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Abstract—Modern and future Al-based automotive applica-
tions, such as autonomous driving, require the efficient real-
time processing of huge amounts of data from different sensors,
like camera, radar, and LiDAR. In the ZuSE-KI-AVF project,
multiple university, and industry partners collaborate to develop
a novel massive parallel processor architecture, based on a cus-
tomized RISC-V host processor, and an efficient high-performance
vertical vector coprocessor. In addition, a software development
framework is also provided to efficiently program Al-based
sensor processing applications. The proposed processor system
was verified and evaluated on a state-of-the-art UltraScale+ FPGA
board, reaching a processing performance of up to 126.9 FPS,
while executing the YOLO-LITE CNN on 224x224 input images.
Further optimizations of the FPGA design and the realization of
the processor system on a 22nm FDSOI CMOS technology are
planned.

Index Terms—RISC-V, vertical vector processor, hardware-
software system, Al acceleration, sensor processing, FPGA, ASIC

I. INTRODUCTION

Nowadays, Advanced Driver-Assistance Systems (ADAS)
draw on a wide range of data from different sensor systems
such as radar, LiDAR, or cameras to implement crucial systems,
e.g., emergency braking. In the future, the amount of high-
resolution, multidimensional measurement data will increase
even more. Complex future applications, like autonomous driv-
ing, still require the real-time processing of these amounts
of data. To extract information from these complex data in
a real driving scenario, Deep Learning (DL) methods have
achieved great success and are thus essential in state-of-the-
art and future driver assistance systems. In this context, high
data volumes from a large number of sensors and the massive
computational power requirements especially for the execution
of Al algorithms (e.g., Convolutional Neural Networks - CNN5s)

pose great challenges to the underlying hardware and software
systems. Other automotive constraints such as energy efficiency,
robustness, flexibility, functional security, and IP security must
also be met. Accordingly, a configurable Al processor can meet
these requirements.

In the ZuSE-KI-AVF project, the TU Braunschweig is de-
veloping and evaluating a massive parallel vector processor
architecture, named V2PRO. It must meet special performance,
but also energy efficiency conditions. A hardware ecosystem
is build, including a RISC-V host processor, the V2PRO as
a co-processor, sensor peripherals, and a memory controller,
that is developed and optimized by the TU Kaiserslautern.
A Virtual-Prototype-based development environment from Ca-
dence Design Systems speeds up the implementation and
optimization of applications for VZPRO. A CNN converter
is being designed as a software framework so that various
neural networks can be easily mapped to VZPRO by its users.
RWTH Aachen University develops an optimized RISC-V com-
piler supporting V2PRO extensions. Finally, an FPGA-based
demonstrator shows the potential of the VZPRO architecture.
At the end of the project, the VZPRO hardware system will be
implemented as an ASIC by the Leibniz University Hannover
and TU Braunschweig. Multiple camera-, LiDAR-, and radar-
based Al applications are developed by the project partners
Leibniz University Hannover, Robert Bosch GmbH, and Dream
Chip Technologies GmbH as use cases for the evaluation of
the V2PRO architecture. The duration of the project is from
October 2020 to September 2023.

This paper presents the intermediate results of the ZuSE-
KI-AVF project and is organized as follows: In Section 2, the
hardware system is proposed. Section 3 explains the software
development framework and presents the CNN converter. The
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use cases are described in Section 4. Early results using the
FPGA demonstrator and future plans are shown in Section 5.
Finally, Section 6 concludes the paper.

II. HARDWARE SYSTEM
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Fig. 1. Overview of the project’s hardware system

The proposed hardware system is shown in Fig. 1. The
system’s host processor is realized by a custom RISC-V
processor architecture (EIS-V), including instruction and data
caches. The high performance data processing is performed by
the massive-parallel vector co-processor (V2PRO). The EIS-
V processor generates vector (VZPRO-) and memory (DMA-)
commands and sends them to the V?PRO co-processor. The
memory transfers of the V2PRO’s DMA units are optimized
by a multi-port direct memory cache (DCMA) system. An AXI
infrastructure enables the access to an external DDR4 memory
through a memory controller or other peripherals.

A. Massive-Parallel V2PRO Co-Processor

The massive-parallel V2PRO architecture is based on the
concept of vertical vector processing. In contrast to the hor-
izontal vector concept, usually known as SIMD (i.e., single
instruction multiple data), the vertical concept processes the
elements of multidimensional vectors sequentially. Paired with
a complex addressing of the vector elements, this enables
efficient processing of not only linear vectors, but also more
complex addressing schemes (see Fig. 2), as it is used, for
example, in convolutional neural networks [1]. Moreover, the
vertical co-processor architecture achieves high performance by
performing the processing of multiple vectors on different data
in parallel units.
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Fig. 2. V2PRO complex addressing modes [1]
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Fig. 3 shows the V2PRO’s hardware architecture hierarchy.
The architecture consists of multiple clusters that implement
multiple vector units. Each vector unit has its own local mem-
ory. DMAs (direct memory access; 1 per cluster) transfer data
between the local memories and a multi-port cache memory. A
vector unit contains a load/store-lane (L/S-lane) and multiple
vector lanes. The L/S-lane transfers data between the register
files of each vector lane and the local memory of a vector unit.
The data processing is done in the vector lanes by its ALUs
(arithmetic logical unit). Each vector lane processes one vector.

The V2PRO is controlled by VZPRO and DMA commands.
Specific DMA commands are executed in parallel by the DMAs
of each cluster. With a 2-dimensional command (2D mode)
DMAs can load and store 2D blocks from/to external memory
by using a stride mechanism to determine the next line within a
block. In 2D mode, DMA commands support parameterizable
data padding and broadcasting of the same data to every
vector unit’s local memory when loading from external to local
memory. V2PRO commands are broadcasted to every vector
unit in every cluster. Each command has two source operands
and a destination operand. The operand’s vectors are described
by an offset and parameters for the complex addressing of the
multidimensional vectors.

B. Direct Cached Memory Access (DCMA)
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The single port memory controller allows only one memory
access at a time, resulting in a bottleneck when scaling V2PRO



with multiple clusters, i.e. DMAs. In addition, Al applications,
like CNNs, often load the same data or data from the same
memory range (e.g., the input image is loaded as overlapping
segments to all vector units). A cache between DMAs and
external memory can optimize these memory accesses. The
structure of the direct cached memory access (DCMA) is shown
in Fig. 4. The DCMA implements a multiport cache memory
[2], allowing parallel DMA accesses. Thereby, the bottleneck
at the external memory controller can be completely removed.
The DCMA consists of a configurable number of RAM (ran-
dom access memory) modules. The DMAs access the RAMs
via the DMA crossbar, which includes an arbiter, allowing only
one access per RAM and cycle. DMAs can still access the same
cache line because cache lines are distributed onto multiple
RAMs. Cache lines are loaded and written back to the external
memory via the RAM AXI crossbar and the AXI master
module. The DCMA controller manages the cache mechanism,
like hit/miss calculation, tag/dirty memory and cache flush.

C. EIS-V Processor

The EIS-V architecture implements the open-source RISC-V
32-bit instruction set, including integer (I), multiplier (M) and
compressed instruction (C) extensions. The number of pipeline
stages (e.g., IF, ID, MEM, EX, and WB) is configurable. Caches
for instruction and data accelerate data accesses. A DMA allows
the bypassing of the DCache for immediate write back of data
to the external memory.

In the project’s hardware system, the EIS-V’s main purpose
is the control flow and the generation of V2PRO and DMA
commands for the V2PRO co-processor. The DCache was
extended to fetch a complete DMA command struct (32 bytes)
and to send it to the co-processor in one cycle. Through
custom RISC-V instruction set extensions, VZPRO commands
(16 bytes) are efficiently generated and sent to VZPRO in a
single cycle.

D. Memory Controller
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Fig. 5. Architecture overview of the DDR4 DRAM controller

Fig. 5 shows the architecture of the DDR4 memory con-
troller dedicated for this project. It is designed to satisfy the
requirements of the VZPRO system such as low latency, high
throughput, and data security. The frequency ratio between
the memory controller and the PHY is 1:4, similar to state-
of-the-art memory controllers such as [3]. This allows the
controller to operate at a lower clock frequency, which is

required to meet timing and frequency constraints. In order to
compensate for the frequency difference and avoid stalling of
the PHY, the controller issues 4 DRAM commands/addresses
(i.e., commands/addresses corresponding to the next 4 PHY
cycles) to the XILINX PHY.

This memory controller integrates a specialized application-
specific address mapping unit [4] that minimizes the total
number of DRAM page misses, one of the largest latency
penalties of DRAMs. The RD/WR access traces of the ap-
plications are analyzed offline by simulation to determine an
optimized address mapping that reduces the overall latency
of the transactions. This address mapping (logical-to-physical)
is changeable during run-time. Thus, for each application,
a different address mapping is configured to achieve low
latency and high throughput. Our memory controller with
default configuration shows DCMA performance improvements
of up to 4.5% for different V2PRO settings compared to the
implementation of the XILINX MIG memory controller. In
addition, the optimized application-specific address mapping is
expected to improve the performance even further.

E. Safety and Security

Due to the security requirements of the automotive industry,
the memory controller shown in Fig. 5 integrates an AES-
128 encryption/decryption module. This AES-128 unit is fully
transparent to the system and requires no interaction from
software-level. As the module is on the critical path, it is
optimized for low latency (5 clock cycles). The write latency
is fully hidden due to the processing time in the controller.
In the future, an automatic online key generation during the
initialization phase is planned with the help of a DRAM-based
Physical Unclonable Function (PUF).

Furthermore, the threat of an untrustworthy supply chain is
considered. Therefore, different logic locking techniques are
evaluated in this project. Logic locking encrypts the hardware
design using additional logic gates (key gates) to prevent an
adversary in untrustworthy design houses or foundries from
modifying the hardware maliciously [5]. The evaluation is
conducted for multiple key lengths to quantify the influence
of the protection scheme on the area and performance of the
designed hardware.

Against random errors, V2PRO lanes can be optionally
protected using dual-core lockstep (DCLS). We verify our
approach using error injection, which can be executed not only
during design time, but optionally also at runtime. Further
safety measures are evaluated at the application level (see
Sec IV-B).

III. SOFTWARE DEVELOPMENT FRAMEWORK
A. RISC-V Compiler

Open-source RISC-V compilers offer a fast toolchain for
programming newly designed RISC-V applications but lack the
consideration of the underlying microarchitecture. Information
about the pipeline architecture, register accesses, and, e.g., tim-
ing of control operations can enable a compiler to avoid hazards
when scheduling instructions. Circumventing hardware stalls
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Fig. 6. Overview of the retargetable compiler toolchain

by reordering instructions can lead to significant performance
gains. Furthermore, a customized RISC-V compiler allows
taking application-specific hardware modifications into account.
As the EIS-V handles the control of the VZPRO COprocessor,
additional instructions will be added to reduce the processor’s
control overhead and increase the relative computation time of
the vector units. The modifications include, e.g., hardware loops
and optimization of the V2PRO’s interfacing by introducing
V2PRO’s instruction generation into the compiler.

For this purpose, we utilize a commercial retargetable com-
piler from Synopys [6]. The compiler is fitted to the EIS-
V processor by modeling it in the architecture description
language nML. As illustrated in Fig. 6, the LLVM-frontend
uses customized compiler header files to convert the C or C++
code to an intermediate representation (IR). The header files
can contain intrinsics, customized data types, and supplemental
information that allows the mapping of complex C structures on
the processor’s ISA. The behavior of the backend is controlled
by the nML processor model of the EIS-V. Tasks, such as reg-
ister allocation, instruction scheduling, and instruction mapping
depend on the nML input.

Therefore, the compiler in this project yields machine code
that is highly optimized for the target architecture.

B. Virtual Prototype

Virtual Prototypes (VPs) are a well-established technique
for the development of complex modern microelectronic sys-
tems. Being software models of hardware components VPs
can be used to simulate entire SoCs consisting of proces-
sors, networks-on-chip or interconnects, memories, and pe-
ripherals. Our VP is implemented based on the widely used
SystemC/TLM2.0 C++ class library, which provides a discrete
event-simulation kernel and language constructs and infrastruc-
ture to describe hardware and system components and their
connections. By increasing the level of abstraction, VPs enable
simplified and fast design space exploration in a methodology
like in [7] or a substantially increased simulation performance
allowing for simulation of complete systems comprising mul-
tiple processor cores close to real time. The simulation perfor-
mance of very complex systems can be further improved by
distributed parallel SystemC simulation [8]. This performance
increase enables early development and verification of system
software including operating systems according to the shift-left
methodology.

The Virtual Prototype developed in this project integrates the
instruction set simulators of a RISC-V core (Imperas) and the
V2PRO co-processor, which are both connected to the DRAM
memory controller by a special interconnect which translates

between the different levels of abstraction representing the
architecture shown in Figure 1.

Further, the VP in this project is extended to apply non-
intrusive software verification techniques for detecting issues
like buffer or stack overflows or manipulation like return-
oriented programming attacks (ROP-attack). While currently
available solutions (e.g., Valgrind or the Google Sanitizers)
influence the software footprint regarding memory consumption
and performance (2x-40x slowdown), the solution developed
in this project aims to find the root causes from the outside
without modifying the executable. This is especially important
for embedded systems in which changes in timing or memory
footprint have a major impact.

C. CNN Converter

With the CNN Converter framework (Fig. 7), software de-
velopers can quickly map different neural network architectures
on the V2PRO. The CNN Converter takes the neural network
description and the trained weights as the input. By analyz-
ing the individual layers with hardware information (V2PRO
configuration like number of cluster, units, data precision)
the network weights are automatically converted from floating
point representation to optimized fixed point values.
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Fig. 7. Overview of the CNN Converter framework

In a preprocessing step, the vector (V2PRO) and memory
(DMA) commands for the V2PRO co-processor are generated
separately and optimized depending on the hardware configu-
ration. Then, the C++ application, which will run on the EIS-
V processor, is built with a CNN library, including references
to the previously generated vector/DMA V2?PRO commands.
From that application, the RISC-V compiler generates op-
timized machine code (including memory initialization) for
execution on the EIS-V processor.

IV. USE CASES
A. Camera-based Applications
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Fig. 8. Overview of the camera based side-mirror application

Modern vehicles are equipped with several cameras, which
provide a vast amount of real-time information about the
environment as well as of the interior of the vehicle. The



information in the captured images can be extracted by state-
of-the-art deep neural networks with high accuracy. Since these
algorithms require a huge amount of processing power and
energy, sophisticated hardware is needed to run them in real-
time. Within the project, we focus on developing a camera-
based system, which captures images from the side-mirror
perspective with integrated 3D object detection and tracking
run on the V2PRO. Such a system improves safety in different
situations and enables for ADAS applications, like a turning
assistant, which alerts the driver when pedestrians or cyclists
are about to cross the vehicles path, a door opener warning in
case a cyclist is approaching from the back, or a lane change
assistant.

The system will be implemented on an FPGA platform as a
demonstrator in a first step and is summarized in Fig. 8. The
raw images, which are provided by an image sensor and lens,
are processed by an image signal processor (ISP) developed by
Dream Chip Technologies GmbH forming a dedicated camera
module usable for ADAS applications. As a real-time ISP, it
supports up to 4k resolution at 60 FPS. Among typical modules
like demosaicing, bad pixel detection and correction, denoising,
black level compensation, lens shade correction, and color
correction, the ISP also supports high dynamic range (HDR)
image fusion, global and local tone mapping, as well as multiple
output paths for human and machine vision.

From each RGB image 3D boxes, described by their posi-
tions, dimensions, and headings, are extracted for four classes
of objects (pedestrians, bicycles, vehicles, motorcycles). The
object detector is based on the CenterNet [9] architecture com-
bined with an EfficientNetV2 [10] as the backbone, providing
a good balance between efficiency and accuracy. The detected
objects are tracked over time by applying a matching and
several temporal filters. This enables extracting more detailed
information on the objects, like trajectory extraction, object
velocity, and path prediction. Finally, the captured images are
visualized on a screen overlayed by the tracked objects.

B. Radar-based Applications
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High-resolution automotive imaging radars are a key sen-
sor technology to enable autonomous driving and advanced
driver assistance systems. This is due to their high robustness
against harsh weather and lighting conditions as well as the
comparatively low cost. Challenging demands are placed on
the resolution and target separability in all dimensions. To meet
the requirements on the direction-of-arrival estimation, super-
resolution estimation algorithms are utilized, which demand
high computational power from the underlying hardware. One

class of algorithms especially suitable for this application is
constituted by Sparse Bayesian Learning based methods. Those
exploit the signal sparsity in the angular domain and provide
super-resolution capability based on a single measurement. By
decoupling the calculations of separate angular directions, a
high level of parallelization is enabled. The massive parallel
architecture of the V2PRO allows to take full advantage of this
property. This permits a significant speed-up of calculation time
and facilitates the real-time multi-target direction-of-arrival
estimation.

After signal processing, the resulting information-rich point
clouds can be exploited for reliable radar-based environmental
perception. In the scope of the project, neural network archi-
tectures for object detection on radar point clouds [11], i.e., the
simultaneous localization and classification of objects, and their
implementation on the V2PRO are investigated. A crucial step,
both regarding the detection performance and the efficiency of
the implementation, in these architectures is the mapping from
point clouds into regular image-like data structures, that are
well-suited for the computation on the VZPRO. The training and
evaluation of these networks is performed on data captured by
a prototypic high-resolution multiple-input and multiple-output
(MIMO) automotive radar with 64 virtual channels operating
at 77 GHz.

In addition to the safety mechanisms mentioned in Sec. II-E,
measures on application-level are evaluated to enable low cost
protection. Soft errors (e.g., bit-flips) in the radar data affect
subsequent processing steps and therefore pose a serious threat
to the functional safety of the system. Traditional protection
mechanisms (e.g., triple modular redundancy, TMR) are not
ideal for high dimensional radar data due to the high overhead
they entail. Therefore, we systematically define small observa-
tion windows in the range-Doppler spectrum to detect peaks
caused by soft errors. Our method enables low cost protection
for 2D FFTs and can reliably detect and mitigate errors even
at high error rates [12].

C. LiDAR-based Applications

Fig. 10. A semantically segmented point cloud. The different colors present
different classes.

LiDAR scanners acquire range information and are capable
of creating 3D point clouds from their surrounding. In this
application, the solid-state LiDAR scanner (ibeoNEXT) by
Ibeo Automotive Systems GmbH is used for data acquisition.
In addition to range data, this scanner provides point-wise
information like pulse width, blooming, or existence proba-
bility. Several scanners with varying fields of view (11.2°,
60°) are mounted on the chassis of a demonstration vehicle
to capture its surroundings. The acquired data provides the



base for semantic segmentation, in which the individual points
are classified for the use in applications of, e.g., autonomous
driving (Fig. 10). With regard to the expected high area and
energy efficiency of convolution operations on the V2PRO, the
CNN SalsaNext [13] was chosen for this task. Presented in
three modules, SalsaNext first reduces the input’s dimension
from 3D to 2D, then performs common CNN operations for
segmentation and classification and in a final step projects the
results onto the input point cloud.

The additional information provided by the ibeoNEXT scan-
ners are investigated with regards to their effect on the detection
performance by directly using their point clouds as CNN input.
However, a dataset for this sensor is not available. Therefore a
specific dataset will be captured with our demonstration vehicle.
The demonstration vehicle also serves for experiments of online
processing with the V2PRO. Reducing the input data’s dimen-
sions involves the computation of square root, division, arcussi-
nus and arcustanges. For these functions, efficient approxima-
tions are to be implemented on the V2PRO. The ML-model
mainly utilizes common CNN operations already implemented
in the CNN Converter, see Sec. III-C. Its extension is required
for more unconventional operations, e.g. layout transformation
or concatenate operations. Mislabeling caused by the CNN is
tackled by locating the k-nearest neighbors of an input point and
finding the most frequent label. Additionally, the CNN model
needs to be optimized by applying compression methods and
eliminating operators. The impact of these modifications on
the detection performance are to be determined and evaluated.
Ultimately, our goal is to perform live semantic segmentation
on the VZPRO system using our demonstration vehicle.

V. INTERMEDIATE RESULTS AND FUTURE PLANS

During the first part of the project, Version 1 of the hard-
ware system was implemented and synthesized on an ALDEC
TySOM-3A-ZU19EG Embedded Prototyping Board, including
a state-of-the-art Xilinx UltraScale+ FPGA. The YOLO-LITE
[14] was used as an exemplary CNN application on 224x224
input images and is running on the FPGA board. Table I
shows the results compared to an NVIDIA 3600 mobile GPU
and an NVIDIA Xavier GPU. VZPRO was configured with 2
clusters and 2 vector units per cluster (2C2U) and 8 cluster
and 8 units per cluster (8C8U). The second 8C8U configuration
was synthesized with the current maximum frequency of 400
MHz. V2PRO achieves less total FPS, but reaches a much
higher efficiency by a better usage of the available resources
(performance utilization = % .

The next steps of this project contain demonstrators running
Al-based, complex applications (see Sec. IV), further FPGA
design optimizations, and the ASIC realization of the processor
system on a 22nm FDSOI CMOS technology. VZPRO version
2 will have SIMD features and further application-specific
DCMA optimizations. At the end of the project, the behavioral
V2PRO architecture design will be published as open source.

VI. CONCLUSION

This paper presented the hardware-software system concept,
use cases, and intermediate results of the ZuSE-KI-AVF project.

TABLE 1
RESULTS OF YOLO-LITE RUNNING ON DIFFERENT GPUS AND V2PRO
GPU VZPRO
H H 3060M \ Xavier ‘ 2C2U \ 8C8U \ 8C8U
#CUDA Cores or #Vec. Lanes 3840 512 8 128 128
Clock [GHz] 1.282 1.377 0.25 0.25 0.4
FPS 510 218 7.1 88.6 126.9
Efficiency [FPS/Core/GHz] 0.1 0.3 3.6 2.8 2.5
Theor. Peak Perf. [GOPS] 9845.0 | 1400.0 4.0 64.0 102.4
Real Perf. [GOPS] 245.8 105.1 34 427 61.2
Perf. Utilization [%] 2.5 7.5 85.9 66.7 59.7
Memory Bandwidth [GB/s] 336 127 6.4 6.4 6.4

A first FPGA-based demonstrator with a CNN example appli-
cation shows significantly better efficiency compared to mobile
GPUs. In the next steps of the project, new FPGA- and ASIC-
based demonstrators for different use cases will further evaluate
the proposed system.
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