
STSearch: State Tracing-based Search Heuristics
for RTL Validation

Ziyue Zheng and Yangdi Lyu†
Microelectronics Thrust, The Hong Kong University of Science and Technology (Guangzhou)

†Corresponding author: yangdilyu@ust.hk

Abstract—Branch coverage is important in the functional val-
idation of Register-Transfer-Level (RTL) models. While random
tests can cover the majority of easy-to-reach branches, there are
still many hard-to-activate branches in today’s industrial designs.
These remaining corner branches are typically the source of bugs
and hardware trojans. Directed test generation approaches using
formal methods effectively activate a specific branch but are
limited by the state explosion problem. Semi-formal methods,
such as concolic testing, improve the scalability by exploring one
path at a time.

This paper presents a novel concolic testing framework to
exercise the corner branches through state tracing-based search
heuristics (STSearch). The proposed approach heuristically gen-
erates and evaluates input sequences based on a novel heuristic
indicator that evaluates the distance between the current state
and the target branch condition. The heuristic indicator is
designed to utilize both the static structural property of the
design and the state from dynamic simulation. Compared to the
existing concolic testing approaches, where a full new path is
generated in each round by solving path constraints, the cycle-
based heuristic search in the proposed approach is more effective
and efficient. Experimental results show that our approach
significantly outperforms the state-of-the-art approaches in both
running time and memory usage.

I. INTRODUCTION

With the increasing complexity of today’s chip designs,
it becomes more important to ensure the correct function-
ality using various techniques, such as formal methods and
simulation-based verification. Branch coverage in RTL models
is one of the most critical metrics to evaluate the quality
of tests in simulation-based verification [1]. While simulation
using millions or billions of random/constrained-random tests
is able to activate the majority of the easy-to-reach branches,
there could still be a large number of uncovered branches
which are typically the source of bugs or hardware Trojans [2].
There has been extensive research on directed test generation
methods based on formal and semi-formal methods to achieve
high branch coverage.

Directed test generation approaches based on formal meth-
ods [3–5], such as model checkers, transform both the RTL
model and target branches into a formal description, and
then generate the input sequence using a SAT solver or a
Satisfiability Modulo Theory (SMT) solver. These methods
can reach the corner cases that could only be activated by
a minimal set of tests. However, these approaches are not
scalable in generating directed tests for large designs since the
number of states and transitions grows exponentially with the
complexity of the design and the unrolled cycles. To address
this issue, semi-formal methods, such as concolic testing,

were proposed to combine concrete simulation and symbolic
execution [6; 7]. In contrast to formal methods, where the
whole design is transformed into a formal description and
solved in one shot, concolic testing methods explore and solve
one path at a time.

While concolic testing alleviates the state explosion problem
by exploring one path at a time, there are two main challenges
in applying concolic testing methods in large designs. The first
one is the effectiveness of the test generation approaches. As
it is infeasible to explore all paths within a time budget, an
effective path exploration technique should be applied to cover
the target branch quickly. For example, the edge realignment
technique is proposed in [9; 10] to utilize the structural
information in RTL models to guide path exploration. The
second one is the efficiency of path exploration. The existing
concolic testing methods typically apply constraint mutation
to explore new paths. With the size of the design increasing,
concolic testing needs to explore more paths, and each path
will accumulate more constraints, which will take significantly
more time to cover a target branch.

To address these two challenges, this paper proposes a state
tracing-based search heuristic to improve path exploration in
concolic testing. Compared to the existing concolic testing
methods, where complete input sequences are solved at each
iteration [10], our approach continuously generates input se-
quences for only a few cycles based on the current state.
In searching for the best input sequences, we introduce an
effective heuristic to reduce the number of paths to explore,
and replace the time-consuming SMT calls with a lightweight
genetic algorithm (GA). The main contributions of the paper
can be summarized as follows:

• We introduce an effective and interpretable heuristic indi-
cator, state distance, to estimate the distance between the
current state and a target branch utilizing both the runtime
states and the structural information of RTL models.

• We present a concolic testing framework based on state
tracing to search for effective input sequences to cover
hard-to-activate branches heuristically. To the best of our
knowledge, this is the first framework that actively traces
the runtime variables of the RTL design to heuristically
guides the path exploration.

• We implement the tool to generate efficient tests and
evaluate the branch coverage on 7 benchmarks. The tool
can be directly applied to RTL models described in
Verilog. The experimental results show that STSearch can
achieve several times improvement in test generation time

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

and memory usage compared to EBMC and the state-of-
the-art concolic testing method.

II. RELATED WORK

In this section, we describe the related efforts on formal
methods and semi-formal methods for test generation.

A. Formal Methods

Formal methods have been extensively exploited in au-
tomated test generation [11–13]. One common approach is
bounded model checking (BMC). To cover a target branch,
the negation of all guard conditions of the target will be
specified as the property of the model in BMC. Then, BMC
will check whether the property can be satisfied or not. The
counterexample that fails the property is the generated test
to cover the target branch. Although this approach is able to
check all possible states of an RTL model within a fixed unroll
cycle, it requires a huge amount of computing resources to
solve the property with a large number of states. As a result,
it is not scalable to generate tests for large design models or
corner cases that require lots of unrolled cycles, despite the
efforts to optimize time and space complexity [14].

B. Semi-formal Methods

To address the state explosion problem, semi-formal meth-
ods, such as concolic testing, have been proposed in software
testing [6–8; 15] and hardware verification [10; 16; 17].
Concolic testing combines both advantages of concrete sim-
ulation and symbolic execution. New paths are explored by
path reconstruction and constraints mutation in each iteration.
The effectiveness of the generated tests is dominated by the
heuristics in path exploration. Many techniques are proposed
in path exploration to improve the coverage of RTL models.
Liu et al. [17] proposed to utilize the runtime exploration
history to guide the selection of mutated constraints. Lyu
et al. [10] proposed a path exploration technique by fully
analyzing the static structural information of RTL models and
realigning the control flow graph (CFG). Compared to these
approaches, the state tracing-based search heuristics proposed
in this paper is more effective in path exploration by utilizing
both the structural information of RTL models and the runtime
state of the design.

III. METHODOLOGY

We propose a concolic testing framework to heuristically
generate tests based on state tracing to cover hard-to-activate
branches in RTL models. As shown in Figure 1, our framework
STSearch consists of two major stages. The first stage is the
static information collector responsible for retrieving as much
helpful information as possible by statically analyzing the
design. The second stage is the state tracing-based heuristic
path explorer, which utilizes both the information from the
first stage and the runtime state to guide path exploration.
This section uses the RTL model in Listing 1 as an example
for demonstration. The notation bi in the comment represents
the branch name, and b4 is the target branch.

!"#$%&'("$()

*+,

*+,-.)(/#

+0%1($

2.")3$3."

*(0/31"()

245

60$789$0$(

!":.%'0$3."

;(&%3#$3< !")3<0$.%

!"#$%&'()
*%+,()#'-(,.

/++%0)1'),

*%+,()#'

2(11%)0

*%+,()#'

+,(,'

+,(,'

3'+, 4)-", 5678

#"77'),8%,'7(,%6)
96:'7'&;'<, 4,'7(,%6)

!"#"$%

&'()*+#"$)'

,)--.%")*

!"#". /*#%$'01

2#"3 456-)*.*

)6

=',"7) ='+"$, >'+

?/@3(+'& A'+,

4)-", ?')'7(,%6)

+%1"$(,'

Fig. 1: The framework of STSearch. The state tracing-based
path explorer utilizes the structural information from the static
information collector and the runtime state to generate tests to
activate a target branch.

A. Static Information Collector

The static information collector is a preprocessor that stati-
cally analyzes the RTL model before simulation. It is used to
help capture the state of the design during the simulation and
guide the path exploration with structural information.

Path/State Instrumentation. STSearch instruments the
RTL code with $display statements to capture the execution
path and states during simulation. There are two levels of
instrumentation, i.e., path-level and state-level. The path-level
instrumentation labels each statement with a unique tag, and
the state-level instrumentation is inserted before the end of
the module to trace the state of the design during simulation.
All the information will be used for calculating the heuristic
indicator during path exploration.

Listing 1: An example RTL code snippet
1 input [1 : 0] i ;
2 reg [1 : 0] a , b ;
3 reg s t a t o ;
4 case (s t a t o)
5 0 : begin / / −−−−−−−−−−−−−−−−−−−−−−b1
6 i f (i >= 2 ' b10) / / −−−−−−−−−−−−−−−−−−−−−−−b2
7 i f (b <= 2 ' b10) / / −−−−−−−−−−−−−−−−−−−−−−b3
8 s t a t o <= 0 ;
9 e l s e / / −−−−−−−−−−−−−−−−−−−−−−b4

10 / / t a r g e t
11 e l s e / / −−−−−−−−−−−−−−−−−−−−−−b5
12 s t a t o <= 1 ;
13 end / / end o f s t a t o == 0
14 1 : begin / / −−−−−−−−−−−−−−−−−−−−−−b6
15 i f (a >= 2 ' b11 | | b >= 2 ' b10) begin / / −−−−−b7
16 a <= { a [1] , b [0] } ;
17 b <= 2 ' b00 ;
18 end
19 e l s e / / −−−−−−−−−−−−−−−−−−−−−−b8
20 i f (i >= 2 ' b10) begin / / −−−−−−−−−−−−−−−−−b9
21 a <= {b [0] , 1 ' b1 } ;
22 b <= b + 2 ' b01 ;
23 end
24 e l s e begin / / −−−−−−−−−−−−−−−−−−b10
25 b <= b + 2 ' b10 ;
26 s t a t o <= 0 ;
27 end
28 end / / end o f s t a t o == 1
29 endcase

!#

!$

!%

!&

"'

!(

!)

!* !+

!, !$#

#$%&'#

(a) Illustration of CFG

b1 b2 b3 b5 b6 b7 b8 b9 b10
b4

∗ 2 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞
b4

∗∗ 2 1 4 4 3 ∞ 2 1 1
∗CFG distance to b4
∗∗ERCFG distance to b4

(b) Distance Matrix

Fig. 2: (a) An illustration of realigning the CFG of the RTL
model in Listing 1. The dotted lines represent the newly added
edges by the ERCFG; (b) Distance matrix to b4 in the original
CFG and the ERCFG.

Target Condition Collection. STSearch traverses along the
CFG and extracts all the guard conditions for a nested branch
to better understand the required target state. For example,
all the conditions in branches {b4, b2, b1} must be satisfied to
reach the target branch b4 in Figure 2a. All these conditions
are combined to form the final target condition.

Control Flow Graph Realignment. The CFG does not
provide much information about the contribution of an assign-
ment to reach a target branch. For example, consider the initial
state s = {stato = 0, a = 2′b00, b = 2′b00} and the target
condition condb4 = {b > 2′b10}. Based on the edges in the
CFG, the basic blocks inside b1 and b2 are closer to b4 than
all the other blocks. However, the statements b <= b+ 2′b01
and b <= b + 2′b10 inside b9 and b10, respectively, are the
necessary nodes to reach the target b4 by analyzing the code in
Listing 1. This information cannot be inferred from the CFG.
To address this problem, we utilize the edge realigned CFG
(ERCFG) to better describe the contribution of each block in
the RTL model. The process of realigning the CFG utilizes
a SMT solver to symbolically check whether a statement
has a potential contribution to reaching a condition, similar
to the process in [10]. To indicate the contribution of the
assignments in a block, ERCFG directly connects the block
to the target branch, which is shown in the dotted lines in
Figure 2a. For example, the two dotted lines at the bottom of
Figure 2a represent the realigned edges from b9 and b10 to
the target branch b4. Next, we compute the distance matrix
of a specific branch target by traversing backward from the
branch. A smaller distance in the distance matrix indicates
that the block has a more significant contribution to reaching
the target branch. As shown in Figure 2b, the distance matrix
computed from the ERCFG better reflects the contribution of

! " # $ % & !
! " # $!$

"# #" ## #" ## ""'()*+

!! !"

"" "# "# $ $ $

!#$" !#

" " " " " "

" " # # " #

#

01+%+./,

" " " " " #

" " # # " "

"

2-/&&/3'-

%&!
"

%&#
"

%&$
"

%&!
"%!

%&#
"%!

%&$
"%!

!!" %&'&()*+,' "! # $%!" %&'&()*+,'

,-./0

Fig. 3: An illustrative example of state tracing-based path
exploration for Listing 1 with 2 bits input. The input sequences
are generated stride by stride, where each stride consists
of S cycles (S = 3 in this example). While generating
the input sequence tk for the kth stride using GA-based
heuristic search, the input sequences for all the preceding
strides {t1, t2, ..., tk−1} are fixed.

blocks to reaching the branch b4 than that computed from the
original CFG.

B. State Tracing-based Path Explorer

The path explorer generates tests to cover the target branch
based on the information provided by the static information
collector. Instead of generating and simulating the whole path
in each iteration [10], we group S cycles as one stride and
generate input sequences stride by stride, as shown in Figure 3.
To evaluate and find the best input sequence for a stride in
the genetic algorithm, we propose a novel heuristic indicator
called state distance, aiming to estimate the distance between
the target state and the state after applying the input sequence.
The genetic algorithm will be guided to find the input sequence
with the smallest state distance. With a good design of the
state distance, the explored paths are expected to get closer and
closer to the target branch. In the remainder of this section, we
will first introduce how to compute the state distance from the
structural information and the simulation state after applying
the input sequence, as well as the reason behind the design.
Then, we will introduce the genetic algorithm used in path
exploration.

1) State Distance Definition: State distance is designed to
estimate the “distance” between the current state and the target
condition. Given the condition of a target branch cond, state
distance is an indicator to compare the distance of two states
s1 and s2 from the target state. For example, the condition of
the target branch in b4 is {stato = 0 & i >= 2′b10 & b >
2′b10} in Listing 1. Suppose two different input sequences in1

and in2 reach the states s1 = {stato = 0 & i = 2′b11 & b =
2′b00} and s2 = {stato = 1 & i = 2′b00 & b = 2′b10},
respectively. The key observation is that which state is “closer”
to the target condition highly depends on the RTL designs. To
better evaluate the “distance”, we classify the variables into
three categories.

Euclidean variables. A variable v is called a Euclidean
variable if most of the assignments to v are the addition or
subtraction operations. In the example of Listing 1, b is a
Euclidean variable. Consider the state where b = 2′b00 and
the target condition requires b > 2′b10. Since the current b
is less than the target, STSearch wants to give more credits
to the test that increases b fast. In other words, a path that
passes line 26 is more likely to be selected as the winner than
a path passing line 18. Due to this heuristic, STSearch uses
the Euclidean distance for this type of variables. Formally, for
a Euclidean variable v, the Euclidean distance is defined as
Ev ← |v − vt|, where vt is the closest target value to v. For
example, if b = 2′b00 and the target is b > 2′b10, the distance
Ev = |2′b00− 2′b11| = 3.

Hamming variables. A variable v is called a Hamming
variable if most of the assignments to v are concatenation.
In the example in Listing 1, a is a Hamming variable. For
Hamming variables, Euclidean distances may not help select
the best test since their modifications are not continuous.
Therefore, we use bit-wise Hamming distance Hv as the
heuristic indicator.

Assignment variables. The remaining variables are called
assignment variables. They are mostly modified through as-
signments of direct values or from other variables. In the ex-
ample in Listing 1, stato is an assignment variable. It is not as
straightforward to define the distance of an assignment variable
as the other two types of variables. One key observation is that
the state is closer to the target condition if a path could pass
through a block with a small distance in the distance matrix,
as shown in Figure 2b. Therefore, we define the assignment
distance as the smallest distance of the blocks visited in the
last cycle, denoted as Av .

For all variables that appear in the target state guard con-
ditions cond, we calculate the state distances sd(cond) in the
following way. First, the target condition cond is transformed
into the conjunctive normal form (CNF) as ∧i(∨jcondij). For
each simple clause condij , the state distance is a combination
of the distances of all its variables, as shown in Eq. 1. We
balance the distances by assigning different weights ωE , ωA,
and ωH based on the type of variables. Then, the state distance
is computed using Eq. 2 for the composition of clauses. For
two conditions combined with an OR operation, the distance
is defined as the smaller one of these two distances. For two
conditions combined with an AND operation, the distance is
defined as the sum of these two distances.

sd(condij) =
∑

∀v∈condij

ωE ∗ Ev + ωA ∗ Av + ωH ∗ Hv (1)

sd(∧i(∨jcondij)) =
∑
i

(min
j

sd(condij)) (2)

Note that the computation of the state distance is very effi-
cient and scalable. First, the distances for Euclidean variables
and Hamming variables only depend on the final state of the
design. Next, the assignment distance is computed based on
the blocks visited in a single cycle, which does not accumulate
over time. Finally, the computation of the state distance is
efficient based on the definition.

Algorithm 1 STSearch

Input: RTL model R, target branch B, largest number of
stride M , number of cycles in a stride S, number of gen-
erations G, population n, number of selection r, mutation
rate m

Output: Test sequence T = {t1, t2, ..., }
// static information collector

1: Instrument R and collect guard conditions of B
2: Realign the CFG of R and compute the distance matrix

// state tracing-based path explorer
3: for iteration k = 1 to M do
4: chromosomes: Randomly generate n input sequences

{ink1 , ink2 , ..., inkn} for cycles (k − 1)S + 1 to kS
5: Initialize population: P ← {ink1 , ink2 , ..., inkn}

// simulate and compute fitness
6: for all in ∈ P do
7: Simulate R with the input {t1, t2, ..., tk−1, in}
8: Compute state distance sdin using Eq. 2 and Eq. 1
9: fitness of in: fitin = 1

sdin

10: end for
11: for generation g = 1 to G do
12: selection: Apply roulette selection on P to collect

r chromosomes ing = {ing
1, in

g
2, ..., in

g
r} based on

fitness values
13: Apply position-based crossover and mutation with

mutation rate m on ing to get in(g+1)

14: Simulate and compute fitness for all in ∈ in(g+1)

15: if branch is covered then
16: return T = {t1, t2, ..., tk−1, in}
17: end if
18: Put all input sequences in in(g+1) to P
19: end for
20: Select in∗ with the largest fitness from P
21: The input sequence for kth stride tk = in∗

22: end for
23: return T = {t1, t2, ..., tM}

2) State Tracing-based Heuristic Search: The algorithm
of the entire framework is shown in Algorithm 1. After the
static information collection stage, the framework iteratively
searches for the best input sequence tk for the kth stride using
a genetic algorithm. The goal of the genetic algorithm is to
find the input sequence with the smallest state distance.

Genetic algorithms are lightweight optimization methods
inspired by natural evolution and selection. The candidate
input sequence of an iteration is called a chromosome. For the
kth iteration, each chromosome is a candidate input sequence
for the cycles (k − 1)S + 1 to kS, as shown in Figure 3.
The fitness of each chromosome is the inverse of the state
distance computed by Eq. 1 and Eq. 2. The optimization
process of the genetic algorithm is to find a chromosome
with the largest fitness value. It consists of 4 major steps:
i) Population Initialization: At the beginning of each iter-
ation, GA randomly generates n chromosomes and gathers

TABLE I: Comparison between EBMC, [10] and STSearch

Bench cycle branches EBMC [10] STSearch Impro. /EBMC Impro. / [10]
Cov time(s) mem Cov time(s) mem Cov time(s) mem time mem time mem

b01 30 26 26 0.74 11.8M 26 0.01 9.1M 26 0.01 9.3M 18.50x 1.27x 1.00x -1.02x
b06 30 24 23 0.61 11.8M 23 0.01 9.1M 23 0.01 10.4M 15.25x 1.13x 1.00x -1.14x
b10 30 41 41 4.92 31M 41 0.02 9.4M 41 0.01 9.5M 2.58x 2.89x 2.00x -1.13x
b11 100 32 31 4.46 53.9M 30 121.67 48.3M 31 4.54 11.8M -1.01x 4.56x 26.80x 4.57x

ICache 50 26 25 2.42 48M 25 31.58 18M 25 6.90 12.0M -2.85x 4.01x 4.58x 1.50x
DCache 50 46 42 11.78 52.9M 42 101.37 16M 41 29.99 16.1M -2.55x 3.38x 3.38x -1.01x

Exception 50 47 47 19.77 40M 47 3.8 23M 46 7.17 11.0M 2.75x 3.65x -1.88x 2.10x
Average - - 33.6 19.54 35.6M 33.4 34.09 19.0M 33.3 6.95 11.4M 2.81x 3.12x 4.90x 1.66x

them into the population. The fitness of each chromosome is
obtained through simulation and state distance computation.
ii) Selection: In this stage, r well-performed chromosomes
are selected for further optimization. The chosen probability
of each chromosome is based on roulette probability, i.e.,
chromosomes with larger fitness values are more likely to
be selected. Since the state distance is the inverse of the
fitness value, the input sequences with smaller state distances
are more likely to be chosen. iii) Crossover and Mutation:
Crossover optimizes populations by retaining and exchanging
patterns of well-performing chromosomes. The selected r
chromosomes will be paired for crossover. Figure 3 illustrates
a position-based crossover in ing

1 and ing
2, where g is the

generation. We specify a random crossover position and swap
the left or right side of the two chromosomes to obtain
two children ing+1

1 and ing+1
2 . A mutation is introduced

to add randomization and expand the search domain. Every
chromosome may be selected at this stage with a mutation
rate m. A random signal of the chromosome will be flipped
as shown in the illustration in Figure 3, iv) Accept criterion:
In the acceptance stage, we choose the chromosome with the
largest fitness as the input sequence for the kth stride.

The crossover operation in GA enables our framework to co-
optimize input tests that expand multiple cycles. The intuition
behind this design is based on the observation that the impact
of an input test may be revealed in a few cycles.

IV. EVALUATION RESULTS

A. Experimental Setup

We implemented our framework STSearch using C++ with
Icarus Verilog [18] and Yices 2.6 solver [19]. The iverilog is
used for simulation and collecting runtime states, while the
Yices SMT solver is used for the control flow graph realign-
ment. We performed a few experiments on a virtual machine
running Ubuntu 20.04 with an i7-11800H (2.3GHz) CPU.
Experiments were conducted on 7 benchmarks from Open-
RISC1200 [20] and ITC’99 datasets containing hard-to-reach
branches. We discard or1200 in the names of benchmarks
or1200_ICache, or1200_DCache, and or1200_Exception from
OpenCores without causing any confusion.

B. Algorithm Settings

We set the maximum iteration M to be 1000, and the param-
eters of the genetic algorithm {G,n, r,m} to be {3, 15, 6, 0.1}
in Algorithm 1. The number of cycles in one stride S is set
to be 3. Section IV-D will evaluate the effects of different

cycles in a stride. Further, we set a timeout for Algorithm 1.
If the largest fitness value does not change for 5 seconds,
Algorithm 1 will give up and terminate.

The weights for assignment variables and Hamming vari-
ables in Eq. 1 are set to be 1. As the Euclidean distance can be
very large when the variable contains many bits, we tuned the
weight ωE for Euclidean distance to balance the three types
of distances.

C. Experiment Result Evaluation

Table I compares the number of cover branches, test gen-
eration time, and memory usage of our framework STSearch
with the formal method EBMC [21] and the state-of-the-
art concolic testing method [10]. Columns 2-3 in Table I
show the unrolled cycles and number of branches of 7
benchmarks. The unrolled cycle is determined in EBMC to
cover as many branches as possible. Columns 4-12 profile the
number of cover branches, runtime, and memory use of three
frameworks. Without solving constraints as EBMC and [10],
STSearch can achieve the same branch coverage as EBMC
in 5 out of the 7 benchmarks by pure heuristic generation.
In the other benchmarks, there is only 1 branch difference in
the overall coverage compared to EBMC. While the branch
coverage is almost the same, STSearch achieves 2.81x and
4.90x speedup over EBMC and [10], respectively, and 3.12x
and 1.66x improvement in memory reduction, respectively.
These improvements come from two primary factors. First, our
heuristic indicator state distance effectively guides the genera-
tion of input sequences. In each cycle stride, GA optimizes the
fitness of the randomly generated sequences, making RTL state
closer to the target branch. Second, without heavily relying on
SMT solvers, state tracing-based search poses less stress on
the computing resource, making our framework much more
scalable than the existing approaches.

TABLE II: Comparison of the number of branches cover and
time efficiency with different cycle strides

Bench S = 1 S=2 S=3 S=4
cov time(s) cov time(s) Cov time(s) Cov time(s)

b11 30 41.5 30 15.3 31 4.5 31 7.1
Exception 44 18.9 45 15.5 46 7.2 45 16.0

D. Cycle Stride Comparison

Cycle strides S is a critical parameter since it represents
the number of cycles in each input sequence. With a larger
S, tests from more cycles are grouped and co-optimized,
potentially increasing the effectiveness of generated tests. But

it also significantly increases the search space, which will
increase the time to find the best input sequence. As a result,
there is a trade-off between the quality of the generated
tests and the computing resource. Table II compares the
performance in b11 and or1200_Exception with different cycle
strides (S = 1, 2, 3, 4). The experimental result shows that
STSearch achieve the best branch coverage and performance
when S = 3.

0 100 200 300 400
Cycle

0

10

20

30

E
u
cl
id
ea
n
D
is
ta
n
ce

432

STSearch

Random

(a) Euclidean distance for a corner branch in b11

Assignment
Distance

STSearch Random
Cycles Per % Cycles Per %

∞ 163 37.72% 136 27.20%
3 48 11.11% 32 6.40%
2 196 45.37% 327 65.40%
1 25 5.79% 5 1.00%

Total 432 100% 500 100%

(b) Assignment Distance for a corner branch in b11

Fig. 4: Comparison of the state distance computed by the tests
generated by STSearch and random tests.

E. Evaluation of State Distance

To demonstrate the effectiveness of our heuristic indicator
in guiding path exploration, we take one corner branch in
b11 as an example to show the change of our distance over
time. Figure 4 compares the components of the state distance
computed by the tests generated by STSearch and random
tests. Figure 4a shows the Euclidean distance for 500 cycles.
The Euclidean distance of STSearch converges to 0 within 500
cycles, while the minimum Euclidean distance by random tests
does not improve much. Figure 4b illustrates the distribution
of assignment distances in 500 cycles, where the proportion
of the blocks with the smallest assignment distance visited
within 500 cycles is five times more than random tests. The
result indicates that STSearch effectively guides the search
to explore the blocks with high contributions frequently and
reaches the states that satisfy the target condition.

V. CONCLUSION

This paper presents a novel semi-formal test generation
framework to improve branch coverage in RTL models by
combining structural information with simulating states. The
framework traces the state of the design and heuristically
guides the path exploration to reach a target branch using GA.
The heuristic indicator, state distance, is highly explainable
which evaluates the distance of the current state and the final
target condition based on the properties of variables and paths.
Experimental results show that STSearch can achieve several
times improvement in test generation time and memory usage

compared to EBMC and the state-of-the-art concolic testing
method while maintaining high branch coverage.

REFERENCES

[1] S. Devadas et al., “An observability-based code coverage
metric for functional simulation,” in ICCAD, 1996.

[2] Y. Lyu and P. Mishra, “Scalable activation of rare triggers
in hardware trojans by repeated maximal clique sam-
pling,” IEEE TCAD, 2021.

[3] A. Gargantini and C. Heitmeyer, “Using model checking
to generate tests from requirements specifications,”
SIGSOFT Softw. Eng. Notes, 1999.

[4] P. E. Ammann et al., “Using model checking to generate
tests from specifications,” in 2nd International Confer-
ence on Formal Engineering Methods, 1998.

[5] R. Mukherjee, D. Kroening, and T. Melham, “Hardware
verification using software analyzers,” in IEEE Computer
Society Annual Symposium on VLSI, 2015.

[6] P. Godefroid et al., “Dart: Directed automated random
testing,” in ACM Sigplan Notices, 2005.

[7] K. Sen et al., “Cute: A concolic unit testing engine for
c,” in ACM SIGSOFT Software Engineering Notes, 2005.

[8] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs,” in Proc. 8th USENIX Conf.
Operating Syst. Des. Implementation, 2008,

[9] Y. Lyu and P. Mishra, “Automated Test Generation for
Activation of Assertions in RTL Models,” in ASPDAC,
2020.

[10] Y. Lyu and P. Mishra, “Scalable concolic testing of RTL
models,” IEEE TC, 2021.

[11] R. Mukherjee, D. Kroening, and T. Melham, “Hardware
verification using software analyzers,” in IEEE Computer
Society Annual Symposium on VLSI, 2015.

[12] D. Kroening, “Computing over-approximations with
bounded model checking,” Electron. Notes Theor. Com-
put. Sci., 2006.

[13] M. Chen and P. Mishra, “Property learning techniques for
efficient generation of directed tests,” IEEE TC, 2011.

[14] S. Ofer, “Accelerating bounded model checking of safety
properties,” in Formal Methods in System Design, 2004.

[15] C. Cadar et al., “Exe: Automatically generating inputs
of death,” ACM Trans. Inf. Syst. Secur., 2008.

[16] L. Liu and S. Vasudevan, “Star: Generating input vectors
for design validation by static analysis of rtl,” in IEEE
HLDVT, 2009.

[17] ——, “Scaling input stimulus generation through hybrid
static and dynamic analysis of rtl,” ACM Trans. Des.
Autom. Electron. Syst., 2014.

[18] S. Williams, “Icarus verilog,” http://iverilog.icarus.com/,
2006.

[19] “Yices website,” https://yices.csl.sri.com/, 2022.
[20] “Opencores website,” https://www.opencores.org, 2022.
[21] D. K. and M. Purandare, “Ebmc: The enhanced bounded

model checker,” http://www.cprover.org/ebmc, 2022.

	Select a link below
	Return to Previous View
	Return to Main Menu

