. Sec. III discusses the related research
constituting the state of the art at the start of the project. Next,
in Sec. IV we present what has been achieved so far and in
Sec. V the work that still needs to be done during the second
stage of the project. We finally draw conclusions in Sec. VI.

II. PROJECT GOALS

The ultimate goal of the I-SPOT Project is the enhancement of
perceptual abilities of smart cars via acoustic sensing and signal
processing. This broad task incorporates many sub-problems
that can be grouped into algorithmic development and hardware
design, tackled by the two researchers in an interleaved manner,
where hardware assessment becomes an influential part of
algorithm design and vice versa.

On an algorithmic design level, the project targets the de-
velopment of low-footprint signal processing techniques for
automotive acoustic signal identification, characterization and
localization. This task corresponds to an application of the well-
known Sound Event Localization, Detection (and Tracking), or
SELD(t) problem in the automotive domain [5]. This use case
brings several application-specific challenges to be addressed
in the project:

1) The automotive acoustic scene is characterized by strong
and dynamic background noise generated by multiple
overlapping sound sources (e.g. other vehicles, people,
environmental sounds such as rain or wind, etc.);

2) Due to the foreseen safety-critical use case, a high accu-
racy is required in both the detection and localization of
highly variable sound events (e.g. siren sounds are usually
different in each country or region). Thus, algorithms
should be robust to noise and interference while having
a strong generalization ability;

3) The target deployment on embedded devices requires the
algorithms to be multi-mode and computationally efficient,
i.e., including the fully-functional low-latency driving
mode and trigger-based low-power parking mode;

4) To fulfill such efficiency, algorithm development and hard-
ware design should form iterations, namely the software-
hardware co-design flow, where rapid design reuse and
hardware-algorithm co-optimization can take place.

Although the SELD(t) problem has been discussed at length
in the literature and solutions have been proposed for both in-
door (e.g. speaker identification [6], anomalous sound detection
[7]) and outdoor applications (e.g. acoustic scene classification
[8], traffic monitoring [7]), existing solutions do not cover these
specific challenges of the automotive domain. Accommodating
them constitutes one of the core innovative aspects of the I-
SPOT Project.

Towards the hardware implementation and deployment, these
algorithm targets also pose significant challenges. Firstly, hard-
ware efficiency is critical in executing aforementioned compu-
tationally intensive algorithms in resource-restricted edge de-
vices. Currently, the thriving field of AI deployment provides a
wide range of hardware solutions for neural network execution
[9]. However, the targeted algorithms require a hybrid approach
with both neural networks in combination with conventional
signal pre-/post-processing. Hardware platforms efficiently sup-
porting such heterogeneous, diverse workloads are scarce and
needed for power-efficient, low-latency end-to-end acoustic
solutions [10]. Moreover, the automotive requirements ask for
a reliable and well-packaged hardware system. Hence, on the
hardware level, the I-SPOT system needs to feature:

1) Multi-kernel support for end-to-end hybrid algorithms;
2) Real-time low-latency operation to quickly response to

each target event;
3) An optimized energy efficiency, to reduce the overall

automobile power budget, especially in park mode.
Besides striving for efficiency under heterogeneous work-

loads, a second important goal of I-SPOT’s hardware devel-
opment is to enable rapid design iterations and tolerate later
algorithmic changes. In contrast to a traditional accelerator
design flow in which the algorithm is considered stable when
the accelerator development starts, the I-SPOT algorithm will
evolve strongly during and even after hardware generation.
We hence have to avoid on one hand that dedicated hardware
architecture would reject new algorithmic features during the
project, yet, also shy away from the development of too
generic, flexible hardware architectures which lead to a lack
of efficiency. This hence introduces several requirements for
the I-SPOT hardware design workflow:

1) It is necessary to find a balance between flexibility and
application-specific hardware architectures, to provide ag-
ile support of future algorithm upgrades;

2) The design procedure should enable rapid feedback for
hardware-algorithm co-optimization among multiple hard-
ware design levels, especially the early design stage;

3) The workflow needs to feature hardware design reuse for
fast integration and incremental module optimization;

4) Software-related optimization passes ought to form a
scheduling tool that offers user-friendly programming of
the resulting hardware.

The last system-level challenge is related to the assessment
of the optimal microphone array topology and placement on the
car body, in order to improve the quality of the received signal
and boost the performance of the detection and localization
algorithms. This task requires the definition of the desired
number of sensors and their relative position, two parameters
that can strongly influence the localization algorithms [11].
While the problem has been addressed in room scenarios, few
works concerning the automotive domain [12] exist. In such
applications, only few places can effectively be used, due to
the requirements of car manufacturers and the necessity to
protect the sensors from the harsh environment, where the
presence of strong vibrations, wind, temperature changes and
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atmospheric phenomena could cause damage and harm their
correct operation.

To summarize, the I-SPOT Project embraces the design of
an end-to-end system to provide autonomous cars with acoustic
perception abilities. The foreseen challenges elaborated in this
section link to a wide range of related research addressing the
microphone array topology, the detection and localization of
critical events, and efficient agile hardware architecture.

III. RELATED WORK

Despite the wide literature on acoustic scene analysis, works
targeting automotive applications are still limited. Some authors
have tackled the detection and localization of emergency sound
events, such as car horns and emergency sirens in an urban
scenario [13]–[19]. These works can be split into the ones
addressing only the detection problem [13], [14], [16], [17]
and the ones targeting localization as well [15], [18], [19]. The
proposed solutions to both problems are mostly based on end-
to-end machine learning and deep learning methods, that have
proven to provide an increased robustness to strong background
noise and complex dynamic acoustic scenes as compared to tra-
ditional signal processing techniques [15]. The state-of-the-art
approaches share a similar processing pipeline for the detection
stage, eventually followed by a localization stage. The detec-
tion process can be summarized as follows. First, a feature-
extraction step takes as input the audio signal recorded by one
(for the detection-only problem) or multiple (if the localization
is addressed too) microphones and builds a corresponding
representation to be used as input to a neural network. Most
methods use time-frequency feature representations, such as
spectrograms [13], [14], [16], [19], gammatonegrams [14], [15],
Mel-frequency cepstral coefficients (MFCCs) [13], [17], [19],
or, less commonly, gammatone-frequency cesptral coefficients
(GFCCs), constant-Q transform (CQT) and chromagrams [17].
Others take the raw waveform of the windowed audio signal
as input feature [18]. Finally, some approaches adopt both
time-frequency representations and the raw-waveform feature
to train multi-path neural networks [13], [19]. After the feature
extraction phase, the techniques for sound event detection
and classification are mostly based on Convolutional Neural
Networks (CNNs) [13], [14], [16], [17], [19], with the exception
of [18], exploiting a fully-connected neural network, and [15],
based on a U-net architecture [20] for the detection stage.
The localization, instead, is tackled in [19] jointly with the
detection, using an additional direction of arrival output added
to the same network, while [15] includes a second CNN
that takes as input the segmented gammatonegram features
obtained during the detection stage. In [18], a traditional signal
processing stage is cascaded to the detection network, in order
to estimate both the sound’s direction of arrival and distance.

Towards the realization of efficient models for the edge, the
Detection and Classification of Acoustic Scenes and Events
(DCASE) community [21] has recently obtained sub-100K-
parameter models for low-complexity acoustic scene clas-
sification (DCASE2022 task-1), while the SELD problem
(DCASE2022 task-3) still relies on over 10M neural network
weights. The I-SPOT Project embodies such considerations in

the algorithmic design, via the introduction of a co-design
workflow to promote the joint optimization of model accuracy
and complexity. This new research trend is still weakly explored
in the audio signal processing research community [22], [23]
as compared to the well-established research on network quan-
tization and pruning for image processing using deep learning
techniques [24]. This requires strengthening the interconnection
between the heterogeneous algorithm development exploiting
deep learning in combination with traditional signal processing
on one hand, and versatile reconfigurable hardware architec-
tures optimized for the automotive setting on the other hand.

The most straightforward approach towards hardware versa-
tility across a wide range of algorithms is to make the hardware
fully programmable. General-purpose devices such as CPUs
and GPUs satisfy the demand of computational performance
and runtime programmability for end-to-end hybrid algorithms,
yet lack energy efficiency. More specialized devices like field-
programmable gate arrays (FPGAs) could be controlled and
configured at finer-granularity, yet still suffer from low power
efficiency, and require considerable programming time. To
overcome these bottlenecks, the modern coarse-grained re-
configurable arrays (CGRA) [25] promise to offer a better
balance between processor flexibility and energy efficiency.
Several open-sourced CGRA platforms [26]–[29] have been
proposed to accelerate heterogeneous workloads within certain
application domains with more flexibility through run-time
conditional controls. CGRA-based scheduling is explored at
both fine and coarse hardware granularity, targeting to achieve
either optimal utilization [26] through low level reconfigurabil-
ity, or ultra-low power operation [30], [31] through specialized
heterogeneous fabric design. Yet, the mapping algorithms for
CGRAs remain challenging, and still fail to smoothly com-
pile applications to modern CGRAs, especially when complex
CGRA fabrics scale up.

IV. ACHIEVEMENTS

During the first stage of the project, preliminary objectives have
already been met, laying the foundations for the research tasks
in the second phase towards the target goals presented in Sec. II.

A. Algorithmic Achievements

The first problem that has been addressed is the generation
of data to design and assess algorithms for sound source
detection and localization. Although some datasets containing
urban sounds are available in the literature [32]–[34], they
can hardly be used to address the I-SPOT challenges. First,
these datasets target only the detection problem, thus usually
providing single channel recordings with temporal labels. To
perform sound source localization, instead, spatial information
about the position and movement of sound sources in the
acoustic scene is needed, and multi-microphone array data are
required. Second, a tool enabling to flexibly generate data while
changing the array configuration is of utmost importance to
analyze the impact of different microphone array architectures
on the detection and localization performance. This research
topic is often missing in the literature, particularly in the
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Fig. 2. Pyroadacoustics block scheme. Acoustic propagation is modeled using
variable-length delay line elements; the sound attenuation caused by spherical
propagation is implemented via three gain elements G1, G2, G3; the asphalt
reflection properties are modeled using an FIR filter Hrefl; the air absorption
properties are modeled via three FIR filters Hair [35].
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Fig. 3. Geometry of the simulated multi-path propagation in pyroadacoustics:
the microphone M receives the direct signal emitted by the source S, propa-
gating via d1, and the reflected sound, via d2 and d3 [35].

automotive use case, probably also owing to the unavailability
of sufficient data to support a systematic assessment.

These motivations led to the design of pyroadacoustics,
a simulator of sound propagation specifically targeting road
scenarios [35], that has been developed during the first stage of
the project and released as an open-source Python library [36].
The simulator has a flexible design that enables the user to
adapt the acoustic scene parameters to different use cases. Its
architecture, depicted in Fig. 2, allows to simulate the sound
produced by a single, omnidirectional sound source moving
on an arbitrary trajectory with an arbitrary speed, and emitting
a user-defined arbitrary audio signal. The sound is received
by an array of an arbitrary number of omnidirectional, static
microphones, placed in user-defined positions in the space,
and includes both the direct component, and the reflection
originating from the road surface (see Fig. 3). It should be
noted that the support for user-defined trajectories ensures that
the presence of both moving sources and microphones can
be emulated by generating complex trajectories that account
for variations in the relative speed between the source and
the receivers (i.e. using spline or Bezier curves). To enhance
the physical accuracy of the simulation, an accurate model of
the reflection properties of the asphalt surface is included and
implemented via finite impulse response (FIR) filtering, and
can be adjusted by the user. Similarly, the effect of the air
absorption is accounted for in the simulation via FIR filters.
Finally, the use of variable-length delay lines to implement
acoustic propagation ensures that the Doppler effect is correctly
simulated [37]. This tool is, to the best of the authors’ knowl-
edge, the only one publicly available providing the possibility
to generate multichannel audio data in a road scenario, and
can be exploited to obtain a dataset for both the detection and
localization of sound sources, as well as to conduct studies on
microphone array geometries for automotive applications.

In order to kick-start the design of the envisioned algorithms
during the second stage of the project, pyroadacoustics has then
been used to generate a dataset for emergency vehicle detection.
First, audio clips containing clean sounds of different types of
sirens (namely, hi-low, wail and yelp [15]) and car horns have

been collected from the online repository www.freesound.com,
together with 2.5 hours of urban ambience and traffic noise. All
the audio events are recorded with a close microphone in order
to avoid any interference from other sources active on the road.
Exploiting these audio clips, a total of 15000 single-channel
data samples have been generated using pyroadacoustics: each
sample contains the sound emitted by a source of interest (i.e.
either a siren or a car honking) moving on a random trajectory
with an arbitrary speed, summed with a background noise
extracted randomly from the collected noise clips. The sound
and noise signals are combined with a random signal-to-noise
ratio (SNR) in the range [−30, 0] dB. While this dataset aims
to fuel the exploration of sound event detection algorithms,
the same simulator will be used for the generation of multi-
microphone data to target localization. These tasks require
to compare different architectures involving neural networks
and traditional signal processing blocks (Sec. III) and jointly
optimize model complexity, robustness and accuracy.

B. Hardware Flow Achievements

To pipe-clean the hardware-algorithm development work-
flow, early-stage hardware-based bottleneck assessments and
optimizations have been conducted based on the Cross3D
[38] sound source localization (SSL) framework, a state-of-
the-art baseline. Cross3D combines conventional signal pre-
processing, with a deep learning back-end to achieve efficient
and accurate SSL. It specifically leverages pre-processing to
extract the steered response power feature with phase trans-
form filter (SRP-PHAT) and obtain robust SSL accuracy over
unforeseen test data. In the back-end, Cross3D replaces the typ-
ical hardware-unfriendly beam-forming computation for SRP-
PHAT-based localization by a highly parallelizable CNN work-
load. In I-SPOT, we assessed the hardware benefits stemming
from this optimization and further finetuned the Cross3D model
towards more efficient edge deployment. To enable this, a
hardware-oriented optimization workflow has been prototyped,
as illustrated in Fig. 4, covering the following key features:
(i) The bottleneck analysis on the baseline algorithms across
the design parameter space definition; (ii) The algorithmic
finetuning of design parameters based on resources including
pre-trained model weights and empirical deep neural network
(DNN) training parameters; (iii) The multi-level hardware
cost model evaluation that jointly considers different design
stages, such as roofline analysis [39], PyTorch profiler, and
TVM runtime performance [40]); (iv) The hardware-algorithm
trade-off judgment from algorithm output and hardware over-
head; (v) The global configuration update to narrow the design
parameter space and handle the co-design porting exceptions.

This script-based workflow has proven its capability in
squeezing Cross3D project for edge-device low-latency exe-
cution without giving in accuracy (8.59 ms/frame end-to-end
on RasPi-4B, 7.26x faster than the baseline). The hardware-
based analysis and low-complexity SRP literature [41] inspires
a mathematically equivalent SRP-PHAT algorithm with ∼10x
latency boost and ∼50% coefficients reduce. The algorithm-
hardware co-optimization helps to discover better training
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Fig. 4. Overview of the hardware-algorithm co-design workflow prototype for
I-SPOT hybrid algorithms, with (A) algorithm-specific analysis and (B) general
hardware-algorithm toolchain. The neural network part is powered by standard
DNN frameworks. The hardware profiling branch relies on IR porting from the
original algorithm descriptions to unified lower operator expressions (currently
with the TVM IR library [40]).

scripts and finetune the baseline model to edge-device versions
which are ∼86% smaller while ∼47% faster.

V. OPEN CHALLENGES

Based on the achieved milestones in Section. IV, we are eager
to tackle the remaining bottlenecks during the second stage
of the project. On the algorithmic side, the design of sound
event detection and localization algorithms targeting emergency
sounds in a road scenario (i.e. emergency sirens and car horns)
is currently ongoing and will be further investigated in the next
few months. This task, supported by the dataset described in
Sec. IV, will again combine both deep learning and traditional
signal processing techniques, towards a hybrid approach to
solve the SELD(t) problem. This hybrid approach aims at
increased hardware efficiency and enhanced explainability of
the results, a crucial aspect for a safety-critical use case as
autonomous driving. Hybrid approaches, combining spectral
and spatial features for signal analysis, have proven effective for
the localization of sound events produced by moving sources,
as discussed in Sec. II, but they are still rarely adopted in the
automotive domain [18].

On the hardware side, two major challenges are to be
tackled in the next project stage. First, the script-based co-
design workflow requires extra functionality to enable higher
automation: during algorithmic development, hybrid algorithms
typically contain multi-level scientific computation application
programming interfaces (APIs), which differ in performance
and hardware compatibility for porting and lowering. Hence,
instead of handling these exceptions by manually selecting
functions and rewriting the program towards better hardware
mapping, an I-SPOT intermediate representation (IR) needs to
be built. This will be pursued based on existing IR semantics,
such as modifying the stateful data flow graph (SDFG) repre-
sentation [42] targeting heterogeneous CGRA fabric backends.

The toolchain prototype in Section. IV-B also leaves space
for further IR customization that lowers high-level algorithm
descriptions to actually generate custom, yet flexible hardware.
Second, the I-SPOT hardware architecture will be defined in
more detail. Currently, the co-design optimization iteration ends
with hardware evaluation on embedded CPU processors. Along
with the progress and survey from the software aspect, the first
version of CGRA processing elements and hardware control
blocks will be drafted for basic operators in the target algo-
rithm. Moreover, with the flows currently in place, hardware
design exploration and algorithm optimization will start to be
more tightly interwoven.

Finally, on a system level, the design and assessment of the
microphone array to be adopted for sensing purpose is yet to be
tackled. This task also involves the assessment of the robustness
of automotive SELD(t) methods to different microphone array
geometries, justified by the need to potentially deploy these sys-
tem on multiple classes of vehicles. The use of pyroadacoustics
to generate data with different sensor array architectures makes
such an assessment feasible.

VI. CONCLUSION

In this paper we introduced I-SPOT, an EU MSCA Project gath-
ering two partner institutions, KU Leuven and Robert Bosch
GmbH, that targets the enhancement of the acoustic perception
of autonomous cars via audio signal processing. Within the
project, the two aspects of algorithmic and hardware design
co-exist in an interconnected development loop where hardware
assessment requirements bring a foundational feedback into the
algorithm design and tuning process, and vice versa. During
the first stage of the project a road acoustics simulator has
been designed, setting the ground for both the development of
emergency sound event detection and localization algorithms,
and the design and assessment of the sensor array needed to
provide the vehicle with sensing capabilities. The first version
of a hardware-algorithm co-design flow has been established
via evaluating and optimizing a state-of-the-art hybrid SSL
solution, along with the initial data collection of hardware
bottlenecks and overhead levels towards the I-SPOT Project
requirements. A hybrid approach has been chosen for the target
audio signal processing algorithms, using a combination of
traditional signal processing and deep learning techniques. This
ensures an improved interpretability of the results compared
to end-to-end deep learning methods, which is demanded by
the safety-critical use case of autonomous driving. Remaining
challenges are driving in our ongoing work and will be further
addressed during the second stage of the project, together with
(and with a continuous feedback from) the design of the edge-
devices and accelerators on which the models will be deployed.
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