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Abstract—ReRAM-based Processing-in-Memory (PIM) 

offers a promising paradigm for computing near data, making 

it an attractive platform of choice for graph applications that 

suffer from sparsity and irregular memory access. However, the 

performance of ReRAM-based graph accelerators is limited by 

two key challenges – significant storage requirements 

(particularly due to wasted zero cell storage of a graph’s 

adjacency matrix), and significant amount of on-chip traffic 

between ReRAM-based processing elements. In this paper we 

present, GraphIte, an approximate computing-based 

framework for accelerating iterative graph applications on 

ReRAM-based architectures. GraphIte uses sparsification and 

approximate updates to achieve significant reductions in 

ReRAM storage and data movement. Our experiments on 

PageRank and community detection show that our proposed 

architecture outperforms a state-of-the-art ReRAM-based 

graph accelerator by up to 83.4% reduction in execution time 

while consuming up to 87.9% less energy for a range of graph 

inputs and workloads.  

Index Terms — Processing-in-Memory, Approximate 

Computing, Graph Analytics, ReRAM.  

I. INTRODUCTION 

Graph analytics has become part of machine learning 

toolkits to analyze relational data in many real-world 

applications. Considering poor data locality in most of the 

real-world graphs, irregular data access patterns become a 

bottleneck in the performance of conventional manycore 

architectures (such as CPUs and GPUs). Moreover, skewed 

vertex degree distributions of real-world graphs cause 

repeated accesses to vertex neighborhoods or random walk 

traversals to incur a high volume of cache misses.  

Resistive random-access memory (ReRAM)-based 

Processing-in-Memory (PIM) modules offer an effective way 

to address the high memory bandwidth requirement of graph 

analytics by integrating the computing logic in the memory. 

To perform graph computations on ReRAM crossbars, it is 

necessary to load the input graph as an adjacency matrix so 

that the underlying primitives can be decomposed into 

multiply-and-accumulate (MAC) operations.  However, large 

graph sizes in the real-world (with millions of rows implying 

trillions of cells) make it prohibitive to load or store the entire 

adjacency matrix. It is also rather unnecessary to do so 

because most real-world graphs tend to be highly sparse, with 

the number of nonzero entries orders of magnitude fewer than 

the number of cells. Graph computations usually only use the 

nonzero entries. Sparsity also affect locality since the nonzero 

cells may not be necessarily contiguous in the input matrix. 

Subsequently, the question arises on how to store a large 

sparse matrix on an ReRAM platform without wasting space 

and without compromising on performance or energy 

benefits.  

Contributions: In this paper, we design approximate 

computing techniques for executing iterative graph 

applications on ReRAM-based architectures. We refer to our 

proposed approach as GraphIte (Fig. 1 shows a schematic 

illustration). Approximate computing [2] is a broad class of 

techniques that use heuristic schemes to achieve the best of 

performance-precision tradeoffs in real-world applications. 

GraphIte uses two types of approximate computing 

techniques as follows: 

Sparsification: First, we present a graph sparsification 

approach to selectively determine and eliminate large 

portions of the adjacency matrix dominated by zero entries 

(sparse tiles), while retaining parts that are concentrated with 

non-zeros (dense tiles). This approach helps not only in 

significant reductions in ReRAM storage, but it also 

improves the achievable performance and energy efficiency.  

Approximate update: Next, we present an approximate 

update method by which vertices are selectively and 

dynamically pruned (or terminated) as the algorithm proceeds 

on the ReRAM in iterative steps. This is a generic technique 

that can be applied to any graph operation with an iterative 

structure, where all vertices are visited at each iteration (e.g., 

PageRank, community detection) [3]. A higher level of 

pruning corresponds to larger savings in time (and data 

movement), however with the potential risk of degrading 

quality. Therefore, a careful design is necessary to make this 

idea work in practice for real-world graph applications.   

We implemented the above two types of approximate 

computing techniques for two different graph operations – 

namely, PageRank [4] and community detection [5]. Both 

these operations are exemplars of iterative graph methods that 

iterate repeatedly over all the vertices until a point of 

convergence.  

We perform a thorough experimental evaluation of the 

GraphIte-based implementations of PageRank and 

community detection on an ReRAM-based architecture with 

1,024 processing elements (PEs) connected using a Network-

on-Chip (NoC) architecture. Results show that the GraphIte 

implementations are highly effective in reducing storage 

requirement, time to solution as well as energy costs – all 

  
Fig 1: Schematic illustration of the GraphIte architecture. 
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without compromising the output quality. GraphIte with 

sparsification and early termination, called GraphIte-ET 

outperforms a state-of-the-art ReRAM-based design by up to 

83.4% reduction in execution time while consuming up to 

87.9% less energy for a range of graph inputs and workloads. 

II. RELATED WORK 

Due to irregular memory accesses in most of the real-world 

graph applications, data movement between logic and 

memory layer limits the performance and energy efficiency 

of CPU and GPU-based conventional manycore 

architectures. DRAM-based Hybrid Memory Cube (HMC) is 

an effective way to improve performance by closely 

integrating the memory with the logic layer [19]. Another 

possible way is to partition the caches into multiple planar 

layers in a 3D structure to improve the cache hit rate [20]. 

However, such deep memory hierarchies also degrade the 

overall performance. Alternatively, due to in-memory 

processing capability, ReRAM-based architectures are 

gaining momentum as a natural choice for accelerating graph 

operations [6][7][8]. These accelerators outperform CPU- or 

GPU-based implementations in terms of execution time and 

energy [6]. While reliability due to hardware faults is a well-

documented problem with ReRAM platforms, a number of 

fault-tolerant schemes being proposed (such as error-

correction codes (ECC) [10], redundancy [11]) that enable 

reliable operation on ReRAMs. Therefore, in this paper, we 

primarily focus on improving the performance and energy 

efficiency of graph processing on reliable ReRAM 

architectures.  

     Performance of the current ReRAM-based accelerators is 

limited by the sparsity and lack of locality in graph structures 

[7][8]. Two recently proposed ReRAM-based graph 

accelerators (GraphSAR [7] and Spara [8]) leveraged vertex 

reordering techniques to improve the sparsity-induced 

inefficiency. While vertex reordering can help by clustering 

the non-zero cells of the matrix, new algorithmic strategies to 

fully exploit the reordered structure are needed to realize 

performance and storage benefits on ReRAMs. More 

specifically, reordering can rearrange the nonzeroes in the 

matrix in such a way that there is a clearer separation between 

denser and sparser “tiles” (or submatrix blocks).  The 

schemes presented in this paper takes advantage of this 

observation. 

    Approximate computing [2] generally works by trading off 

quality for performance. The main idea is to find ways to skip 

portions of computation such that the overall quality of the 

solutions is not significantly perturbed while enhancing the 

performance and energy efficiency [3]. One challenge in 

implementing approximate computing for ReRAM-based 

platforms arises from the adjacency matrix-based 

representation to load and compute on the graph (compared 

to more traditional formats like adjacency/edge lists or 

compressed sparse row). Another challenge arises owing to 

the crossbar structure of ReRAMs. In this paper we tackle 

both these challenges.  

III. APPROXIMATE COMPUTING ON RERAM 

A. Identifying active blocks using Sparsification 

    Graph computations on ReRAM-based architectures 

involve traversing the input sparse adjacency matrix 

corresponding to the graph. For a graph G(V,E) with n 

vertices, the corresponding adjacency matrix has n2 cells. 

However, most of the real-world graphs are sparse in nature 

with orders of magnitude fewer nonzero values (i.e., edges) 

than n2. Therefore, storing the entire adjacency matrix will be 

wasteful and prohibitive in practice.  

 Here, we present a sparsification based approach toward 

reducing the storage requirement on ReRAMs. To 

accomplish this reduction, we first define the term active 

block. A square tile of a matrix of size X rows * X columns 

is considered “active” if it contains at least one cell with a 

nonzero value. Since graph computations only involve the 

nonzero cells of a matrix, we need to transfer only the active 

blocks of the adjacency matrix onto the ReRAM. A simple 

but naïve decomposition of the input adjacency matrix into 

evenly sized active blocks may not necessarily reduce storage 

in practice as nonzeros can be scattered across the matrix. To 

this end, vertex reordering techniques can be used [7]. 

Intuitively, the idea is to reorder the rows and columns of the 

matrix in such a way that the nonzeros are clustered along the 

main diagonal [7][8]. As part of this work, we used the Spara 

reordering [8] although any vertex reordering of choice can 

be used.  

However, even after reordering, there may be several 

blocks which are highly sparse. Fig. 2 shows the distribution 

of the number of nonzero cells within each active block for 

two real-world graph datasets (GitHub and Deezer) after 

reordering using Spara (using a crossbar size of 128 x128 as 

an example). Fig. 2 shows a skewed distribution where most 

of the blocks have very low number of nonzeros (i.e., still 

very sparse). If one were to store all active blocks on the 

ReRAM, then that will result in substantial wasted space 

devoted to storing zero cells.  

    To reduce the number of active blocks after vertex 

reordering, we use sparsification, which removes a subset of 

edges (i.e., nonzero cells). Unlike conventional schemes that 

remove edges randomly, our sparsification approach 

prioritizes removal of the sparser active blocks until the 

desired level of sparsification is achieved. We use a 

parameter called sparsification factor (SF) that denotes an 

upper limit on the fraction of edges to be removed prior to 

loading the graph onto the ReRAM. To maximize the number 

of active blocks that can be eliminated, we process the active 

blocks in the decreasing order of their sparsity, until a total of 

SF fraction of edges is removed. Note that sparsity of a block 

is simply the fraction of cells that has nonzero entries. In 

Section IV, we show that choosing an optimized value for SF 

causes insignificant precision loss while significantly 

reducing the storage requirement, execution time and energy.  

 B. Approximate Updates for Iterative Graph Algorithms  

    In the next step, we describe an approximate update 

scheme that is performed during the computation stage once 

the graph is loaded on the ReRAM platform. Our technique 

 
Fig. 2: No. of non-zero elements in each block for GH and DZ, after Spara. 
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applies to any graph algorithm that has the following iterative 

structure:  

1) Initialize a state (or value) at every vertex. 

2) Perform multiple iterations such that at each iteration the 

states (or values) of each vertex is updated using the 

states (or values) of its neighboring vertices. 

3) The algorithm terminates when a convergence criterion 

is achieved.  

The above computational structure is generic and applies to a 

broad class of iterative graph algorithms. For instance:  

• In the PageRank algorithm [4], the value computed at 

each vertex u is its PageRank value, which is updated at 

each iteration using the PageRank values of u’s 

neighbors.  

• In community detection [5], the state computed at each 

vertex u is its community label. Two actions are possible 

for u at each step – either u stays in its current 

community, or it leaves its current community and joins 

one of the communities of its neighbors. This greedy 

decision is made based on whichever action maximizes 

net gain in modularity [3] – a global objective function.  

• In balanced distance-1 coloring [2], the state of each 

vertex represents its color, which is updated at each 

iteration based on the colors used by its neighbors.  

• In the Bellman-Ford single source shortest path 

algorithm [18], the value updated at each vertex u is its 

most up-to-date shortest path distance from the source. 

  In all the above iterative graph algorithms, the graph 

algorithms progress toward convergence at each step of the 

iteration. Subsequently, most of these algorithms show a 

diminishing returns property [3], whereby the returns in the 

improvement of quality diminishes with every passing 

iteration. This happens, however, without any reduction in the 

work performed as all vertices are processed at each iteration. 

This is the key property that we exploit in this paper to design 

our approximate update method. Our scheme tries to reduce 

the work performed at each iteration (adaptively) as the 

iterations progress. The challenge is to design a scheme 

which would achieve significant reductions in work without 

compromising or negatively impacting the output quality.  

   Next, we describe two such approximate update schemes: 

one for community detection and another for PageRank.  

Similar strategies can be designed for other iterative graph 

algorithms following the template laid out here.   

 1) Approximate Update for Community Detection 

      We devise a probabilistic scheme by which a vertex 

decides to stay “active” or get “terminated”, at any given 

iteration. Being active implies that the vertex will compute its 

community affiliation and decide whether to change the 

corresponding community or not, by examining its 

neighborhood. Alternatively, if the vertex is terminated, it 

will be dropped from the processing queue during that 

iteration. Note that by terminating a vertex during an 

iteration, we can save on all the subsequent computations and 

inter-PE communication that originate at that vertex. At the 

start of the first iteration, all vertices are active. As the 

algorithm progresses through its iterations, more and more 

vertices will get terminated. Compare this with the baseline 

(precise) algorithm [5] where all vertices stay active across 

all the iterations. Consequently, we refer to this approximate 

update scheme as Early Termination (ET). 

     To identify vertices to terminate, we track the most recent 

activity at each vertex – i.e., intuitively, if the community of 

a vertex has not changed in the past few consecutive 

iterations, the probability of that vertex staying active is 

reduced.  Specifically, given vertex v and its community 𝐶𝑣,𝑗 

at the end of iteration j, we assign the probability that v is 

active during iteration k, denoted by 𝑃𝑣,𝑘, as follows [16]: 

             𝑃𝑣,𝑘 =  {
0,
1,

         𝑖𝑓𝐶𝑣,𝑘−3 = 𝐶𝑣,𝑘−2 = 𝐶𝑣,𝑘−1

         otherwise
            (1) 

For implementation, a binary flag is used at every vertex 

to determine the active state of a vertex. This flag is 

determined based on the probability 𝑃𝑣,𝑘. If a vertex becomes 

inactive at a certain iteration, it is not considered as part of 

future iterations (which implies its community status will no 

longer be updated). Note that this deviation from precise 

update may potentially affect output quality. Precision in 

quality is measured using the modularity metric. This 

heuristic has two performance advantages: a) it could lead to 

a faster convergence of modularity within a phase, by 

reducing both the number of vertices that need to be 

processed at every iteration and the total number of iterations 

required, and b) it could also reduce inter-PE traffic generated 

by terminated vertices.  

 2) Approximate Update for PageRank 

    PageRank [4] computes a ranking of webpages (i.e., nodes 

on a web graph), with a higher value of PageRank denoting 

more importance to that webpage. The conventional 

implementation of PageRank is based on the fact that an 

average web surfer visits page to page, either using the 

outgoing links of a page (vertex) chosen uniformly at random 

with probability d, or by randomly jumping to a new page 

(with probability 1- d). The output of PageRank is a score for 

each page on the web that determines its importance. The 

PageRank of a vertex depends on the PageRank of its 

neighboring vertices. More specifically, consider a directed 

graph G(V, E) with vertex set V and edge set E. For a given 

vertex 𝑣𝑖 , let I( 𝑣𝑖 ) be the set of vertex neighbors with 

incoming links to 𝑣𝑖 . The PageRank score for vertex 𝑣𝑖  is 

defined by the equation: 

     𝑃𝑅(𝑉𝑖) =
1 − 𝑑

|𝑉|
+ 𝑑 ∗ ∑ 𝑃𝑅(𝑣𝑗)

𝑗∈𝐼(𝑣𝑖)

       (2) 

We start by initializing all vertices to an initial PageRank 

(PR) score of 
1

|V |
. PageRank iteratively computes the PR 

value of each vertex using (2) until convergence.  

    It has been observed that the magnitude of changes in the 

PR values tend to diminish as iterations progress [3]. We 

exploit this property to retire or early-terminate a source 

vertex 𝑣𝑖  if that change in that vertex’ PR value between 

consecutive iterations drops below a threshold 𝛼 .  More 

specifically, based on the change in individual PR value of a 

vertex at a given iteration ( 𝑃𝑅(𝑣𝑖)𝑘) , we introduce a 

probability function (ƥ
𝑣,𝑘

) which determines vertices that 

needs to be terminated. This probability during iteration k is 

given by: 

            ƥ
𝑣,𝑘

=  {
0,
1,

         𝑖𝑓|𝑃𝑅(𝑉𝑖)𝑘−1 − 𝑃𝑅(𝑉𝑖)𝑘−2| < 𝛼
         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (3) 

Here, 𝛼  is an input parameter that sets the minimum 

threshold of PR difference between the previous two 

iterations to keep a vertex active in the current iteration.  
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 3) Overall ReRAM-based Architecture 

In ReRAM-based accelerators, the adjacency matrix of the 

input graph is stored across the ReRAM cells. During 

execution, graph computations are decomposed into a set of 

MAC operations that are performed based on Ohm’s and 

Kirchhoff’s current laws. The overall system consists of 

multiple ReRAM processing elements (PEs), where each PE 

contains several ReRAM tiles. Each ReRAM tile is 

composed of several crossbars and the associated peripherals. 

It should be noted that both the vertex reordering and 

sparsification steps are one-time preprocessing steps that are 

executed on the host machine, and it is only the resulting 

reordered sparsified graph (with only its identified active 

blocks) that are loaded on to the ReRAM manycore 

architecture. For reordering we use the state-of-the-art Spara 

reordering scheme [8]. Sparsification was described in 

Section III.A. The approximate update schemes (described in 

Section III.B) are executed on the ReRAM manycore 

architecture during the subsequent graph computation phase.  

Fig. 1 illustrates the overall workflow proposed in this work. 

The manycore ReRAM architecture with its components is 

shown for illustration purpose only.  

IV. EXPERIMENTAL RESULTS 

 A. Experimental Setup 

    For our experimental evaluation, we implemented two 

different versions of GraphIte: the baseline version that uses 

Spara for graph reordering, followed by our block-based 

sparsification described in III.A; and an extended version, 

GraphIte-ET, that in addition uses the early termination 

heuristic described in Section III.B. We modified the open 

source Grappolo toolkit for the GraphIte implementations 

with the approximate computing techniques [17].  

    In the GraphIte architecture, each PE has four tiles. Each 

tile contains 96 crossbars (128x128) and associated 

peripheral circuits such as ADC, DAC, etc. Each PE takes up 

0.37 mm2 of area [14]. We consider a 3D architecture to offer 

a higher degree of integration of ReRAM PEs than the 2D 

counterparts [9]. By considering 10mmx10mm as the size of 

each planner layers, such layer contains 256 PEs. Considering 

four of such planner layers connected on top of each other, it 

gives rise to a 3D ReRAM-based system with 1024 PEs. Due 

to simplicity and ease for implementation, we choose a 

conventional 3D Mesh-based NoC to connect the PEs. Within 

each layer 256 PEs are placed in a 16x16 grid pattern, and the 

length of each inter-router link is 0.625mm. We leverage 

Booksim [13] for implementing 3D Mesh-based NoC 

architecture considered in this work. The overall system runs 

at the clock frequency of 2.5 GHz. Considering this clock 

frequency, each inter-router planar link can be traversed in 

one cycle. All the vertical links connecting the planar layers 

are traversed in one cycle due to their small length. BookSim 

determines the overall NoC latency. We use the PE and 

memory characteristics along with total NoC latency in 

NVSim [12] to determine the overall energy consumption and 

execution time. Table 1 shows all the graph inputs used for 

the performance analysis. These graph datasets are taken 

from the Stanford Network Analysis Platform1 and the 

Network Repository2.  

 B. Effect of Crossbar Size on Area, Power, and Storage 

    The adjacency matrix of a graph is decomposed into 

multiple non-overlapping 𝑁 × 𝑁  segments to map on to 

𝑁 × 𝑁  shaped crossbars. Intuitively, selecting relatively 

smaller crossbars would reduce zero cells stored but also 

would negatively impact the area and power requirements as 

those terms are dominated by peripheral circuits [14]. On the 

other hand, a large crossbar size would reduce area and power 

but would also potentially increase zero cell storage. We 

evaluate this tradeoff with multiple inputs. Fig. 3 shows the 

normalized area, power and zero storage by varying the 

crossbar size from 8 × 8  to 256 × 256 . All values are 

normalized relative to the respective numbers observed for 

the 8 × 8 crossbar configuration. While we tested for several 

inputs, the observed trends were similar and therefore we 

show the results for only two exemplar inputs. We can see 

that the area and power continuously decrease with increasing 

crossbar size. However, beyond 128 × 128  both area and 

power show saturating trends, while the zero storage 

significantly increases (more than 30x over the  8 × 8 

configuration). Hence, we select the 128 × 128 crossbar size 

as the default for all our experiments. In this configuration, 

on average, the area and power are 92% and 85% less than 

that of the 8 × 8  crossbar respectively, while the zero 

wastage is reduced by more than 27.4X.  

 C. Effect of Sparsification Factor on Quality and 

Storage  

As shown in Fig. 2, active blocks in most real-world graph 

datasets have varying sparsity. Active blocks with high 

sparsity not only increase storage requirement but also 

generate inter-PE traffic. Through sparsity-based 

approximation, we remove edges belonging to the blocks 

1http://snap.stanford.edu/;     2http://networkrepository.com/ 

Table 1: Input statistics of the graph datasets used in our experiments. 

Input graph (label) No. vertices No. edges 

musae_Github (GH) 37,699 289,003 

gemsec-Deezer (DZ)  41,773 125,826 

ego-Twitter (TW) 81,306 1,768,149 

road_luxembourg-osm (RM)  114,598 119,667 

Web-Standford (WS) 281,903 2,312,497 

com-Amazon (AZ) 334,863 925,872 

roadNet-PA (PA) 1,088,092 3,083,796 

Wiki-topcats (TP) 1,791,489 28,511,807 

roadNet-CA 1,965,206 5,533,214 

com-Orkut (OR) 2,937,612 20,959,854 

socfb-A-anon (FB) 3,097,165 23,667,394 

soc-LiveJournal1 (LJ) 4,847,571 68,993,773 

 

 
Fig. 4: Community detection: (a) Effect of sparsification and (b) early 

termination on the normalized number of active blocks (y-axis left) and 
on the quality of output (precision loss and modularity by the y-axis right). 

 
Fig. 3: Area-Power-Zero storage trade-offs for different crossbar 
configurations. Crossbar size X*X is denoted as X. All values are normalized 

relative to that of the 8 × 8 crossbar configuration. 
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with comparatively high sparsity. The parameter 

sparsification factor (SF) denotes the fraction of edges to be 

removed (relative to the original number of edges in the input 

graph). We study the number of active blocks by varying the 

value of SF. As removal of edges may also potentially 

degrade the precision of the output, we also analyze the loss 

in precision along with the number of active blocks.  

     Fig. 4 (a) shows the effect of sparsification on the 

normalized number of active blocks (y-axis left) and on the 

precision loss in community detection (y-axis right) with GH. 

The precision loss in community detection is measured as the 

difference between the output modularity values calculated 

by the sparsified implementation versus the implementation 

without sparsification. We show the result with GH as an 

example (the same trend is observed for all the others). The 

number of active blocks with the SF value of zero is 100%.  

     It should be noted that increasing SF decreases the number 

of active blocks (i.e., generating more space savings) but it 

also increases precision loss. While this storage-precision 

tradeoff is expected, it should be noted that for most of the 

graph datasets considered in this work, when the value of SF 

is  25, the modularity (precision) loss is maintained below 

1%, which is desirable from an application standpoint [15]. 

For this setting, we can achieve 61% to 89% reduction in the 

number of active blocks, which is a significant savings in 

space. We use SF value of 25 for all the experiments.  

 D. Performance with Early Termination (GraphIte-ET) 

In what follows, we analyze the impact of early termination 

(ET) by testing the GraphIte-ET implementations of 

community detection and PageRank.   

GraphIte-ET for Community Detection rests on the main 

idea of terminating vertices as soon as their community labels 

stop changing (III.B.1). This heuristic tries to improve 

performance but, in the process may degrade output quality. 

Fig. 4 (b) shows the effect of early termination on the number 

of active vertices (Y-axis on the left) and on the output quality 

(shown as modularity by the Y-axis on the right) of 

community detection with GH. It should be noted that the 

results are shown on the sparsified inputs. We observed 

similar trend for other datasets as well. Fig. 4 (b) shows that 

as the iterations progress, the number of active vertices 

decreases while increasing the modularity. Table 2 shows the 

modularity comparison between GraphIte and GraphIte-ET 

for six datasets. We can see that difference in the modularity 

values between GraphIte and GraphIte-ET varies from 0.01% 

to 3.4%. Section IV.E discusses the effect of early 

termination on inter-PE communication volume and overall 

performance gain.  

GraphIte-ET for PageRank rests on the main idea of 

terminating vertices as soon as their individual PageRank 

values stop changing significantly in consecutive iterations, 

defined by the threshold 𝛼 (III.B.2). This heuristic tries to 

improve performance but, in the process may degrade output 

quality. We determine the number of active vertices and loss 

in precision per iteration by varying the value of 𝛼. Fig. 5 (a) 

shows the effect of early termination on the number of active 

vertices within each iteration of PageRank with GH for three 

threshold values of 𝛼 . Here, 𝛼 =10-9 would represent a 

conservative threshold setting while 𝛼=10-3 would represent 

an aggressive threshold setting.  The results for GH are shown 

as examples. Fig. 5 (a) shows that a larger value of 𝛼 (i.e., 

10−3) results in a drastic reduction in the number of active 

vertices but with a larger precision loss (as can be expected). 

On the other hand, smaller value for 𝛼 (i.e., 10−9) does not 

achieve any meaningful reduction in the number of active 

vertices. Fig. 5(b) illustrates the loss in precision per iteration 

of PageRank with GH for the three values of 𝛼 mentioned 

above. We can see from Fig. 5(b) that as the iterations 

progress, we have maximum loss in precision when the value 

of  𝛼 as 10−3. In contrast, choosing 10−9 as the value of  𝛼 

achieves minimum precision loss. Moreover, careful 

observation of Fig. 5(b) reveals that the difference in 

precision loss between 10−6 and 10−9 is negligible. Hence, it 

is clear from Figs. 5 (a) and (b) that larger value of 𝛼 achieves 

higher reduction in number of active vertices towards the goal 

of reducing computation, while a smaller value of 𝛼 achieves 

better precision. The setting with the best tradeoff between 

performance and precision appears with 𝛼 = 10−6  for the 

inputs tested. We use this setting for the full system 

performance on PageRank.  

 E. Overall Performance Evaluation 

     Due to the early termination on GraphIte-ET, with 

progressing iterations the number of active vertices 

decreases. As a result, inactive vertices also stop generating 

the inter-PE traffic. Therefore, we study the total volume of 

inter-PE traffic for GraphIte and GraphIte-ET. Considering 

the total inter-PE traffic, GraphIte-ET reduces 48% to 66% 

traffic volume compared to GraphIte.  

      In Figs. 6 and 7, we compare the speed up and energy 

reduction for community detection and PageRank, 

respectively, on GraphIte and GraphIte-ET with respect to the 

Spara (baseline). In these figures, we show the range of speed 

up and the normalized energy for different datasets 

considered in this work. The full-system execution time 

includes the computation time, inter-PE communication time 

and the data transfer time from the host. Since the 

preprocessing step including vertex reordering using Spara 

followed by sparsification, is carried out in the CPU host, we 

exclude this preprocessing time – so that the focus of our 

performance analysis stays on the executions that happen on  

the ReRAM architecture. Figs. 6 (a) and 7 (a) show the speed   

up of GraphIte and GraphIte-ET with respect to Spara for 

community detection and PageRank, respectively. We can 

see from Fig. 6 (a) that GraphIte achieves 1.17x to 3.01x 

Table 2: Modularity comparison between GraphIte and GraphIte-ET. 

Input graph (label) GraphIte GraphIte-
ET 

musae_Github (GH) 0.3593 0.3757 

gemsec-Deezer (DZ)  0.8418 0.8417 

road_luxembourg-osm (RM)  0.7969 0.7957 

com-Orkut (OR) 0.6602 0.6835 

socfb-A-anon (FB) 0.5246 0.5084 

soc-LiveJournal1 (LJ) 0.7552 0.7566 

 

Fig. 5: PageRank: (a) Effect of early termination on the number of active 

vertices and (b) the loss in precision within each iteration of the algorithm 

for three threshold values of 𝛼 with GH after sparsified inputs.  
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performance improvement with respect to Spara depending 

on the datasets considered in this work. We observed that the 

performance gains realized by GraphIte is higher for the 

larger datasets (where it matters more) – e.g., GraphIte 

achieves peak speedups (3.01x) for the largest input tested 

(LJ: 4.8M vertices and 68.9M edges). Moreover, there are 

more savings in total execution time achieved by GraphIte on 

social media datasets (1.33x to 3.01x savings) than with road 

network i.e., RM, CA and PA (1.17x to 1.2x) compared to 

Spara. The speed up is least for road network as it has a 

uniform degree distribution. Hence, the variation of sparsity 

among active blocks for road network is comparatively less 

than that of the social media datasets. Next, after 

incorporating early termination-based approximation on top 

of GraphIte, we can see from Fig. 6 (a) that GraphIte-ET 

achieves 1.3x to 5.4x speed up compared to Spara reordering 

(i.e., with no sparsification or early termination). Moreover, 

GraphIte-ET achieves 13% to 47.9% reduction in execution 

time compared to GraphIte depending on the considered 

datasets. It is clear from Fig. 6 (a) that the improvement is 

input dependent.  

    Fig. 6 (b) and Fig. 7 (b) illustrate the normalized full-

system energy consumption using community detection and 

PageRank for GraphIte and GraphIte-ET compared to Spara. 

Figs. 6 (b) and 7 (b) show that GraphIte consumes 33.2% to 

76.2% less energy compared to Spara. We can also see that, 

incorporating early termination-based approximation, 

GraphIte-ET achieves 18.5% to 49.3% compared to GraphIte 

depending on different datasets considered in this work.  

Moreover, GraphIte-ET outperforms Spara by consuming 

45% to 87.9% less energy. As mentioned above, GraphIte and 

GraphIte-ET are more efficient in reducing the number of 

active blocks and on-chip data movement for social media 

datasets compared to road network, the reduction of energy 

consumption is least for RM.  

    It should also be noted that due to high energy efficiency 

of ReRAM-based PEs, the peak temperature of the 3D 

manycore system remains below 85οC for all the 

configurations tested. Hence, temperature hotspots are not of 

any concern in GraphIte and GraphIte-ET architectures.  

V. CONCLUSION 

    In this paper, we demonstrated the benefits of using 

approximate computing for accelerating the computation as 

well as reducing the storage requirements of graph 

computations on ReRAM-based architectures. Our GraphIte 

implementations achieve 61% to 89% reduction of active 

blocks for negligible precision loss. This reduction also 

results in reducing the overall computation and inter-PE 

communication on GraphIte. Hence, it achieves 19.8% to 

68.9% reduction in execution time and 33.2% to 76.2% less 

energy consumption compared to the state-of-the-art 

ReRAM-based architecture Spara (baseline). GraphIte-ET 

also reduces 48% to 66% of total traffic compared to 

GraphIte. For full system performance evaluation, GraphIte-

ET is 13% to 47.9% faster and 18.5% to 49.3% energy 

efficient compared to GraphIte.  
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Fig. 11: Normalized execution time of GraphIte and 

GraphIte-ET compared to Spara for PageRank. 

 
Fig. 6: (a) Speed up, (b) normalized energy of GraphIte, GraphIte-ET 
for community detection w.r.t Spara. 

 
Fig. 7: (a) Speed up and (b) normalized energy of GraphIte and GraphIte-
ET for PageRank with respect to Spara. 
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