2023 Design, Automation & Test in Europe Conference (DATE 2023)

Compact Test Pattern Generation For Multiple Faults
In Deep Neural Networks

Dina A. Moussa*, Michael Hefenbrock, Mehdi Tahoori*
* Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany T RevoAI GmbH, Karlsruhe, Germany
Corresponding Author: Dina A. Moussa (dina.moussa@Xkit.edu)

Abstract—Deep neural networks (DNNs) have achieved record-
breaking performance in various applications. To reduce the
energy footprint and increase performance, DNNs are often imple-
mented on specific hardware accelerators, such as Tensor Process-
ing Units (TPU) or emerging Memristive technologies. Unfortu-
nately, the presence of various hardware faults can threaten these
accelerators’ performance and degrade the inference accuracy.
This necessitates the development of efficient testing methodologies
to unveil hardware faults in DNN accelerators. In this work, we
propose a test pattern generation approach to detect fault patterns
in DNNs for a common type of hardware fault, namely, faulty
weight value representations on the bit level. Contrary to most
related works which reveal faults via output deviations, our test
patterns are constructed to reveal faults via misclassification which
is more realistic for black-box testing.

I. INTRODUCTION

Deep neural networks (DNNs) have succeeded remarkably in
many artificial intelligence applications, such as visual recog-
nition, autonomous vehicles, and many more [1]. Since DNNs
requires a lot of computational resources, different accelerators
such as TPUs [2] or Memristor Crossbar arrays [3] have been
developed. However, DNNs implemented on these accelerators
are threatened by the existence of faults. Such faults can affect
their performance, degrade their inference accuracy and reduce
their reliability [4]. Therefore, generating efficient test patterns,
to detect these faults, is necessary [S]. This work proposes a
test pattern approach that can detect fault patterns (instance of
multiple faults) in synaptic weight value representations at a
bit level.

II. RELATED WORKS

Most of the related work revealed the presence of faults
via output variation [6]-[8], which is impractical for black-
box testing, i.e., when there is no access to the model internal
parameters, particularly when a trained DNN is considered as
an Intellectual Property (IP). Moreover, there is an issue with
the instability of measuring the deviation in the presence of
normal (non-faulty) runtime variations that can occur during
inference operation of DNN accelerators. Also, faults might
not be noteworthy if they do not lead to misclassifications, and
can safely be ignored.

III. METHODOLOGY

A. Fault Modeling

For this work, we consider bit-level fault injection, i.e.,
altering the bit-level representation of a randomly chosen subset
of network parameters. We denote the percentage of altered
weights by p,,, and the percentage of their altered bits by py.

Hence, a combination of (p,,, py) determines a specific instance
of our fault model. Since in each fault instance multiple weights
and multiple bit positions are altered, this can be viewed as a
multiple fault model (as opposed to single fault model).

B. Test Pattern Generation

An effective test pattern should reveal faults by producing
different labels in the presence of a fault compared to a fault-
free model. To encourage this for a test pattern x in a fault-free
network Net versus a network Net; with a fault f, we adopt
the following objective function

o(x, f):= || Softmax (Net(x)) — Softmax (Netf(x)) ||; .

For any practical application, we would want a test pattern to
not only detect the specific fault f for which it was generated,
but also similar variations of the same fault or fault type. For
this purpose, we create a fault list F(,, .y = {fn | n =
1,---, N} for a given combination of (p,,, py). The individual
fault f,, thereby denote a specific, randomly generated fault
pattern for a faulty neural network instance Nety, .

Ideally, we would want to generate a set of test patterns that
not only detect a single fault, but cover as much of the fault
list as possible to encourage a high-overall detection rate. To
achieve this, we propose to find test patterns x* as

Xx* = argmax min o(x, f). 1)
:%GX feF (f) (

Hence, x maximizes the lower bound on the objective o(x, f)
for any f in the fault list. Through this, x should lead to a
misclassification for many f € F and thus display a high
detection rate. We repeatedly solve (1) until we obtain a
set of test pattern that detect all faults in the fault list (see
Algorithm 1).

IV. EXPERIMENTS

The proposed procedure is applied to networks trained on
two commonly used benchmark dataset for several configu-
rations of p,, (percentages of weights with bit-flips) and p
(percentages of flipped bits per weight).

A. Datasets and Experimental Setup

The experimental results were conducted on MNIST and
CIFAR-10 with floating fixed point 32 weights implemented
in pytorch [9]. For MNIST, we use MLP with three fully
connected layers of size 20 and LeNet-5 with seven layers, three
convolutional layers, and two subsampling layers, followed by
two fully connected layers. For CIFAR-10, we use a custom 7-
layer neural network ConvNet-7 with four convolutional layers
and three fully connected layers.

978-3-9819263-7-8/DATE23/© 2023 EDAA

TABLE I: The overall Experimental results on different models
list is 1000.

and datasets. The number of fault patterns in the non-targeted

Experimental setup Generated Compaction | Fault coverage (%) Number | Execution
Fault test patterns ratio (~) Targeted | Unseen of time
Model and Dataset | pw (%) | pb (%) patterns faults faults Iterations (~Sec)
MLP 5 100 50 10 5.0x 100 98.6 31 80
(MNIST) 10 70 100 9 11.1x 100 98.7 14 88
10 50 150 13 11.5x 100 98.2 18 203
LeNet-5 5 100 50 4 12.5x 100 97.8 6 94
(MNIST) 10 70 150 24 6.2x 100 98.6 127 3411
10 50 200 31 6.4x 100 98.7 127 8374
ConvNet7 5 100 50 2 25.0x 100 99.9 6 327
(CIFAR-10) 10 70 100 10 10.0x 100 99.8 10 1213
10 50 200 21 9.5x 100 99.5 24 5521

Algorithm 1 The test pattern generation algorithm for a given
network Net. The set of found test patterns is stored in X'.

1: # Set design parameters and generate fault list

2: Choose p, pp, N

3:]:<_]:(pw,pb) = {fn ‘ n=1,-- ,N}

4: # Define covered/detected fault set for test pattern x

50 Fe(x) := {f € F|argmaxNet(x); # argmax Net(x); }
6: X+ 0; k<0 ' '
7: while F # () do
8: k< k+1
9

X}, +— argmax min o(x, f)
xeX er

F + F\ Fe(x3)
X — XU{x;}
end while

100
pb="50%
pb=70%
pb=100%

80

60

40

Test set accuracy (%)

20

0 T T T

S W o w o w 0
— — (o] o m m <
Percentage of injected weights (p,,%)

T T
o o
< N

Fig. 1: Accuracy degradation of the ConvNet-7 trained on
CIFAR-10 after bit level fault injections.

B. Experimental Results and Discussion

We injected the three prescribed models above with different
pw an p, with 100 different fault patterns and plotted the
resulting mean and standard deviation of the accuracy. The
results are displayed in Fig. 1. As can be seen, flipping 50% of
the bits in only 5% of the weights can already lead to significant
drops in accuracy in the ConvNet-7 model.

We generated different sets of test patterns for each network
as explained in Section III. We report results for all networks
for various (p.,, pp) combinations, along with different sizes of

the fault list, i.e., {50, 100, 150,200}. The result can be found
in Table I. Furthermore, the number of iterations needed for the
test pattern generation algorithm to cover the faults of the fault
list was also reported in Table I. Finally, we also tested our
generated test patterns against 1000 faults that have not been
part of the fault list. The fault coverage of such faults should
be considered the most important evaluation metric as it is an
estimate of the expected fault coverage in the field. Here, our
test patterns also achieved up to 99.9% fault coverage.

V. CONCLUSION

This work proposes a compacted test pattern approach that
detects multiple weight faults extracted at bit level in the
DNN:s. In our approach, we maximize the minimum difference
between the fault-free and the faulty models that lead to label
misclassification. Moreover, an iterative approach is proposed
in which we try to detect as many fault patterns as possible
with a single test pattern, which leads to compact test pattern
set generation. The experimental results show the generated
test patterns covered 100% of the targeted fault patterns and
achieved a high compaction ratio over different datasets and
model architectures. Furthermore, our generated test patterns
achieved high fault coverage for untargeted faults, reaching
99.9%.

REFERENCES
(1]
[2]

N. Sharma et al., “Machine learning and deep learning applications-a
vision,” Global Transitions Proceedings, vol. 2, no. 1, pp. 24-28, 2021.
A. M. Kist, “Deep learning on edge tpus,” arXiv preprint
arXiv:2108.13732, 2021.

X. Liu et al., “Memristor crossbar architectures for implementing deep
neural networks,” Complex & Intelligent Systems, vol. 8, no. 2, pp. 787—
802, 2022.

Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113969, 2020.

C. Torres-Huitzil et al., “Fault and error tolerance in neural networks: A
review,” IEEE Access, vol. 5, pp. 17322-17 341, 2017.

Q. Liu er al., “Monitoring the health of emerging neural network acceler-
ators with cost-effective concurrent test,” in 2020 57th ACM/IEEE DAC,
2020, pp. 1-6.

W. Li et al., “Rramedy: Protecting reram-based neural network from
permanent and soft faults during its lifetime,” IEEE 37th ICCD, pp. 91-99,
2019.

H.-Y. Tseng et al., “Machine learning-based test pattern generation for
neuromorphic chips,” in IEEE/ACM ICCAD, 2021, pp. 1-7.

A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
H. Wallach et al., Eds., vol. 32. Curran Associates, Inc., 2019.

[3]

[4]
[5]
[6]

[7]

[8]
[9]

	Select a link below
	Return to Previous View
	Return to Main Menu

