
Hardware and Software Support for Mixed Precision
Computing: a Roadmap for Embedded and HPC

Systems
William Fornaciari

DEIB Politecnico di Milano &
CINI National Laboratory HPC-KTT

Milano, Italy
william.fornaciari@polimi.it

Giovanni Agosta
DEIB Politecnico di Milano &

CINI National Laboratory HPC-KTT
Milano, Italy

giovanni.agosta@polimi.it

Daniele Cattaneo
DEIB Politecnico di Milano

Milano, Italy
daniele.cattaneo@polimi.it

Lev Denisov
DEIB Politecnico di Milano

Milano, Italy
lev.denisov@polimi.it

Andrea Galimberti
DEIB Politecnico di Milano

Milano, Italy
andrea.galimberti@polimi.it

Gabriele Magnani
DEIB Politecnico di Milano

Milano, Italy
gabriele.magnani@polimi.it

Davide Zoni
DEIB Politecnico di Milano

Milano, Italy
davide.zoni@polimi.it

Abstract—Mixed precision is an approximate computing tech-
nique that can be used to trade-off computation accuracy for
performance and/or energy. It can be applied to many error-
tolerant applications, but manual precision tuning is both tedious
and error-prone. Furthermore, the effectiveness of the technique
heavily depends on hardware characteristics. Therefore, a hard-
ware/software co-design approach is necessary for an effective
exploitation of precision tuning opportunities offered by the
applications. In this paper, we propose, based on the state of the
art of precision tuning software and mixed precision hardware,
a roadmap for the evolution of hardware designs and compiler-
based precision tuning support, which is ongoing in the context
of the European projects TEXTAROSSA and APROPOS.

Index Terms—approximate computing, mixed precision, hard-
ware/software co-design, high-performance computing

I. INTRODUCTION

Approximate Computing is an emerging class of optimiza-
tion techniques to trade off computation accuracy for perfor-
mance and energy [1]. In general, Approximate Computing
techniques can be performed in a wide range of contexts, from
hardware to application level, and can introduce approximation
in several ways, ranging from faults induced by undervolting
the system, as in near threshold computing [2] to skipping entire
iterations of a loop, as in loop perforation techniques [3], in
real-time optimization [4], and for on-chip communication [5].

In this paper, we focus on one particular Approximate
Computing technique, namely Mixed Precision Computing [6].
Mixed Precision Computing aims at controlling the accuracy-
performance/energy trade-off at a fine grain, by modifying
the data types involved in each computation. Whenever a

This work is supported by the MSC-ITN grant agreement No. 956090
(APROPOS: Approximate Computing for Power and Energy Optimisation,
http://www.apropos.eu/) and from the EU’s and the Italian Ministry of
Economic Development (MISE)’s EuroHPC program under grant agreement
No. 956831 (TEXTAROSSA: Towards EXtreme scale Technologies and Ac-
celerators for euROhpc hw/Sw Supercomputing Applications for exascale,
http://www.textarossa.eu/).

computation is introduced in an application source code, it is
assigned a data type based on the programmer understanding of
the semantics of the variables and constants involved as well as
the available data types in the programming language. However,
this choice usually produces a computation that significantly
exceeds the precision needed for the actual ranges of values
involved in it at run-time, since the programmer cannot be
asked to fine-tune it, even when the programming language
and the underlying instruction set architecture allow it. In
the context of resource-constrained embedded systems, where
computing resources are scarce and floating point units may
not be available at all in low power micro-controllers, an expert
needs to manually tune the code designed by the application
programmer to produce an optimized version.

To address this issue, new hardware extensions are being
designed, including support for new data types such as bfloat16,
and compiler-based tools have been developed to support the
programmer in selecting the best solution for their applica-
tions. However, these developments have mostly progressed
in parallel, and there is now need to combine them in a
hardware/software co-design approach in other to reap the
highest possible benefits from Mixed Precision Computing.
Two European efforts have recently started with complemen-
tary goals addressing the problem stated above. EuroHPC
TEXTAROSSA [7], [8] focuses on heterogeneous platforms
for High Performance Computing (HPC), including both re-
configurable fabrics and general purpose accelerators (GPU),
whereas MSCA-ITN APROPOS [9] is more oriented towards
low-power embedded systems. In this paper, we show how the
two projects will work synergically towards the development of
both hardware and software components needed for effective
Mixed Precision Computing across the Computing Continuum.

In Section II we review the state of the art of Mixed Precision
Computing hardware and compiler support. In Section III

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Multi-Partner Project	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



and IV we outline the research roadmaps of TEXTAROSSA
and APROPOS, while in Section V we outline some conclu-
sions.

II. STATE OF THE ART

In this section, we provide an overview of the most relevant
hardware and compiler methods for mixed-precision found in
the literature.

A. Transprecision and Mixed Precision Hardware

Architectures targeting mixed-precision floating-point arith-
metic must provide fast, energy-efficient, and area-efficient
support for carrying out computations on a variety of floating-
point formats.

The FloPoCo framework can generate hardware accelerators
for basic as well as more complex, non-standard floating-point
arithmetic operations on FPGA targets [10]. The designer can
configure at design time the precision of the generated cores,
which can then be integrated into a general-purpose CPU
in the form of a floating-point unit (FPU) or employed as
a co-processor. While FloPoCo-generated cores can compute
complex operations far more efficiently than as a sequence
of standard FPU operations in a baseline CPU, the high
throughput of those accelerators is countered by a high usage of
FPGA resources, which makes such cores suitable to high-end
embedded systems and more complex computing platforms.

The fused multiply–accumulate (FMAC) unit for transpreci-
sion computing presented in [11], meant for ASIC designs, can
compute multiple low-precision floating-point operations at the
same time in a SIMD fashion. Meant to be integrated in HPC
solutions, the FMAC unit adds, for each low-precision result,
a bit acting as a flag for its accuracy, signaling whether the
corresponding operation has to be computed again at a higher
precision in order to achieve the desired accuracy. Significant
compiler changes must be implemented to support such feature.

[12] introduced a transprecision FPU that was integrated
within the PULPino RISC-V-based open-source microcon-
troller, meant for ultra-low-power applications. The proposed
FPU can handle 32-, 16-, and 8-bit floating-point formats on
the same datapath in a packed SIMD fashion, thus provid-
ing hardware support for transprecision when coupled with a
software framework that can explore and tune the precision
and dynamic range of floating-point variables. The concurrent
support for three floating-point formats on the same FPU is
countered by the complexity and high resource utilization of
the packed SIMD datapath.

The mixed-precision floating-point unit introduced in [13]
targets FPGA chips and is meant to be suitable for embedded
systems platforms, such as the SoC supporting the RISC-V
instruction set in which it was integrated for evaluation pur-
poses [14]. Each type of operation can be implemented with a
different floating-point format selected at design time according
to the accuracy and performance requirements and resource
constraints. Once instantiated, the supported formats can not
be modified at run time, unless performing reconfiguration on
FPGA targets. No changes are needed to the compiler, which
can still work with standard float32 variables. The supported

floating-formats are 32-bit ones with any number of mantissa
bits ranging from 1 to 23 and with the same 8-bit exponent
length as the IEEE 754 float32 floating-point format.

While fixed-point operations can in general be computed as
sequences of integer arithmetic and shift operations, mixed-
precision computing making use of fixed-point arithmetic must
also be supported at the hardware level to provide more
effective performance. Few state-of-the-art solutions implement
therefore dedicated instruction set extensions providing fixed-
point operations coupled with the corresponding hardware
architecture to execute them.

[15] added support for the RISC-V P extension to the RISC-
V 64-bit CVA6 processor [16]. The RISC-V P extension [17]
extends the RISC-V instruction set architecture (ISA) with
support for packed SIMD instructions, including fixed-point
instructions for the Q1.63, Q1.31, Q1.15, and Q1.7 fixed-point
formats, i.e., formats with 1 integer bit and 63, 31, 15, and 7
fractional bits, respectively.

The mixed-precision hardware support for fixed-point arith-
metic introduced in [18], [19] implements instead a custom
extension for the RISC-V ISA to enable the execution of
fixed-point multiplications and divisions with 32-bit fixed-
point formats selected at run time. The custom instructions,
whose support must be added at the compiler level, encode
indeed, in addition to the two operands, the position of their
decimal point, i.e., the number of their integer and fractional
bits. The modifications to be applied to the baseline ALU
implementing integer multiplication and division instructions
are minimal, also in terms of FPGA resource utilization, making
the proposed fixed-point hardware support suitable even for
constrained platforms such as embedded systems at the edge.

B. Precision Tuning support at compiler level

Many of the precision tuning tools are implemented as a
step in the program compilation process. There are multiple
benefits to doing it this way: (i) operating on the lower level
of granularity exposes more opportunities for optimizations,
(ii) access to information about the target hardware allows
to tailor the program to the specifics of that hardware (e.g.
supported floating-point types, operations performance, etc.),
(iii) it is non-intrusive and transparent for the programmer,
(iv) it benefits from highly developed compiler ecosystem.
In practical terms, precision tuning tools used to optimize
real applications need to satisfy the following requirements:
(i) be able to optimize programs containing loops, conditionals
and memory operations, (ii) be able to work with programs
written in commonly-used programming language, (iii) support
wide variety of execution platforms, (iv) be able to work with
a modern compilation ecosystem. Very few tools discussed
currently in the literature satisfy these points.

TAFFO [20] is a precision tuning tool implemented as a
plugin for LLVM compiler framework. It works with programs
written in C/C++ and compiles them into transprecision bi-
naries trading off accuracy of result for the execution time.
TAFFO requires programmer to annotate input variables with
the dynamic intervals of their values. It then uses Interval
Arithmetic to derive the dynamic intervals of other variables,

!

!



TABLE I
PRECISION TUNING TOOLS SUMMARY

Tool Validation Input Language Algorithm
TAFFO Static C, C++ Interval Arithmetic, Affine Arithmetic, ILP
Rosa Static Scala Interval Arithmetic, Affine Arithmetic, SMT
Daisy Static Scala, C Interval Arithmetic, Affine Arithmetic, SMT, rewriting rules
Precimonious Dynamic C, C++ Delta-Debugging
FloatSmith Dynamic C, C++ Algorithmic Differentiation, Delta-Debugging, Hierarchical Composition

and Affine Arithmetic to estimate the errors. Provided the
information about the supported types and the speed of the
floating- and fixed-point operations TAFFO uses Integer Linear
Programming (ILP) model to select the most optimal type
allocation for the particular execution platforms [21], allowing
it to target a wide variety of systems ranging from HPC to
embedded. It supports fixed-point [22] and multiple floating-
point [21] formats. TAFFO can perform static precision tuning
as well as run-time optimization [23].

Rosa [24] is a source-to-source compiler precision tuning
tool for programs written in Scala. It requires programmer to
use a special Real type together and preconditions and pre-
cision requirements on functions. From that information Rosa
derives the type allocation that satisfies the requirements using
Interval and Affine Arithmetics and SMT (Satisfiability modulo
theories) Solver. It does not support loops and conditionals.
Daisy [25] is a source-to-source compiler precision tuning tool
that extends Rosa for programs written in Scala and C. It uses
genetic algorithm to explore rewriting rules that may improve
accuracy of the program.

FloatSmith [26] is a source-to-source compiler for precision
tuning for programs written in C/C++. It integrates previously
existing tools to create a complete precision tuning pipeline.
FloatSmith requires programmer to annotate the variables that
need to be tuned with their error thresholds. It uses Algorithmic
Differentiation to statically estimate the error introduced by a
type change. It uses dynamic evaluation of floating-point types
configurations with different search strategies: delta-debugging,
hierarchical, and composition of the successful configurations.

Precimonious [27] is an LLVM-based precision tuning tool
for programs written in C/C++. It explores the configuration
space for the types used in the program and finds the best
within the given error threshold given as annotations in the
program. It uses delta-debugging algorithm for more efficient
exploration and tests configurations by running the selected
configurations with the inputs provided by the programmer.
It uses LLVM version 3, which limits its usefulness for the
modern applications.

Table I summarises the relevant tool properties discussed
in this section. For the more detailed discussion of the pre-
cision tuning tools we direct the reader to the survey: Cheru-
bin and Agosta [28].

III. MIXED PRECISION HARDWARE IN TEXTAROSSA

In this section, we report the advances proposed in TEX-
TAROSSA towards mixed-precision hardware support.

Fig. 1. Example of the mixed-precision floating-point architecture, in a
configuration where additions-subtractions are performed on float32 operands
and multiplications and divisions are computed on bfloat16 operands [13]

Operands pre-processing
shared

32 32

32 32 16 16 16 16

161632

Op1 Op2

FAddSub
float32

FMul
bfloat16

FMul

FDiv
bfloat16

Result rounding
float32

Result rounding
bfloat16

16

1632

float32 bfloat16

FDiv

Opcode

32

Res

A. Mixed-precision floating-point hardware support

The mixed-precision floating-point architecture [13] allows
delivering floating-point hardware support where the precision
of each type of operations, e.g., additions/subtractions, multipli-
cations, and divisions, can be independently selected at design
time depending on the target applications, on the accuracy
requirements, and on the resource utilization constraints. Such
flexibility in the supported floating-point formats still maintains
a common dynamic range, in particular, the one of the standard
IEEE 754 float32 format, across the entire FPU, providing
two main advantages. On the one hand, the fixed dynamic
range, i.e., the fixed number of bits encoding the floating-point
exponent, simplifies the interoperability between the different
floating-point data formats. On the other hand, the ensuing
less complexity in the hardware architecture allows further
optimizing the trade-off between efficiency and area.

Remarkably, when executing critical applications which
mandate a higher accuracy than the one provided by a FPU
implementing some combination of reduced-precision opera-
tions, resorting to the corresponding soft-float function calls
can still guarantee the precision of float32 computations, albeit
at the cost of a reduction of performance. Such possibility can
be exploited at the compiler level by selectively converting

!

!



Fig. 2. Overview of the changes, highlighted in red, applied to integer
multiplier and divider functional units to support fixed-point operations in the
mixed-precision fixed-point architecture [18]

Integer
multiplier

7

64

32

Op1

32

Op2

64

>>

64

32

32'b0

Integer
divider

32

Q

32

R

imm7

7

1 0

7'b0

1

isFixedOp

64

>>

32 32

PH PL

7

floating-point operations for which the HW support has reduced
precision into soft-float function calls, which make use of the
integer arithmetic resources of the CPU.

On the contrary, no changes or modifications must be applied
on the compiler side to deal with the floating-point formats,
possibly different from the standard float32 one, employed by
the different operations within the mixed-precision FPU. When
low-precision formats are used, the operands are truncated
to the desired precision and the ensuing result is extended
by setting the least significant bits to 0s at the hardware
level within the FPU, without any intervention required at the
compiler or application level.

An instance of the mixed-precision FPU implementing
bfloat16 multiplications, conversions, and comparisons and
float32 additions/subtractions and divisions was shown to oc-
cupy 21% less resources and providing a 19% EDP improve-
ment compared to a reference state-of-the-art FPU [29] while
maintaining an average accuracy error below 3%.

Figure 1 depicts an example configuration of our mixed-
precision FPU, where additions and subtractions are imple-
mented in the same functional unit according to the standard
float32 format, while multiplications and divisions are com-
puted between bfloat16 operands. The operands pre-processing
logic, which takes care of extending the mantissa and exponent
parts to deal with both normalized and denormalized operands
and of identifying special values such as NaNs, infinites, and
zeros, is shared between all the functional units computing
the actual operations. On the contrary, rounding logic is in-
stantiated for each of the hardware-supported formats. In the
example, result rounding is performed separately for float32 and
bfloat16 results, which are multiplexed from the corresponding
functional units.

B. Mixed-precision fixed-point hardware support

The mixed-precision fixed-point architecture [18] provides
hardware support for fixed-point multiplication and division

instructions of the RISC-V ISA. Any 32-bit fixed-point format
is supported, with the only constraint that both operands and
the result share the same fixed-point format.

The selection of such specific fixed-point format is not made
at design time for the fixed-point hardware support, but it
is encoded within the instruction opcodes of the fixed-point
multiplication and division instructions, which also include the
number of integer and fractional digits. In particular, the RISC-
V ISA was extended with eight fixed-point multiplication and
division instructions, each corresponding to a multiplication or
division instruction from the standard RISC-V ISA M exten-
sion. The additional fixed-point instructions, coupled with the
mixed-precision fixed-point hardware support, allow executing,
at run time, multiplications and divisions instructions with any
32-bit fixed-point format while reusing the same hardware.

The fixed-point hardware support requires a limited number
of additional FPGA resources compared to those required by
the overall SoC implementing a CPU compliant to the RISC-
V ISA integer (I) and multiplication/division (M) extensions.
In particular, the experimental results highlighted an overhead
in terms of resource utilization limited to 4%, compared to
the baseline SoC packing a CPU supporting the lone RISC-V I
and M extensions. On the energy-efficiency side, implementing
fixed-point hardware support was shown to provide a 35% EDP
improvement compared to the reference SoC also implementing
an FPU, while maintaining a negligible accuracy loss.

Figure 2 depicts, highlighted in red, the changes applied to
the baseline functional unit implementing integer multiplication
and division operations in order to support the corresponding
fixed-point operations. Logic meant to perform conversions
between sign-magnitude and two’s complement representations,
to compute the sign of the result, and to manage signed and
unsigned operations is instead not depicted, since it is not
modified. In particular, the number of fractional bits of the
operands and the result, encoded within the imm7 7-bit portion
of the fixed-point instructions’ opcode, is employed to shift
the result of the integer multiplier and the divider operand of
the integer divider, when executing fixed-point instructions, i.e.,
when the isFixed 1-bit flag is set to 1. On the contrary, when
computing standard integer operations from the RISC-V ISA
M extension, i.e., when the isFixed 1-bit flag is set to 0, the
product, quotient, and remainder outputs are computed without
applying any shift.

IV. COMPILER-SUPPORTED PRECISION TUNING

In this section, we provide an overview of the goals, architec-
ture and roadmap for the TAFFO compiler plugin set developed
in TEXTAROSSA and APROPOS.

A. Precision Tuning Compiler: Architecture

Traditional compilers do not normally change the data types
involved in the computation. The rationale is not only that com-
pilers should not alter the semantics of the program (actually,
most compilers can perform aggressive optimizations, although
those are normally disabled by default), but that the compiler
does not normally have information about the value ranges of
variables, and thus cannot say much about the computed data

!

!



Fig. 3. TAFFO compilation flow performing floating to fixed point conver-
sion [20]

Source code

clang front-End

Annotated LLVM
-IR

A
SM

Annotated Source code

Programmer Annotation

Target-Independent Opt.

Target-Dependent Opt.

Back-end

Initialization

Error Propagation

Code conversion

Value R
ange A

nalysis

D
ata Type A

llocation

M
ixed Precision A

SM

Normal compilation

Mixed-precision compilation

as well. A precision tuning compiler, therefore, needs such
information either from the programmer (by means of compiler
hints expressed as annotations or pragmas) or from profiling
(as in profile-guided optimization [30]). Our set of plugins for
the LLVM compiler framework, TAFFO [20], takes the former
approach, leveraging programmer annotations that express the
value ranges of the input data.

Figure 3 shows the TAFFO compiler pipeline, compared with
the standard compilation flow performed by the LLVM. Be-
yond some Initialization steps, the main activities that TAFFO
performs are the Value Range Analysis, which propagates the
information contained in the programmer annotations through
the program data flow, computing the ranges for all intermediate
values, and the Data Type Allocation, which selects the optimal
allocation taking into account not only the beneficial effect on
performance given by the reduced precision, but also the cost of
converting data between different types. This process results in
a clustering of operations, so that only a limited amount of type
conversions are performed. The Code Generation and Error
Propagation steps finally perform the conversion of the actual
code, applying the decisions taken in the previous step, and
check that the selected transformation does not catastrophically
affect the computation error (in which case the transformation
is undone).

TAFFO was first developed as the result of research ideas
proposed in the FETHPC ANTAREX project [31], and cur-
rently developed under the umbrella of both the EuroHPC
TEXTAROSSA and the MSCA-ITN APROPOS projects.

B. Precision Tuning for Heterogeneous Parallel HPC Architec-
tures in TEXTAROSSA

When targeting parallel architectures, precision tuning tools
need to tackle additional challenges that are not present in
conventional single-threaded tasks. In particular, the tool needs
to reliably detect each parallel region and the sets of variables
shared between parallel execution threads. If this is not done,
the transformed code might not be correct or appropriately
transformed to mixed-precision. This task is even more trouble-
some for languages which do not support parallel programming
paradigms without an auxiliary support library. This category
includes languages of particular interest to HPC architectures
such as C or C++, and languages used for compiler develop-
ment like LLVM-IR.

To address these challenges, in the context of the TEX-
TAROSSA project we plan to integrate the TAFFO precision
tuning plugins for the LLVM compiler framework with parallel-
oriented languages supported by the same compiler. The choice
of TAFFO is supported by its integrated architecture with the
LLVM compiler framework, contrary e.g. to Daisy [25], which
obviates the need of a specialized parser and code-generator as
in a source-to-source compiler. Additionally, TAFFO is up to
date with recent LLVM versions, contrary to Precimonious [27],
which requires a severely outdated version of LLVM. The
languages we plan to target encompass a large variety of
parallel HPC architectures. In particular, we support OpenMP
for CPU-based multiprocessing architectures, and we plan
to support OpenCL and CUDA for the GPU-based SIMD
paradigm and for GP-GPUs. In the future, we also envision
additional extensions to support OmpSs, and the recently-
proposed Posit numeric representation [32].

In order to add support for OpenMP-aware optimizations to
TAFFO, we modify the Initializer and Conversion passes. The
modifications allow the detection of specific OpenMP pragmas
and of the outlined functions inserted by the clang frontend.
This allows to mantain code correctness and to propagate
the contextual information needed by precision tuning inside
of parallel blocks. In Initializer, the program is searched for
instances of call sites of the OpenMP fork function. At each call
site, such function is temporarily deleted and replaced by a local
trampoline, whose body simply calls the OpenMP outlined
function This allows TAFFO’s existing code to handle OpenMP
programs without additional modifications. Additionally, we
detect OpenMP’s loop initialization library function to improve
the loop trip count analysis already provided by LLVM.

A similar approach will be used to implement support for
OpenCL and CUDA, with the additional complication that it
is necessary to subject both host code and kernel code to
optimization. In particular, the data types in the signature of
the kernel functions must be kept coherent between host and
device. Furthermore, it is necessary to detect where buffers are
created in the host code in order to propagate annotations from
the host code to the kernel code.

C. Precision Tuning for Embedded Systems in APROPOS

The APROPOS project leverages novel micro-controller
architectures that expose mixed-precision or trans-precision
arithmetic units, and develops compiler-based techniques to
achieve the best performance and energy efficiency within the
application constraints on accuracy. To this end, we need to
extend the TAFFO plugins set to support multiple data types,
both floating and fixed point. Depending on the target hardware,
it may be possible to achieve a co-design scenario, where the
compiler can analyze the application based on the developer
hints providing the quality of service requirements in terms
of expected maximum relative error, determine the optimal
data type selection for the various regions, and then, based
on the architectural options available, apply the appropriate
transformation to the code to generate the best mix of data
types, as well as a configuration file for the generation or
selection of the actual hardware platform.

!

!



To this end, APROPOS will need to extend the TAFFO
framework to perform the error estimation and the data type
selection not only for fixed point operations, but also for
floating point ones, to enable the support of mixed-precision
floating point units such as those developed in TEXTAROSSA
and described in Section III-A. In APROPOS, the TAFFO
pipeline will be extended to operate first the partitioning of
operation in two sets – those that can be performed in fixed
point arithmetics, and those that need to be performed using
floating point. Then, TAFFO will need to select the fixed-point
width using the LuIS methodology [21], and finally to select
the floating point width. New metrics combining sufficient
precision and limited computational effort will be needed to
perform this second step. Finally, the back-end of TAFFO will
be extended to support the RISC-V instruction set architecture,
as well as its relevant extensions.

V. CONCLUSIONS

In this paper, we have presented a roadmap towards an ef-
fective co-design methodology for mixed precision computing,
supporting a range of different platform options for both HPC
and Embedded Systems scenarios. During the next two years,
in the context of the EuroHPC TEXTAROSSA and MSCA-
ITN APROPOS projects, we will work towards the effective
implementation of this vision in terms of both RISC-V-based
hardware platforms and extensions to the TAFFO open source
precision tuning tool set.

REFERENCES

[1] E. Darulova, B. Falsafi, A. Gerstlauer, and P. Stanley-Marbell,
“Approximate Systems (Dagstuhl Seminar 21302),” Dagstuhl Reports,
vol. 11, no. 6, pp. 147–163, 2021. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2021/15583

[2] R. G. Dreslinski et al., “Near-threshold computing: Reclaiming moore’s
law through energy efficient integrated circuits,” Proceedings of the IEEE,
vol. 98, no. 2, pp. 253–266, 2010.

[3] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, 2011, pp.
124–134.

[4] F. Reghenzani, G. Massari, and W. Fornaciari, “Timing predictability in
high-performance computing with probabilistic real-time,” IEEE Access,
vol. 8, pp. 208 566–208 582, 2020.

[5] D. Zoni, J. Flich, and W. Fornaciari, “Cutbuf: Buffer management and
router design for traffic mixing in vnet-based nocs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 27, no. 6, pp. 1603–1616, 2016.

[6] M. Baboulin et al., “Accelerating scientific computations with mixed
precision algorithms,” Computer Physics Communications, vol. 180,
no. 12, pp. 2526–2533, 2009.

[7] G. Agosta et al., “Towards extreme scale technologies and accelerators
for eurohpc hw/sw supercomputing applications for exascale: The
textarossa approach,” Microprocessors and Microsystems, vol. 95, p.
104679, 2022. [Online]. Available: https://www.sciencedirect.com/scienc
e/article/pii/S0141933122002095

[8] ——, “TEXTAROSSA: Towards EXtreme scale Technologies and Accel-
erators for euROhpc hw/Sw Supercomputing Applications for exascale,”
in 2021 24th Euromicro Conference on Digital System Design (DSD),
2021, pp. 286–294.

[9] A. Ometov and J. Nurmi, “Towards approximate computing for achieving
energy vs. accuracy trade-offs,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 632–635.

[10] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[11] H. Kaul et al., “A 1.45ghz 52-to-162gflops/w variable-precision floating-
point fused multiply-add unit with certainty tracking in 32nm cmos,” in
2012 IEEE International Solid-State Circuits Conference, Feb 2012, pp.
182–184.

[12] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2018, pp. 1051–1056.

[13] D. Zoni, A. Galimberti, and W. Fornaciari, “An fpu design template to
optimize the accuracy-efficiency-area trade-off,” Sustainable Computing:
Informatics and Systems, vol. 29, p. 100450, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210537920301761

[14] G. Scotti and D. Zoni, “A fresh view on the microarchitectural design of
fpga-based risc cpus in the iot era,” Journal of Low Power Electronics
and Applications, vol. 9, p. 19, 02 2019.

[15] D. Koene, “Implementation and evaluation of packed-simd instructions
for a risc-v processor,” Master’s thesis, TU Delft, 2021. [Online].
Available: https://repository.tudelft.nl/islandora/object/uuid%3Ac4162ff8
-9419-4434-852d-c1c3297df808

[16] F. Zaruba and L. Benini, “The cost of application-class processing: Energy
and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-
nm fdsoi technology,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[17] RISC-V Foundation, “Risc-v ”p” extension proposal, version 0.9.11-
draft20211209,” 2019. [Online]. Available: https://github.com/riscv/riscv
-p-spec/raw/5a12c90b2c206c501a4489eb79e5d4d46afa1014/P-ext-propo
sal.pdf

[18] D. Zoni and A. Galimberti, “Cost-effective fixed-point hardware support
for risc-v embedded systems,” Journal of Systems Architecture, vol. 126,
p. 102476, 2022. [Online]. Available: https://www.sciencedirect.com/sc
ience/article/pii/S1383762122000595

[19] D. Zoni, A. Galimberti, and W. Fornaciari, “Flexible and scalable fpga-
oriented design of multipliers for large binary polynomials,” IEEE Access,
vol. 8, pp. 75 809–75 821, 2020.

[20] D. Cattaneo, M. Chiari, G. Agosta, and S. Cherubin, “Taffo: The
compiler-based precision tuner,” SoftwareX, vol. 20, p. 101238, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S2
35271102200156X

[21] D. Cattaneo, M. Chiari, N. Fossati, S. Cherubin, and G. Agosta,
“Architecture-aware precision tuning with multiple number representation
systems,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
2021, pp. 673–678.

[22] S. Cherubin, D. Cattaneo, M. Chiari, A. Di Bello, and G. Agosta,
“TAFFO: Tuning assistant for floating to fixed point optimization,” IEEE
Embedded Systems Letters, 2019.

[23] S. Cherubin, D. Cattaneo, M. Chiari, and G. Agosta, “Dynamic precision
autotuning with TAFFO,” ACM Trans. Archit. Code Optim., vol. 17,
no. 2, May 2020. [Online]. Available: https://doi.org/10.1145/3388785

[24] E. Darulova and V. Kuncak, “Towards a compiler for reals,” ACM Trans.
Program. Lang. Syst., vol. 39, no. 2, pp. 8:1–8:28, Mar. 2017.

[25] E. Darulova, E. Horn, and S. Sharma, “Sound mixed-precision optimiza-
tion with rewriting,” in Proceedings of the 9th ACM/IEEE International
Conference on Cyber-Physical Systems, ser. ICCPS ’18, 2018, pp. 208–
219.

[26] M. O. Lam, T. Vanderbruggen, H. Menon, and M. Schordan, “Tool
integration for source-level mixed precision,” in 2019 IEEE/ACM 3rd
International Workshop on Software Correctness for HPC Applications
(Correctness), 2019, pp. 27–35.

[27] C. Rubio-González et al., “Precimonious: Tuning assistant for floating-
point precision,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC ’13,
Nov 2013, pp. 27:1–27:12.

[28] S. Cherubin and G. Agosta, “Tools for reduced precision computation: a
survey,” ACM Computing Surveys, vol. 53, no. 2, Apr 2020.

[29] OpenRISC, “mor1kx - an OpenRISC processor IP core,” https://github.c
om/openrisc/mor1kx, 2022, [Online; accessed 27-May-2022].

[30] E. Mehofer, R. Gupta, and Y. Zhang, The Compiler Design Handbook:
Optimizations and Machine Code Generation. CRC Press, 2002, ch.
Profile guided code optimizations.

[31] C. Silvano et al., “Autotuning and adaptivity approach for energy efficient
exascale HPC systems: the ANTAREX approach,” in Proc. of the 2016
Conf. on Design, Automation & Test in Europe, 2016, pp. 708–713.

[32] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing frontiers and innovations, vol. 4,
no. 2, pp. 71–86, 2017.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


