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Abstract—The rapid growth of chronic diseases and medical
conditions (e.g. obesity, depression, diabetes, respiratory and
musculoskeletal diseases) in many OECD countries has become
one of the most significant wellbeing problems, which also
poses pressure to the sustainability of healthcare and economies.
Thus, it is important to promote early diagnosis, intervention,
and healthier lifestyles. One partial solution to the problem is
extending long-term health monitoring from hospitals to natural
living environments. It has been shown in laboratory settings
and practical trials that sensor data, such as camera images,
radio samples, acoustics signals, infrared etc., can be used
for accurately modelling activity patterns that are related to
different medical conditions. However, due to the rising concern
related to private data leaks and, consequently, stricter personal
data regulations, the growth of pervasive residential sensing for
healthcare applications has been slow. To mitigate public concern
and meet the regulatory requirements, our national multi-partner
SPHERE-DNA project aims to combine pervasive sensing tech-
nology with secured and privacy-preserving distributed privacy
frameworks for healthcare applications. The project leverages
local differential privacy federated learning (LDP-FL) to achieve
resilience against active and passive attacks, as well as edge
computing to avoid transmitting sensitive data over networks.
Combinations of sensor data modalities and security architec-
tures are explored by a machine learning architecture for finding
the most viable technology combinations, relying on metrics
that allow balancing between computational cost and accuracy
for a desired level of privacy. We also consider realistic edge
computing platforms and develop hardware acceleration and
approximate computing techniques to facilitate the adoption of
LDP-FL and privacy preserving signal processing to lightweight
edge processors. A proof-of-concept (PoC) multimodal sensing
system will be developed and a novel multimodal dataset will be
collected during the project to verify the concept.

Index Terms—multi-partner project, machine learning, differ-
ential privacy, LDP-FL

I. INTRODUCTION

With the overall general tendency of population ageing and
simultaneous shortage on personnel in the healthcare sector,
use of various types of sensors in residential environments
for modelling resident activity and consequently inferring
potential health or wellbeing issues of residents has been
studied widely [1]. Successful modelling and detection of
resident activities can reveal information related to active
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and rest periods, walking patterns, possible hand/arm tremor
and body gestures that can be signals of chronical medical
conditions such as depression, Parkinson’s disease, diabetes,
dementia and so forth. Furthermore, instant and accurate fall
detection (possibly incurred by a stroke) can also improve
emergency response and patient recovery time. Previous re-
search like SPHERE IRC [2] in the University of Bristol
has proved that combining data originating from a variety of
home sensors can accurately characterize resident activities.
Leveraging advanced and widely deployed ICT infrastructure,
researchers have been able to aggregate large volumes of
multiple sensor data from a number of households, aggregating
it to a central cloud for activity modelling and/or deep learning.
Despite the promise of improving wellbeing, use of residential
sensor data for healthcare purposes also raises serious concerns
related to privacy and data security due to the use of imaging,
voice recording, potential security compromises of data centers
and inverse reasoning. Also, misdiagnosis caused by false
detections or inaccurate models is a concern when relying on
automated sensing for healthcare.

Our SPHERE-DNA project proposes advancing the state-
of-the-art in privacy-preserving human action recognition by a
holistic, machine learning (ML) based approach. In the project,
the best combination of sensor types and security architectures
is determined by a ML algorithm from a set of carefully
selected sensing and security technologies, combined with
edge computing expertise and field tests. The three-partner
national project (two groups from Tampere University and one
from University of Vaasa) started in January 2022 and runs for
three years.

The rest of the paper is organized as follows. In Section II
we will present the state of the art in this area. Section III will
detail the proposed work, whereas Section IV presents some
preliminary results and Section V concludes the paper.

II. STATE-OF-THE-ART

In this section, we present the state-of-the-art in the key
technologies for privacy-preserving health monitoring in resi-
dential environment.
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A. Data privacy for distributed healthcare systems

To address security, privacy and misdiagnosis concerns,
researchers have proposed various risk mitigation strategies.
The main trend is to decentralize data, algorithms and models
to devices ran by multiple parties, also applying privacy pre-
serving processing on raw and processed data [3]. Amongst the
ongoing works, federated learning (FL), differential privacy
(DP), on-device learning and privacy preserving sensing (es-
pecially for imaging) are promising techniques for achieving
privacy preservation and accurate activity modelling. FL is
a secure machine learning architecture, where sensitive raw
sensor data is maintained in edge nodes (individual households
or end devices) and used for local model weight updates. The
updated distributed gradients are then sent to a centralized
cloud for aggregation, thus avoiding transmission of sensitive
data. DP, on the other hand, helps in protecting sensitive
information by perturbation and noise injection before data
is provided for external access.

B. Privacy preservation in imaging

Privacy-conscious imaging can be accomplished by a variety
of approaches, which may or may not require specialized
imaging devices. A straightforward approach is relying on
very low-resolution image sensors [4], or alternatively, use of
novel imaging sensor types or filters. Lensless cameras (or
coded aperture) refer to types of imaging devices that yield
visually unrecognizable image data, which still can be used for
analytics purposes such as action recognition [5] by leveraging
deep learning. An alternative to this approach is to use optics
add-ons that obfuscate details, while preserving sufficient in-
formation for image analysis [6]. Finally, privacy preservation
in imaging can also be achieved by algorithmically transform-
ing the camera-captured image content into a representation
that is not human intelligible. Recently, image transformation
into line clouds [7] was proposed, making the depicted scenes
unintelligible, but retaining sufficient information content for
camera pose estimation.

C. Acoustic action recognition and localization

Given a network of acoustic sensors, the structure from
sound problem aims at simultaneously localizing the sensors
in the network as well as the acoustic events [8]. A typi-
cal structure from sound scenario consists of a network of
synchronized receivers and unsynchronized transmitters. In
this domain, research has focused on developing optimized
algebraic solvers for so-called minimal configurations, i.e.,
configurations with the smallest number of nodes to ensure
a finite number of solutions. This technique has been very
successful in the computer vision domain, where it allowed
to solve problems such as structure from motion or cam-
era calibration within microseconds [9]. More recently, this
approach has also been exported to the domain of sensor
network calibration. While this approach allowed to fully
solve calibrated networks [10], for unsynchronized cases only
algebraic solvers for subminimal configurations have been

available [11]. Recently, our researchers have been able to
solve some minimal configurations for the 2D case [12].

D. On-device learning

Often machine learning algorithms are run on huge data
centers. However, instead of centralized computations, it is
possible to leverage hive intelligence by using decentralized
computing near or on the sensor devices. This approach also
supports the target of increased cybersecurity and decrease of
(often unnecessary) communications towards a central cloud.
Executing machine learning models on embedded devices is
commonly known as Embedded Machine Learning [13] –
TinyML refers to implementation of machine learning on very
resource-restricted microcontrollers [13]. In particular, there
are attempts to use Tensor Flow Lite in conjunction with
RISC-V open-source processors, but tool integration is still
not complete [14]. One promising approach for distributed
ML inference is presented in [15], dividing the computing
between the Edge and embedded devices. Researchers have
also experimented with implementing storage-saving Posit
arithmetic on RISC-V [16].

E. Cross-modal sensor fusion

Sensor fusion enables combining sensor readings origi-
nating from different sensor modalities (e.g. acoustic, radar,
infrared) with the aim of increasing modeling and detection
accuracy due to complementary information sources. Recently,
sensor fusion has been increasingly performed by leveraging
machine learning (e.g. [17]). For privacy preservation pur-
poses, visual sensors (infrared or RGB camera) deployed for
resident monitoring are frequently of very low resolution,
however often trained with high-resolution data [18]. Notably,
fusing of heterogeneous low- and high-resolution sensor data
has also shown promise in pose and body gesture estima-
tion [19], semantic and behavioral level modelling [20].

F. Shortcomings in the state-of-the-art

Although individual approaches such as FL, DP, privacy-
preserving imaging, on-device learning and cross-modal data
fusion provide a certain degree of security, privacy and accu-
racy for healthcare applications, the status quo still does not
meet increasingly strict regulations (e.g. GDPR) and public
expectations. For example, the study presented in [21] has
shown that gradient sharing in FL is still a potential security
issue even without direct access to raw data. DP, on the other
hand, provides security safeguards due to its composability,
robustness against post-processing, and graceful degradation
in the presence of correlated data. However, DP requires a
trusted party to host the data, which is inherently conflic-
tive with distributed storing of residential data and against
the philosophy of FL. The problems of privacy preserving
imaging and image-based positioning include novel attacks
that effectively compromise [22] privacy preservation schemes,
which previously have been assumed to be secure [7]; high-
definition visual data is on the other hand capable of very
accurate activity detection, as far as gait characterization and

 



Fig. 1: Left: SPHERE-DNA project’s structural approach for secure, privacy-preserving accurate activity modelling distributed
with multi-modal data; Right: The schematic of the LDP-FL for the project’s distributed multiple modality sensing data

vital sign (respiration) detection, however it can be also be
used for identifying individuals from facial images even from
extremely low resolution when machine learning is used [17].
Researchers have also attempted to achieve accurate human
activity detection from fusing low-resolution sensing data from
multiple modalities to avoid the use sensitive high-resolution
imaging. Unfortunately, the accuracy achieved from fused
low-resolution sensors is still lacking from the desired level.
Related to the deployment of on-device learning, most of the
current distributed sensors are only designed for collecting and
transmitting data, with limited processing capacity and battery
life, making them unfeasible for anything but very light signal
processing, not to mention on-device learning. As a summary,
the need for health-related activity monitoring in residential
environments is unquestionable, however it is clear that the
use of individual approaches for privacy-preserving sensing
are not satisfactory but call for a holistic solution.

III. THE PROPOSED APPROACH

Our multi-partner project proposes addressing secure and
privacy-preserving human localization and action recognition
by a holistic, machine learning based approach as shown
in Fig. 1 Left. Our target is to advance the state-of-the-art
in privacy-preserving activity modelling using i) individual
sensor modalities (acoustic array, visual, infrared or radio
frequency), but more importantly ii) we propose holistic,
machine learning based sensor fusion and adoption of security
mechanisms (FL, LDP). Our hypothesis is that by letting
a machine learning based optimization process determine
the best combination of sensor data modalities, as well as
perform the exploration of security mechanism alternatives, it
is possible to reach novel solutions and outperform the state-
of-the-art in the achieved level of accuracy, while maintaining
the desired level of security. Novel data security solutions are
studied in terms of iii) flexible FL implementations, DP local-
ization options, privacy preserving processing, and distributed
computing architectures. For the purpose of implementing a
machine learning based optimization process, our intent is
also to study iv) performance metrics for security, privacy-
preservation and activity recognition accuracy. Finally, we will

v) develop a proof-of-concept system. The objectives of the
project are as follows:

1) Convergence strategies for differential privacy and fed-
erated learning

2) Privacy preserving sensing mechanisms
3) Machine learning friendly power-efficient on-device pro-

cessing capabilities
4) Integration and evaluation
We will now present in more details the content of the

project to reach each of the objectives.

A. Convergence strategies for differential privacy and feder-
ated learning

1) Sub-objective 1.1: Computational and communications
efficient federated learning: FL, proposed by Google [23],
tries to protect privacy of the training data by sharing of
gradient information only. This mechanism provides robust-
ness against cyber attacks or server data breaches by keeping
the sensitive data in the edge or user devices. However,
the sensitive data can be still recovered from the shared
gradients [24]. Thus, encryption methods are further applied
to the shared gradients. These encryption strategies like secret
sharing [25], homomorphic encryption [26] and obfuscated
circuits [27], improve the user data security, while introducing
high computational cost for encryption and increased transmis-
sion cost that harms edge computing solutions. Particularly,
these approaches may require a trusted third party for the
secret sharing, which is a potential security loophole. Also,
most current FL models are designed for independent and
identically distributed (i.i.d.) data, which is not always ap-
propriate for multimodal sensor data that is hosted in different
households or applied to the diagnosis of different types of
health problems. In this context, our approach advocates to
study BatchCrypt [28] type of federated learning strategies
that are agnostic to network quality and processing capability,
and suitable for non-i.i.d. multimodal data.

2) Sub-objective 1.2: Local differential privacy for time
series healthcare data: Differential privacy (DP) [29] has been
considered as an option for protecting the training data by
adding an appropriate amount of noise to the data (pertur-
bation). DP also works well with popular deep learning [30]

 



concepts such as DP-SGD. Compared to privacy preservation
strategies like encryption (with high computational overhead)
and anonymization (loss of original data), DP is almost an
ideal privacy protection solution if there is a single trusted
party who has access to the entire dataset. Thus, DP is
often used for E-Health records of medical symptoms of a
specific disease, or other clinical records in hospitals. With
increasing numbers of smart home gadgets, a challenge is to
protect the privacy of residential data, which can also be used
to reconstruct personally identifiable information (PII). To
establish robust privacy protection for household or individual
sensor data, our aim is to design a flavor of local differential
privacy that i) removes the need for a trusted third party, ii)
relies on lightweight perturbation mechanisms, and allows iii)
trading-off between data utility and privacy. Furthermore, we
aim to study local DP (LDP) solutions for time series type
of data by building the LDP solution embedding in the back-
propagation through time (BPTT) process.

3) Sub-objective 1.3: Local differential privacy federated
learning (LDP-FL): FL and LDP are countermeasures against
active and passive attacks, respectively. This proposal envi-
sions the combination of FL and LDP (Fig. 1 Right) for
double resistance against data theft and inference attacks, as
well as for flexibility to choose a suitable security architecture
according to the local computing capability, network quality,
and security needs. LDP-FL is expected to have features of
active encryption, immunity against differencing and corre-
lation attacks, low computing and transmission costs, and
no need for a trusted third party. Different from DP, which
aggregates raw or perturbated data, LDP-FL terminals share
locally updated gradients between the edge and the central
server. To avoid data leaks, encryption (for high-performance
devices and connections), perturbation (for low-performance
alternatives) or combinations of both methods (for users with
high security requirements) will be implemented. However,
there are open questions, such as how well the distributed gra-
dient perturbation methods can perform in terms of balancing
security, accuracy and complexity.

B. Privacy preserving sensing mechanisms

1) Sub-objective 2.1: Privacy preserving RGB imaging: As
the previous examples show, hardware-based and algorithmic
approaches that either capture visually unrecognizable content
or algorithmically obfuscate recognizable content are subject
to image reconstruction techniques that can compromise pri-
vacy if malicious users acquire access to sensor readings or
obfuscated data. To this extent, the approach advocated for
privacy preserving image analytics in this project is fundamen-
tally different: we propose the use of edge computing such that
the image sensor and the edge processor are decoupled from
external network access. Consequently, a share of early visual
processing needs to be performed on the edge device, similar
to the neurosurgeon [31] approach. In this setting, the image
sensor and its accompanied analytics processor only expose
non-revertible statistical (or visual feature) information to the
network interface, and consequently, accuracy-degrading de-

sign choices such as resolution reduction become unnecessary.
This approach is studied as an alternative to federated learning.

2) Sub-objective 2.2: Acoustic array-based action recog-
nition and subject localization: In the acoustic context, we
will develop new algebraic techniques to solve sensor network
calibration in 2D and 3D configurations. State-of-the-art alge-
braic approaches have followed a two-phase approach [9]: in
the offline phase, heavy symbolic computations (e.g. Gröbner
bases) are performed, and the code for a fast optimized solver
is generated offline. In the online phase, the so-obtained solver
can be used to quicky and accurately solve the system of
polynomial equations. In this study we will integrate homotopy
continuation, which is an algorithm from numerical algebraic
geometry to solve problems in computer vision, into audio
pipelines. The results of this study will 1) fully address
the sensor network calibration problem from a mathematical
perspective, and 2) use novel algebraic solvers to develop a
fully functional real-time structure-from-sound pipeline.

3) Sub-objective 2.3: Cross-modal sensor fusion for ac-
tivity recognition: In this objective, our intent is to use high-
resolution video data to train a machine learning based activity
recognition system that acquires data from various sources,
such as infrared [32] and radar [33]. A promising approach are
teacher-student networks [34] that are capable of transferring
information from the video stream to low resolution modalities
via keypoint confidence maps [35] as media, also connecting
fragmentary characteristics from individual low resolution
modalities. Particularly, under the considered LDP-FL config-
uration, gradient sharing and aggregation mechanisms need
to be designed for distributed single-modal sensor nodes,
model generalization and cross-modal information fusion on
the server side.

C. Machine learning friendly power-efficient on-device pro-
cessing capabilities

1) Sub-objective 3.1: Custom machine learning instruc-
tions for light-weight processors: In order to support on-
device processing for distributed machine learning, the
resource-constrained processor integrated in the edge device
needs to be augmented by capabilities that increase its perfor-
mance without leading to excessive power consumption. The
target is to identify, implement and assess custom instructions
for efficient processing of machine learning algorithms on the
device, also building on the work in [36].

2) Sub-objective 3.2: Model-based approach for machine
learning acceleration: Another approach for reaching the ob-
jective is to resort to an on-device machine learning accelerator
to which the processing can be off-loaded from the lightweight
processor. By using a model-based approach, the algorithms
can be analyzed and synthesized onto the device. The scenario
is to utilize reconfigurable logic capabilities on the device to
build a tailored block to execute identified machine learning
algorithm kernels.

3) Sub-objective 3.3: Approximate computing to lower
on-device computation requirements: Complementary to the
previous two approaches, the third sub-objective contributes

 



to efficiency by introducing approximate computing to custom
instructions and/or reconfigurable hardware accelerator. Also,
possibilities to save energy in other parts of sensor data
processing will be investigated to unleash performance and
power for intelligent privacy-preserving computing.

D. Integration and evaluation

1) Sub-objective 4.1: Unifying framework: This objective
aims to build a framework for integrating the individual
approaches (Objectives 1, 2 and 3) for complementary guar-
antees on privacy protection, flexibility in adapting to different
computing and network configurations, and activity modeling
accuracy. Our approach to the unified framework is a) con-
structing security-conscious distributed edge-cloud baseline
architectures based on LDP-FL (Objective 1, Objective 2),
and b) formulating multi-modal sensor fusion as a machine
learning problem (Objective 2), which optimizes for activity
recognition accuracy considering edge computing platform
restrictions (Objective 3) as a cost function.

2) Sub-objective 4.2: Proof-of-the-concept system and
dataset: Machine learning based activity recognition relies
heavily on datasets. As Sub-objective 4.1 advocates machine
learning based sensor fusion, there is a need to create a new
dataset that covers all modalities considered in this proposal.

3) Sub-objective 4.3: Evaluation and metrics: For realizing
Sub-objective 4.1, we will adopt and develop quantitative
metrics for a) activity recognition performance, and b) com-
putational cost. For both a) and b), standard metrics such as
MFLOP/s, and classification accuracy exist, but they need to
be adapted and formulated into a suitable cost function. Our
intent is to treat the degree of adopted privacy safeguards
(e.g., encryption, perturbation, privacy budget and sensitivity)
as a user-given parameter that affects the adopted system
architecture (see Sub-objective 4.1) and trades off the accuracy
against computational complexity.

IV. PRELIMINARY RESULTS

A. Video-guided NLoS object tracking

We have developed a dual-modal (radio and optic) for
indoor tracking and activity-capturing system without us-
ing imaging information sources. The system consists of a
3Tx-4Rx, 60∼64 GHz frequency-modulate continuous-wave
(FMCW) mmWave radar (TI® IWR6843) and an Intel®
RealSense L515 depth camera. The location inferred from
RGB-D pixels is used as ground truth to train the radio sensing
data with the lower concern of privacy leakage. In this work,
the You only look once (YOLO) V4 is used for detecting and
keeping track of the object.

Fig. 2 presents the Non-Line of Sight (NLoS) experimental
scene. The 2D Multiple Signal Classification (MUSIC) algo-
rithm is applied on the four receicving channels to estimate the
range and angle of the strong reflections. The example rang-
angle map (snapshot) is shown in Fig. 2. Due to complicated
signal reflecting, the strongest spot on the range-angle map
does not indicate the location of the person. Thus, a localiza-
tion convolutional neural network (L-CNN) is used to train the

Fig. 2: The NLoS experimental layout diagram. The radar
emits signals at a 60-degree angle to the wall and then collects
bounced radio signals. The subject is walking in undefined
trajectories within the shadowed area. The elevator and the
door introduce complicating factors into our experiments.

(a) LoS (b) NLoS

Fig. 3: The tracking results of LoS (a) scenario and NLoS (b)
scenario (shown in Fig. 2). Green dots refer to ground truth
points from RGB-D pixels, and red dots refer to the predicted
results from the mmWave radio data.

snapshot by using the RGB-D based locations as ground truth.
The L-CNN consists of seven 3D convolution layers. Each
convolutional layer is followed by batch normalization and
ReLU activation layers. Two fully connected layers are placed
after the convolutional layers. The mean squared error (MSE)
loss function during the training. The localization results based
on the mmWave radio measurements and trained L-CNN are
shown in Fig. 3 for both LoS and NLoS scenarios. The
mean absolute error (MAE) of the LoS scenarios is (x, y) is
(0.0561m, 0.0701m). While the MAE of the NLoS scenario
archives (0.0818m, 0.0910m), which is an optimistic result
with the presence of complicated layouts and misplacement of
the radar and depth camera coordinations.

 



B. Privacy-preserving distributed object detection

We have developed a framework [37] that enables privacy-
preserving inference for various machine learning based sens-
ing applications such as object detection. Differing from
previous works such as [31], our framework is based on
a formally defined dataflow model of computing, and scales
across a number of client (sensor) and server devices offering a
selected degree of fault tolerance. The experiments carried out
show promising results on the performance of the framework
on embedded client devices and communication over wired
and wireless communication channels. In future developments,
the framework is to be extended from inference towards
adopting the privacy-preserving training policies developed in
this project.

V. CONCLUSIONS AND FUTURE WORK

The overall hypothesis of SPHERE-DNA is that by jointly
considering data privacy mechanisms (LDP, FL), multi-modal
privacy preserving sensing, and realistic edge computing re-
strictions, it is possible to advance the state-of-the-art in
privacy conscious activity recognition. More precisely, by
unifying federated learning and local differential privacy, as
well as edge computing in distributed sensor nodes, it is
possible to provide complementing protection mechanisms
against malicious data theft and inference attacks. Further-
more, formulating the sensor fusion problem as a machine
learning problem enables the automatic discovery of optimal
data source combinations and data features for accurate ac-
tivity recognition. The preliminary results from the developed
framework show the potential to act as the computing environ-
ment from our algorithms across to embedded sensor nodes
and servers that assemble measurements from various inputs.
The future work includes a designated neural network structure
for multi-modal data fusion and decentralized training and
noising strategies for multi-modal data from distributed sites.
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