
Value-based Reinforcement Learning using Efficient
Hyperdimensional Computing

Yang Ni1, Danny Abraham1, Mariam Issa1, Yeseong Kim2, Pietro Mercati3,and Mohsen Imani1∗

1University of California Irvine, 2Daegu Gyeongbuk Institute of Science and Technology, 3Intel Labs

∗Email: m.imani@uci.edu

Abstract—Reinforcement Learning (RL) has opened up new
opportunities to solve a wide range of complex decision-making
tasks. However, modern RL algorithms, e.g., Deep Q-Learning,
are based on deep neural networks, resulting in high compu-
tational costs. In this paper, we propose QHD, an off-policy
value-based Hyperdimensional RL, that mimics brain properties
toward robust and real-time learning. QHD relies on a lightweight
brain-inspired model to learn an optimal policy in an unknown
environment. We first develop a novel mathematical foundation
and encoding module that maps state-action space into high-
dimensional space. We accordingly develop a hyperdimensional
regression model to approximate the Q-value function. QHD-
powered agent makes decisions by comparing Q-values of each
possible action. QHD provides 34.6× speedup and significantly
better quality of learning than deep RL algorithms.

I. INTRODUCTION

Reinforcement Learning (RL) has opened up new opportu-

nities to solve a wide range of complex decision-making tasks

that were previously out of reach for a machine. Compared to

supervised and unsupervised learning, RL does not have direct

access to labeled training data. Instead, it trains a self-learning

agent using the observations of states and feedback rewards

from the environment. The learning process of RL is similar

to how humans learn to perform new tasks.

RL methods are categorized into policy-based and value-

based RL. The policy-based method directly parameterizes the

policy. Value-based RL supports off-policy training, i.e., all

past interactions can be used toward learning. Therefore, it

is much more sample-efficient compared to the policy-based

method. Q-learning is one of the most popular value-based

reinforcement learning methods. Deep Q-Networks (DQN)

exploits DNN to learn an approximation of Q-value for every

pair of action and state. DQN learns complex tasks without

modeling the environment, but its power comes at a price, i.e.,

the huge computation cost and long learning time. This makes

it only suitable for powerful computers in the cloud rather than

local devices with fewer computing capabilities.

Therefore, we redesign the RL algorithm with the brain-

inspired HyperDimensional Computing (HDC) [1]. Compared

to DNN, HDC is highly efficient and robust against noise.

HDC is motivated by the fact that brains express information

using a vast number of neurons. For inputs in the lower-

dimensional space, HDC usually encodes them to vectors of

several thousand dimensions, i.e., hypervectors. The learning

process is based on highly-parallelizable element-wise opera-

tions of hypervectors. HDC has been applied as a lightweight

machine learning solution to multiple applications, where it

is capable of achieving comparable accuracy to DNN with

significantly higher efficiency.

Current HDC solutions mainly focus on traditional clas-

sification and clustering. In contrast, QHD is a value-based

Hyperdimensional RL algorithm with off-policy training. The

main contributions of the paper are listed as follows:

• To the best of our knowledge, QHD is the first off-

policy value-based hyperdimensional reinforcement learning

algorithm targeting discrete action space. QHD relies on

lightweight HDC models to learn an optimal policy in

an unknown environment. Our neural-inspired QHD uses

operations that are extremely hardware-friendly.

• We evaluate the effect of the different RL training batch

sizes and local memory capacity on the QHD quality of

learning. QHD is able to utilize even a small amount of

available training data. Our QHD is also capable of online

learning with a tiny local memory capacity. QHD provides

real-time learning by further decreasing the memory capac-

ity and batch size.

II. RELATED WORK

Reinforcement Learning: In recent years, RL algorithms

have obtained dramatically more attention because of the ad-

vancement in Deep RL. Algorithms like DQN greatly expand

the application of Deep RL to fields like computer games [2],

transportation optimization [3], and health care [4]. These

works utilize DNN to handle complex agent-environment

interactions. However, the frequent DNN model update during

the RL training process is computationally intensive with

insufficient efficiency.

Hyperdimensional Computing: Prior HDC works mainly

provide solutions to classification and cognitive tasks, such as

knowledge graph processing [5], genomic sequencing [6], and

speech recognition [7]. In these highlighted machine learning

applications, HDC has outperformed state-of-the-art machine

learning solutions, e.g., support vector machines and neural

networks. Recent orthogonal work proposes an HDC-based

policy-based RL specifically for continuous control tasks [8].

However, this work does not provide support for RL tasks with

discrete action space. In addition, policy-based RL methods

are less sample-efficient due to the lack of off-policy training.

III. QHD: HYPERDIMENSIONAL Q-LEARNING

Fig. 1 shows an overview of QHD supporting hyperdi-

mensional reinforcement learning. In Fig. 1(a), the Cartpole

example illustrates two components (Agent and Environment)

and three variables (Action, State, and Reward) in common RL

tasks. The cartpole is the agent, and the space around it is the

environment. For each step, the cart chooses an action, then

the state of the cart and pole will be updated accordingly. The

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Agent

θ v2

v1

Environment

x0

Action Reward

Actions: 

(Left, Right)

States:

(x,v1,v2,θ)

(a) (b)

State 𝑆𝑡
Actions 𝐴𝑡

HDC 

Encoder

HDC-based 

Regression

Q-values for 

Different Actions

Action with 

the Highest 

Q-value

HD-based Q-learning (QHD)

Memory

State 

Hypervector

Fig. 1. Overview of QHD reinforcement learning.

interaction between the agent and environment forms a loop in

which the action taken based on the current state leads to the

next state and reward. On the other hand, we have a trajectory

composed of different states, rewards, and actions from each

time step until the pole loses balance. The trajectory of each

episode is saved in local memory for later learning.

Fig. 1(b) shows QHD algorithm guiding the agent in the

decision-making process. In each time step, we map the state

vector to a holographic hypervector using the HDC encoder.

The hyperdimensional regression algorithm then predicts the

Q-value for each possible action based on the input state

hypervector. The final step of QHD chooses an action with

the highest Q-value.

In QHD algorithm, the learning process starts by mapping

the current state vector from the original to high-dimensional

space, i.e., hypervector encoding. The input to our hyperdi-

mensional regression model is the action for evaluation and

the encoded state hypervector. The output is the action-state

value or Q-value. Our regression consists of multiple model

hypervectors; for the evaluation of each action, we only select

one of the model hypervectors that corresponds to it. Even

though RL is not a typical supervised learning task, the

regression part of it trains under supervision. The true value is

given by the ideal Q-function, and we use hyperdimensional

regression to approximately calculate the Q-value. For model

updates, we either add or subtract a portion of the state

hypervector to the model, weighted by the regression error.

The lightweight component-wise operations in our regression

design contribute to the fast learning process for QHD.

We use a greedy policy that prefers actions with higher Q-

values. However, it is crucial to balance the exploration of

the environment and the exploitation of the learned model.

Therefore, we combine a random exploration strategy with

the greedy policy, i.e., the ϵ-decay policy. The probability of

selecting random actions will gradually drop after the agent

explores and learns for several episodes. Once an action is

chosen by QHD, the agent interacts with the environment. We

then obtain the new state for the agent and the feedback reward

from the environment. This chain of actions and feedbacks

form a trajectory or an episode until some termination condi-

tions are met. To train an RL algorithm, these episodes or past

experiences are usually saved to local memory as training sam-

ples. The objective of QHD is to achieve optimal policy and

maximize the accumulated rewards within one episode. Since

most RL tasks can be viewed as a Markov Decision Process

(MDP), the Bellman equation gives a recursive expression for

the Q-value at step t, the expected sum of current rewards,

and the Q-value for step t + 1. After obtaining the predicted

Q-value and true Q-value from the regression model and the

bellman equation, we perform regression model updates. We

-600
-500
-400
-300
-200
-100

0

Q
H

D

Q
H

D

Q
H

D

Q
H

D

Q
H

D
D

Q
N

Q
H

D
D

Q
N

Q
H

D
D

Q
N

Q
H

D
D

Q
N

Q
H

D
D

Q
N

4 8 16 32 64 128 256 512 1k

-400

-300

-200

-100

0

Q
H

D

D
Q

N

0

500

1000

1500

2000

2500

3000

Q
H

D

D
Q

N

(a) Learn with limited memory size (b) QHD Real-time learning

R
e

w
a
rd

s

R
e

w
a
rd

s

Mem 

Size

T
o

ta
l 
R

u
n

ti
m

e
 (

s
)

Goal: -120

Fig. 2. QHD learning efficient with tiny local memory.

update the model corresponding to the action taken, using

the regression error qt true − qt pred and the encoded state

hypervector: M⃗At+1
= M⃗At

+ β(qt true − qt pred)× S⃗t.

Usually, the local memory for RL experience replay is

designed with infinite capacity, i.e., the agent has access to all

previous experiences during the training. However, in practice,

the memory capacity is limited due to energy and space

budgets, especially in the low-power edge environment. Thus,

in Fig. 2(a), we evaluate the performance of our QHD with

limited memory size and compare it to the DQN results. The

figure shows that DQN performs poorly when the memory size

is 64 and 128, with an average reward of -500. However, our

QHD can reach that goal even with a memory size as large as

its batch size. These results show that QHD can perform RL

tasks with online learning, i.e., a tiny local memory.

We also take one step further to explore the QHD capability

of real-time learning. We set both the batch and memory sizes

to 1, which means the agent will learn based on only the

current sample, without any access to previous experiences.

We use DQN with 256 memory size and 64 batch size as

an online-learning comparison since DQN does not learn

with a real-time setting. As shown in Fig. 2(b), even with

larger memory size and batch size, DQN achieves significantly

lower rewards (-345.4). For a 500-episode training, our QHD

achieves average rewards of -113.7 using 83 seconds, which

leads to a 34.6× speedup in total runtime.

ACKNOWLEDGEMENTS

This work was supported in part by National Science Foun-

dation #2127780, Semiconductor Research Corporation (SRC)

AI Hardware and Hardware Security, Office of Naval Re-

search, grants #N00014-21-1-2225 and #N00014-22-1-2067,

the Air Force Office of Scientific Research under award

#FA9550-22-1-0253, and a generous gift from Cisco.

REFERENCES

[1] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive
computation, vol. 1, no. 2, pp. 139–159, 2009.

[2] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[3] J. Ke et al., “Optimizing online matching for ride-sourcing services with multi-
agent deep reinforcement learning,” arXiv preprint arXiv:1902.06228, 2019.

[4] H.-H. Tseng et al., “Deep reinforcement learning for automated radiation
adaptation in lung cancer,” Medical physics, vol. 44, no. 12, pp. 6690–6705,
2017.

[5] P. Poduval et al., “Graphd: Graph-based hyperdimensional memorization for
brain-like cognitive learning,” Frontiers in Neuroscience, p. 5, 2022.

[6] Z. Zou et al., “Biohd: an efficient genome sequence search platform using hy-
perdimensional memorization,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 656–669.

[7] A. Hernandez-Cane et al., “Onlinehd: Robust, efficient, and single-pass online
learning using hyperdimensional system,” in DATE. IEEE, 2021, pp. 56–61.

[8] Y. Ni et al., “Hdpg: hyperdimensional policy-based reinforcement learning for
continuous control,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, 2022, pp. 1141–1146.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


