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Abstract—Within VEDLIoT, a project targeting the develop-
ment of energy-efficient Deep Learning for distributed AIoT
applications, several accelerator platforms based on technologies
like CPUs, embedded GPUs, FPGAs, or specialized ASICs are
evaluated. The VEDLIoT approach is based on modular and
scalable cognitive IoT hardware platforms. Modular microserver
technology enables the integration of different, heterogeneous
accelerators into one platform. Benchmarking of the different
accelerators takes into account performance, energy efficiency
and accuracy. The results in this paper provide a solid overview
regarding available accelerator solutions and provide guidance
for hardware selection for AIoT applications from far edge to
cloud.

VEDLIoT is an H2020 EU project which started in November
2020. It is currently in an intermediate stage. The focus is on
the considerations of the performance and energy efficiency of
hardware accelerators. Apart from the hardware and accelerator
focus presented in this paper, the project also covers toolchain,
security and safety aspects. The resulting technology is tested on
a wide range of AIoT applications.

I. INTRODUCTION

The VEDLIoT project focuses on energy-efficient Deep

Learning (DL) for AIoT (Artificial Intelligence of Things) use

cases. Looking into novel architectures, optimized to accel-

erate the computation of neural networks, VEDLIoT comes

up with adaptable and scalable hardware solutions tailored

towards the requirements of applications. The overall approach

of VEDLIoT covers a fully-featured, heterogeneous hardware

platform, integrating the accelerators described and evaluated

within this paper. The hardware platform is described in more

detail in Section II-A. VEDLIoT also includes aspects regard-

ing supported toolchains, as well as developments regarding

security and safety components. A more detailed introduction

to the overall project can be found in [1]. VEDLIoT hardware

platforms are used to realize use cases in the areas of smart

home, industrial IoT as well as automotive. The VEDLIoT

Open Call is used to include ten additional use cases from a

wide range of AIoT areas, covering the agricultural, healthcare

and medical domains.

Over the last years, a large number of diverse DL accel-

erators in the form of special ASICs or IP cores as well as

GPUs- or FPGA-based solutions have been introduced in the

market. VEDLIoT has put great effort into the benchmarking

This publication incorporates results from the VEDLIoT project, which
received funding from the European Union’s Horizon 2020 research and
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and comparable evaluation of selected accelerators regard-

ing performance, energy efficiency and accuracy. Together

with the seamless integration of DL into the VEDLIoT IoT

hardware platforms, the benchmarking methodology is used

for further optimizing applications towards performance and

energy efficiency. In this paper, we present a summary of the

results obtained. More details are available in the respective

project deliverables [2], [3].

II. HARDWARE PLATFORM AND ACCELERATORS

This section deals with the VEDLIoT hardware architecture

and presents the different accelerators evaluated. It also acts as

an introduction and classification for the different accelerators

used in the benchmarking section (Section III).

A. Hardware Platform

VEDLIoT’s hardware platforms are a joint infrastructure for

the developments within the project. A wide range of AIoT

applications can be addressed using a flexible communica-

tion infrastructure and exchangeable microservers. Figure 1

shows the RECS platforms covering application domains from

embedded/far-edge computing towards cloud computing. All

platforms commonly target heterogeneous computing with

tightly coupled microservers. The cloud computing platform

RECS|Box consists of either two or three rack units and aims

for high-density applications using hundreds of microservers

with high-bandwidth communication requirements. t.RECS

houses up to three microservers in one rack unit and focuses

on edge computing scenarios with low-latency demands like

VEDLIoT’s SmartMirror use-case or 5G base stations in

the automotive use-case. u.RECS rounds off the range of

the RECS family towards low-power and compact embedded

computing.

Microservers are based on industry standard Computer-

on-Module (COM) form factors, allowing for flexible and

heterogeneous processing. RECS|Box and t.RECS support

microservers are based on COM Express and COM-HPC

Server and Client standards. The u.RECS, on the other hand,

supports with SMARC, Jetson NX, Xilinx Kria and Raspberry

Pi compute modules multiple compact form factors for far

edge computing

B. Accelerator Overview

There are many accelerators available for a wide range of

applications, from small embedded systems with power bud-
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Fig. 1: Overview of modular and scalable RECS platforms

gets in the order of milliwatt to cloud platforms with a power

consumption exceeding 400 W. Figure 2 provides an overview

of the different accelerators using a double logarithmic plot,

grouping them into three groups, depending on their peak

performance values (in Giga Operations per Second). It should

be noted that values provided by the vendors are used, so no

normalization regarding technology, precision or architecture

is performed. On average, an energy efficiency of about 1 Tera

Operation per W (1 TOPS/W) is achieved. In the following

paragraphs, the main characteristics of the three performance

groups are discussed.

Ultra Low Power (< 3 W): The ultra-low power group

of accelerators are mainly devices integrating energy-efficient,

microcontroller-style cores combined with compact accelera-

tors for DL-specific functions. They are focusing on generic

IoT applications like the Maxim MAX78000, the Ambient

Scientific GPX-10 or the BrainChip Akida, providing only

simple analogue or digital interfaces. Other devices such as the

Greenwave GAP 8 and GAP 9, the Canaan Kendryte K210 or

the Kneron KL530 and KL720 also aim at vision processing,

providing an additional camera interface. Typically, those

devices are directly designed into the application itself with-

out using a modular or microserver-based approach, simply

because all interfaces and peripherals are integrated. Only the

Bitmain Sophon BM1880 and Intel Myriad X are providing a

generic USB interface and are designed to act as accelerator

devices attached to a regular host processor. None of these

devices integrate external memory controller interfaces. Based

on its wide availability, the Intel Myriad X device is included

in the benchmarking activity.

Low Power (3 W to 35 W): While the previous group

of accelerators is focusing on applications with a very low

power envelope, often in a battery-powered environment with

no special requirements regarding cooling, the low-power

group of accelerators includes accelerators for a wide range of

applications in automation and automotive. All devices include

high-speed interfaces for external memories, and peripherals,

as well as high-speed communication towards other processing

devices or host systems, such as PCIe, proving excellent

capabilities for a modular, microserver-based approach as

supported by the RECS platform. Apart from the Hailo-8,

the FlexLogix InferX X1 and the VSORA Tyr family, which

are designed as dedicated accelerators attached to an external

host processor, all devices include powerful, general-purpose

application processors, capable of running a fully-fledged

Linux operating system. In addition to specialized ASICs

including the Coherent Logix HX40416, the Blaize El Cano

or the Huawei Ascend 310, this group also includes embedded
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GPUs from NVIDIA, in particular the Jetson family, starting

from the Nano and TX2, via the Xavier NX and Orin NX

devices all the way up to the AGX Xavier. The Xilinx Versal

Core AI VC1902 and Versal Edge AI VE2302 are explained

in detail in Section II-C.

High Performance (> 35 W): The high-performance group

of accelerators includes devices with up to 450 W of TDP,

suitable for both inference and training use-cases, typically

deployed in the form of a PCIe extension cards for edge or

cloud servers. Besides the classical NVIDIA Tesla GPGPUs

including Tesla V100, A100 and H100, also dedicated ASICs

like the Groq TSP, the SambaNova SN10, the Graphcore C2

or the Google TPUv3 are part of this cluster. In addition, also

powerful inference ASICs like the SimpleMachines Mozart,

the Tenstorrent Grayskull, the Qualcomm Cloud AI 100 Chip

or the Untether AI RunAI200 are included. As a reference,

also a consumer-class NVIDIA Geforce GTX 1660 GPU has

been included in the benchmarking. The NVIDIA Jetson AGX

Orin is also part of this group due to its high power envelope,

although it’s part of the embedded NVIDIA Jetson family.

C. Reconfigurable Accelerators

In addition to the integration of the latest off-the-shelf

accelerators for deep learning into the RECS environment,

VEDLIoT targets the development of customized accelerators

for dedicated DL algorithms using FPGAs. As a baseline for

later comparison to the own developments, the Xilinx Deep

Learning Processor Unit (DPU) is used. Additionally, the DPU

is used as a basis for a dynamically reconfigured accelerator,

which can be adapted to different application requirements at

runtime.

An FPGA base design has been developed to support

the RECS platform with its flexible internal and external

interconnect and to ease integration of new FPGA-based

accelerators. The FPGA architecture contains a block-based

design for the necessary infrastructure, including external

communication and hardware accelerator integration. Partial

dynamic reconfiguration of the FPGA is supported to further

increase the efficiency of the implementation. In VEDLIoT,

this will be utilized in particular to switch between different

DL accelerators, e.g., to adapt to changing environmental

conditions or power budgets. Therefore, accelerators with

different power, performance, and accuracy footprints can be

selected at runtime. The base design was created with the

Xilinx Vitis Core Development Kit (2021.2) enhanced by an

script environment to automate configuration and for quick

adaption to other platforms. The scripts cover the hardware

platform as well as the software infrastructure including the

Linux environment. For a first evaluation, the base design is

used in combination with the Xilinx DPU. The DPU provides a

high level of flexibility, e.g., with respect to the peak number

of operations per clock cycles, having a significant impact

on performance, resource requirements as well as power. We

have evaluated performance and energy efficiency for a wide

variety of DPU configurations and devices, ranging from small

(ZU3EG) to large (ZU15EG) UltraScale+ devices that can be

integrated into RECS as well as for Xilinx Versal (VC1902),

based on the VCK190 evaluation system. In the next Section,

FPGA implementations are named by the integrated DPU,

e.g., B4096 refers to a DPU which a theoretical maximum

performance of 4096 operations per clock cycle. For the Versal,

C32B6 comprises 6 batch handlers, each utilizing 32 AI engine

cores.

III. EVALUATION AND BENCHMARKING

A. Methodology

A set of common CNN models from the VEDLIoT Model

Zoo [1] was used to evaluate the different accelerators and

their optimizing toolchains typically provided by the hard-

ware manufacturers. The models used in this evaluation

are three state-of-the-art CNNs, namely ResNet50 [4], Mo-

bileNetV3 [5], and YoloV4 [6]. All models come from the

domains of image recognition and image classification and

were represented using the Open Neural Network Exchange

(ONNX) [7], an open standard for ML algorithms.

Hence, for evaluation, the two mainstream benchmarking

datasets Common Objects in Context (COCO) [8], a large-

scale object detection, segmentation, and captioning database

and ImageNet [9], the most commonly used dataset for image

classification in the Large Scale Visual Recognition Challenge

(ILSVRC), are used. This dataset contains 1000 object classes

and contains 1,281,167 training images, 50,000 validation

images, and 100,000 test images. Three versions of each

model with three precision levels have been evaluated. The

first version is the original trained model with 32-bit floating-

point precision (FP32). The other two are quantized versions

of the original model for 16-bit floating-point (FP16) and 8-

bit integer precision (INT8). Table I summarizes the toolchains

used for evaluation.

The evaluation metrics are driven by the requirements of

the use cases targeted in the context of this project. The set

of evaluated metrics is divided into four different categories:

system metrics (platform and I/O); performance metrics (ap-

plications); quality metrics; and efficiency metrics. Under

the system metrics category, we evaluated Peak performance

(in GOPS), and Idle Power (in W). Under the performance

metrics category, we evaluated the inference time, the achieved

performance, the memory utilization, and energy per inference.

Under the quality metrics category, we evaluated the models’

accuracy and Mean Average Precision (mAP). And under

the efficiency metrics, we evaluated the power efficiency in

GOPS/W.

TABLE I: Toolchains used for evaluation

Hardware Toolchain Version

Nvidia TensorRT SDK 7.1.3, and 8.0.1 [10]
Intel OpenVINO 2021.4.1 [11]
Xilinx Vitis AI 1.3 and 2.5 (Versal)

Vitis 2021.2 and 2022.1 (Versal)
Google Coral TPU TensorFlow [12] 2.4 and 2.5

TensorFlow Lite 2.4 and 2.5
Hailo-8 Hailo Software Suite 4.8.1
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Two quality metrics have been evaluated, each suiting the

domain of the targeted CNN. For image classification, the

most significant quality metric is the accuracy, representing the

number of correct classifications over the number of images.

The accuracy was measured in two ways: top-1 accuracy

measures how often the model prediction with the highest

probability matches the ground truth. top-5 accuracy describes

if the top 5 highest-probability predicted answers include

the ground truth. For object detection, the corresponding

performance metric is the Mean Average Precision (mAP or

mAP@X). mAP@X is the area under the precision-recall

curve given an Intersection over Union (IoU) threshold X.

For example, an mAP(.50) measurement means that a positive

detection needs to have a minimum intersection over union

(IoU) of 50 %, and that everything below will be marked as

false detection with a precision of 0 %. Another form of mAP

is mAP@X:Y, which is calculated as the average AP over a

range of minimum IoUs, we reported the mAP@X:Y from

X= 0.5 and Y= 0.95, with a step size of 0.05.

To measure power consumption, we used the utilities pro-

vided by the hardware vendors. When these were not available,

the power consumption of the hardware was determined using

lab instruments. For NVIDIA accelerators, the two utilities

Tegrastats and nvidia-smi were used. An exception was the

Jetson-Nano, where due to the lack integrated tools the ex-

ternal tool Watts up PRO was used. For Intel Myriad and

its host module, a Tektronix MDO4054B oscilloscope was

employed. The power consumption of the Google Coral TPU

and its host module was measured using the same oscilloscope.

For Hailo-8, the power measurements were done inside the

RECS testbed. The Hailo-8 was plugged into the PCIe-port

of Intel Xeon-D1577 and power was measured individually

excluding the power consumed by the CPU module. For

the FPGA systems, the complete system power has been

measured, including external memory and I/O interfaces.

It should be noted that due to space limitation, in this paper

only the evaluation results are presented for the YoloV4 model.

This is without loss of generality as the conclusions in this

paper apply also to the results for the rest of the tested models.

The full evaluation results are available in [3].

B. Evaluation

As described in III-A, the software toolchains for the

accelerators under test are vendor dependent and differ for

most of the architectures. Although the DL models come from

the same source, we needed to make sure that all devices per-

form the same computations and generate comparable results.

Therefore, the mAP(.50) and mAP(.50:.95) were measured for

every device to validate that the toolchains of the different

vendors deliver comparable results. One finding of this paper

is that the mAP is mainly depending on the software toolchain

used to compile the model and on the quantization that has

great influence too. As a result, the mAP was grouped into

vendor and quantization (FP32, INT8) classes, as shown in

figure 3.
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Fig. 3: Accuracy evaluation of YoloV4

The NVIDIA FP32 class combines all results for NVIDIA

devices using 32-bit floating point (FP32) quantization. The

OpenVINO FP32 class combines the x86-based processors and

the Myriad DL accelerator using FP32 quantization.

In addition, all tests were performed using FP16 quantiza-

tion, since it shows minor deviations from FP32 (<0.1 %),

only FP32 and INT8 are depicted here. For the NVIDIA

INT8 class that combines all NVIDIA devices using 8-bit

integer quantization, the quantization needed to be done man-

ually providing training data from the COCO dataset to the

toolchain. The Xilinx INT8 and Hailo-8 INT8 classes were

measured using pre-quantized models from each vendors mod-

elzoo. Own attempts to quantize the YoloV4 model to these

classes resulted in poor precision results. Quirks in the specific

toolchains and hardware seem to have a significant impact on

quantization, directly showing the impact on precision.

Figure 3 compares all mAP for all architectures that have

been tested with the YoloV4 model. Most of the architectures

show slight deviations of <5 %, while the Xilinx INT8 result

is nearly 8 % lower. Further investigations lead to the analysis

of Recall-Precision gradients for each of the 80 classes YoloV4

is trained on. An example for the analysis of two classes is

shown in figure 4. It shows the mAP(.50) Recall-Precision

gradients, where detected objects with an IoU larger than

50 % are positive detections and are displayed with their

corresponding precision. All objects with an IoU smaller than

50 % are negative detections that are set to a precision of

0 %, explaining why orange and yellow precisions aren’t used

in the figure. Class I (toothbrush) is the class showing the

I.a

I.b

I.c

II.a

II.b

II.c

Precision:  0.0 1.0

Fig. 4: mAP(.50) Recall-Precision gradients using INT8 for

classes I: toothbrush II: vase and accelerators a: NVIDIA

b: Hailo-8 c: Xilinx
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highest deviation for INT8 quantization between the tested

devices. The accelerators (a: NVIDIA) and (c: Xilinx) perform

relatively poor compared to (b: Hailo-8). This is by far the

class with the highest deviation compared to e.g., class II

(vase) where all of the accelerators perform nearly the same.

In VEDLIoT Deliverable D3.3 [3] the detailed results of

this analysis are shown, comparing all 80 COCO classes per

accelerator for floating point and integer quantization. Since

most of the classes behave like class II we are very confident

that the accelerators in our evaluation are computing the same

tasks and that our results are comparable.

The evaluation in figure 5 is an overview of YoloV4 perfor-

mance results delivered in D3.3 [3], it shows the performance

in GOPS over the power in Watt. In D3.3 similar graphs for

ResNet50 and MobileNetV3 are shown, due to the length of

this publication only YoloV4 results are shown here. The small

notations next to the accelerators (B1, B4, B8) refer to batch

sizes 1, 4 and 8. It needs to be mentioned that all PCIe-based

accelerators (Myriad, GTX1660, V100, A100, Hailo-8) have

been power measured without the host system. For Hailo-8,

an additional measurement including the Xavier NX as host

system (Hailo-8 + Host) has been performed. In this case

the Xavier NX was measured without the GPU to show the

efficiency of Hailo-8 in a running system. Combining the

respective power and performance values represents energy

efficiency in GOPS/W which is also visualized in figure 6.

With figure 5 VEDLIoT provides a starting point when it

comes to hardware decision for a wide range of use cases.

Power domains, as highlighted in figure 2, can be directly

transferred to choose best suited DL accelerator for given

performance requirements and power budget.

Two x86 systems (D1577, Epyc3451) have been measured

as basis, in order to show advances of DL accelerators over

classical processing systems. When it comes to energy effi-

ciency, interesting platforms for the VEDLIoT project are the

Hailo-8, Xavier NX, Xavier AGX, VC1902, Orin AGX and

A100, serving in different performance domains from low-

power/embedded (Hailo-8, Xavier NX) over edge computing

(Xavier AGX, VC1902, Orin AGX) to high performance

computing (A100). The Hailo-8 and Xavier NX are perfectly

suited for Far Edge Computing as depicted in figure 1. The

u.RECS, newly designed in VEDLIoT, can be equipped with

one or two of these computing devices providing maximum

efficiency for low power budgets, e.g the VEDLIoT automotive

use case [1]. The Xavier AGX, VC1902 and Orin AGX fit into

the Near Edge Computing platform t.RECS, supporting up to

three of these modules. One example for this is the VEDLIoTs

smart home use case, utilizing multiple Jetson AGX-based

microservers in parallel [1]. The A100 can be populated into

the RECS|Box Cloud Computing platform. Within VEDLIoT

it serves for model training and validation. But also the older

and less efficient accelerators (Nano, Myriad, TX2) have their

right to exist. Even so they lack performance, their price-

tag is very interesting for some use-cases, e.g., some of the

VEDLIoT open call projects [1] decided to use them.

In addition to the ASIC- and GPU-based accelerators,

three reconfigurable devices (ZU3, ZU15, VC1902) have been

analyzed here. The Xilinx Zynq devices (ZU3, ZU15) on the

one hand show relatively low performance compared to the

dedicated accelerators, due to the fact that they are basic

FPGAs that implement the Xilinx DPU accelerator in their

fabric. The Xilinx Versal (VC1902) on the other hand benefits
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from its integrated DL accelerators providing significantly

higher performance and energy efficiency. Compared to all

evaluated devices it shows the best energy efficiency using

INT8 quantization.

Comparing energy efficiency in figure 6 it can be clearly

seen, that classical processing systems (D1577, Epyc3541)

lack behind. Even older DL accelerator (TX2, Nano, Myr-

iad) provide higher efficiency. Newer GPU-based accelerators

(Xavier NX, Xavier AGX, Orin AGX) provide very good

efficiency, they are outperformed only by ASIC-based acceler-

ators (Hailo-8, VC1902). Keeping in mind that all PCIe-based

accelerators are power measured without their host system,

the big lead of the Hailo-8 without host system is put into

perspective compared to Xavier NX and VC1902 that operate

stand-alone.

IV. SUMMARY

The main topic of this paper is the evaluation of hardware,

in particular accelerators, for Deep Learning applications. The

RECS hardware platforms were introduced supporting cloud

computing to near edge computing appliances. The new far

edge u.RECS server expands these platforms towards IoT

scenarios. Especially for IoT scenarios with low power budgets

the energy efficiency is crucial, which is only achieved by

using specialized hardware accelerators. A set of relevant

accelerators was presented and classified into three different

performance groups according to their processing capabilities.

Besides ASIC- and GPU-based accelerators, the VEDLIoT

project has an emphasis on reconfigurable architectures, pre-

senting a DPU-based FPGA architecture for easy integration

of dedicated DL algorithms.

The methodology of the evaluation was described in detail,

discussing the used DL models, corresponding datasets and

used specific toolchains. The performance and efficiency met-

rics GOPS and GOPS/W were introduced as well as the quality

metrics mAP(0.50) and mAP(0.50:0.95) used for YoloV4. The

power measurement used for this evaluation was described.

Since toolchains are vendor specific, an evaluation of the

accuracy, of the model running on different architectures, was

performed. In depth analysis of Recall-Precision gradients per

class show that results of different architectures using different

toolchains are still comparable. The YoloV4 evaluation shows

an extensive overview of modern DL accelerators and their

performance as well as their energy efficiency. The outcome

of this paper provides a guideline for hardware selection in

the area of DL accelerator, ranging from Far Edge Computing

up to Cloud Computing.
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