
The First Concept and Real-world Deployment of a
GPU-based Thermal Covert Channel:

Attack and Countermeasures
Jeferson González-Gómez∗†, Kevin Cordero-Zuñiga∗, Lars Bauer†, Jörg Henkel†

∗ Instituto Tecnológico de Costa Rica (TEC)
† Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems (CES)

{jeferson.gonzalez,lars.bauer,henkel}@kit.edu, kevinscorzu@estudiantec.cr

Abstract—Thermal covert channel (TCC) attacks have been
studied as a threat to CPU-based systems over recent years. In
this paper, we propose a new type of TCC attack that for the first
time leverages the Graphics Processing Unit (GPU) of a system to
create a stealthy communication channel between two malicious
applications. We evaluate our new attack on two different real-
world platforms: a GPU-dedicated general computing platform
and a GPU-integrated embedded platform. Our results are the
first to show that a GPU-based thermal covert channel attack is
possible. From our experiments, we obtain a transmission rate of
up to 8.75bps with a very low error rate of less than 2% for a
12-bit packet size, which is comparable to CPU-based TCCs in the
state of the art. Moreover, we show how existing state-of-the-art
countermeasures for TCCs need to be extended to tackle the new
GPU-based attack at the cost of added overhead. To reduce this
overhead, we propose our own DVFS-based countermeasure which
mitigates the attack, while causing 2× less performance loss than
the state-of-the-art countermeasure on a set of compute-intensive
GPU benchmark applications.

Index Terms—security, thermal covert channel, GPU, attack,
DFT, DVFS, countermeasure

I. INTRODUCTION

In cyber-security, a covert channel attack is a means of
communication between two applications or processes which
are not allowed to communicate in a specific system [1].
Thermal covert channel (TCC) attacks leverage the temperature
of a compromised component to establish a stealthy channel
between these malicious applications.

As a security threat, TCCs have been studied in several
fields, ranging from multi/many-core [2]–[4] and cloud FPGA
environments [5] to embedded systems [6].

In a TCC, an attacker application (typically denoted as
transmitter or malware) has infiltrated a secure zone (e.g.,
a Trusted Execution Environment or TEE). From there, the
transmitter encodes sensitive binary data as temperature vari-
ations by performing intensive computing on its CPU when
transmitting a binary 1 or leaving the CPU in an idle state
when transmitting a 0. In a non-secure zone, a second malicious
application (typically denoted as receiver or spy) reads the
thermal sensors of its core, where the temperature variation
produced by the transmitter is noticeable. By doing so, the

This work is partially funded by the Deutscher Akademischer Austausch-
dienst (DAAD) and the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 146371743 - TRR 89 Invasive
Computing.

receiver can interpret temperature variations as 1s or 0s, hence
establishing a communication channel between the attackers.

In recent years, GPU computing has risen as an efficient
way to accelerate computation in several domains such as high
performance, cloud computing, and machine learning (ML)
applications due to its highly parallel nature. With the surge
of GPU-based solutions in these diverse domains, providing
security to the GPU has become more and more critical,
especially when it is used on sensitive data [7]. Given the
recent utilization of GPUs in trusted environments [8]–[11],
we propose to explore the possibility of creating a GPU-based
TCC attack, which has not been proposed so far and constitutes
a new attack vector for which no countermeasures have been
analyzed so far.

Although GPU and CPU-based attacks share a similar func-
tioning principle, several challenges in the attack implementa-
tion and countermeasure effects make the distinction relevant.

Challenges in the attack implementation: On one hand,
GPUs are comprised of hundreds or thousands of small cores,
with typically one thermal sensor for the whole device. This
means that raising the temperature to a noticeable degree
involves a highly parallel computational effort which has to
be high enough to heat the device, but also not too long so
that the device can cool down in a short time. This fact affects
the packet size, as temperature accumulations affect the error
rates of the channel as the number of consecutive transmitted
bits increases. This is not the case for CPU-based attacks, as
each physical core has its thermal sensor that is leveraged
individually. As consequence, CPU-based TCCs normally reach
transmission rates of up 45 bps with very high frequencies of
up to 500Hz for 64-bit packets on a single core [4], [12]. We
discuss more GPU-specific TCC challenges and solutions to
overcome them in Section III-B.

Challenges in the countermeasures: On the other hand, Dy-
namic Voltage and Frequency Scaling (DVFS) techniques [13],
which are considered the reference countermeasures to CPU
TCCs in the state of the art, work by reducing the frequency
of the CPU involved in the attack. However, due to the shared
nature of the GPU, reducing the GPU frequency without any
further consideration severely affects the execution of other
GPU-dependent applications on the system. The same can be
said of other GPU-based countermeasures (which we analyze

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

and expand further in Section IV). Since the GPU is typically
shared for the whole system, the performance loss on other
applications when applying a countermeasure is much greater
for GPU- than for CPU-based TCCs, as our evaluation shows.

In this paper, we investigate the construction of GPU-
based TCCs in terms of their effectiveness and response to
current countermeasures, as well as the considerations needed
to port these countermeasures to the GPU domain. The main
contributions of this paper are the following:
• We are the first to propose using the GPU to create a

thermal covert channel (TCC) for heterogeneous CPU-GPU
computing systems.

• We develop a real-world implementation of the new GPU-
based TCC that evades existing detection techniques in the
state of the art by exploiting a previously unconsidered
computing resource.

• We analyze and expand current CPU-based countermeasures
for TCCs to tackle the new GPU-based attack and measure
their performance impact on other applications.

• We propose a new thermal-aware DVFS countermeasure to
GPU-based TCCs that mitigates the attack while producing
less performance loss than the state-of-the-art solution on a
set of compute-intensive GPU benchmark applications.

II. RELATED WORK

A. Thermal Covert Channels and Countermeasures

The feasibility of TCCs in multi-core processors was first
shown by Masti et al. [2]. There, the authors achieved a data
transmission rate of 1.33 bps with a bit error rate (BER) of
11% on a CPU-based system. Since then, different works have
increased the channel efficiency with new encoding schemes
on the temperature signal, such as the Manchester [12] and
Return-to-Zero encoding (RZE) [3]. Modulation [3] has also
been introduced in TCCs as a way to improve the overall data
rate, by shifting the frequency at which the signal is transmitted
and hence avoiding low-frequency noise interference due to
regular CPU activity. These techniques have shown stable and
improved transmission rates of up to 20 bps with low BER and
packet error rate (PER) in multi/many-core processors.

More recently, an effort has been put into combating the
TCCs. One of the initial techniques to tackle thermal channels
consists in generating thermal noise by doing extra processing.
This approach was later improved with channel jamming with
frequency-specific noise [14] aimed at the detected TCC fre-
quency. Although the latter approach considerably increased the
error rate of the channels, rendering them unusable, unproduc-
tive processing was still needed to produce the thermal noise.
A more efficient solution was then proposed by leveraging
the DVFS mechanism, normally used by thermal- and power
management modules in many-core systems [4], [13], while
also introducing detection techniques based on temperature and
performance frequency spectrum analysis.

GPU-based TCCs have never been proposed before. TCC
countermeasures, as they appear in the state of the art, deal
with either analyzing the CPU behavior to detect the attack,
or interfering with the CPU temperature to block the attack.

None of the current countermeasures has considered the GPU
as a possible medium for a TCC. Consequently, state-of-the-
art countermeasures need to be further expanded to over-
come the corresponding threat. Moreover, the effect of the
extended GPU-based countermeasures on the performance of
other applications has not been analyzed before this work. We
extend the aforementioned state-of-the-art thermal noise [14]
and DVFS [13] countermeasures to tackle GPU-based attacks
and analyze their impact on other applications as part of our
contribution.

B. Trusted Environment and GPU-based Covert Channels

Providing security and isolation to the GPU when working
with sensitive data has become increasingly critical with the
rise of big data and ML applications [7]. The problem of
supporting a trusted execution environment (TEE) for the
GPU was first stated by Volos et al. [8]. There, the authors
showed the feasibility of GPU TEEs for commercial off-the-
shelf NVIDIA GPUs, which supported the secure copying of
data and kernel execution on the GPU. More recently, several
other approaches have tackled the inclusion of the GPU in TEEs
in diverse environments such as heterogeneous systems [11],
IoT devices [9], and the cloud [10].

Although TCCs on GPUs have not been studied before, other
types of covert channels that leverage the GPU as an attack
source have been proposed in recent years. The construction
of cross-component timing-based covert channels on heteroge-
neous CPU-GPU systems was first introduced by Naghibijouy-
bari et al. [15]. More recently, several works have proposed
exploiting GPU components, such as cache [16], translation
lookaside buffer (TLB) [17] and network-on-chip (NoC) micro-
architecture [18], to create contention-based covert communi-
cation channels.

In summary, the surge of recent work around GPU TEEs
and GPU-based attacks highlights the relevance of previously
unconsidered resources and their impact on the security of
modern computing systems.

III. GPU-BASED THERMAL COVERT CHANNEL ATTACKS

A. Threat Model and Assumptions

Similar to other works in the state-of-the-art TCCs, our
proposed GPU-based TCC assumes two attacker applications
with specific characteristics. The transmitter attacker resides
in a secure zone and has access to sensitive information that
cannot be communicated through conventional means. This
secure environment is commonly supported by commercial
technologies, such as ARM TrustZone [19] and Intel soft-
guard extension (SGX) [20]. As mentioned in Section II-B,
there is a current trend and a real need to include the GPU
within TEEs to provide GPU acceleration to heavy-processing
algorithms that deal with private information [8]–[11]. In this
zone, the transmitter has access to the GPU and requires no
extra privileges to execute code in it as part of its program,
i.e., the transmitter has been designed to utilize the proper API
functions to run parallel kernels in the GPU. Details about our
implementation of the attackers are discussed in Section III-B.

!

!

The receiver attacker, on the other hand, executes in a non-
secure zone where it can perform any type of unsupervised
I/O operation. The receiver can read the GPU thermal sensor
in user space without the need for any privilege escalation, as
commercial vendors already provide this feature either through
a tool (e.g., the NVIDIA System Management Interface [21])
or directly from the file system through already provided
drivers [22], which is often the case for embedded devices.

B. GPU-based Thermal Covert Channel Attack

1) High-level description of the attack: In our new GPU-
based TCC, the transmitter application encodes the binary data
by increasing or decreasing the temperature signal of the GPU.
By doing high parallel processing on the GPU for a certain
amount of time tup, the transmitter can raise the temperature,
hence encoding a bit value of 1. When the attacker needs to
transmit a bit value of 0, it sleeps the GPU for an amount
of time tdown, allowing the temperature to decrease due to
the cooling system (e.g., the fan). The receiver then reads
the thermal sensor on the GPU and proceeds to decode the
information.

2) Transmitter: The first step in the design of the transmitter
is the processing mechanism to encode the binary data as
temperature fluctuations.

Sending a bit value of 1 requires some sort of processing on
the GPU to raise its temperature. Since GPUs are comprised of
hundreds or thousands of small cores, raising the temperature
of the whole device requires a high enough parallel load, which
is not the case for CPU-based attacks as each physical core in
a CPU comes with its thermal sensor. To perform this high
parallel processing, we chose to implement a parallel multi-
threaded busy waiting kernel. In this kernel, each thread is
constantly querying the state of a timer, which controls the
period of a binary 1, hence heating the GPU. The number of
parallel threads for each computation is extracted empirically
offline for the target platform according to the number of com-
putations it requires to produce the minimum valid temperature
change at the desired channel transmission rate.

When encoding a bit value of 0 as temperature, we sleep the
application for an amount of time equal to half of the period of
the transmission data rate. Note that during the cooling phase,
other (background) applications might execute on the GPU.
This would add some noise to the channel, which is out of the
control of the attacker and it is a challenge for GPU-based
attacks. The interference that background GPU applications
could produce on the channel is an additional design factor
for the channel.

To overcome this challenge, we form small packets (e.g.,
from 8 to 16 bits) comprised of a header (used to identify the
beginning of a packet and its sender) and data bits encoded
through an error correction code (i.e., Hamming [23]) which
helps to improve the reception when in noisy environments.
This constitutes another difference over CPU-based TCCs,
where the packet size can be extended while keeping low error
rates. We experimentally demonstrate the need for a small
packet size in Section V-A. Moreover, to avoid the effect of
temperature accumulation which may affect the actual reception

of packets, we utilize the return-to-zero encoding (RZE) which
is commonly used in TCCs exactly for this particular reason [3].
For our experiments, we additionally employ on-off-keying
(OOK), as a modulation mechanism.

3) Receiver: The receiver application is modeled as a three-
stage process, as seen in Fig. 1. As discussed in Section III-B1,
the transmitted packet is encoded as the temperature variations
on the GPU thermal sensor. Then, as input, the receiver module
takes periodic samples from the thermal sensor of the GPU. As
a general consideration, the chosen sampling frequency needs
to be set to at least double the channel frequency, as per the
Nyquist sampling theorem.

Filter Deserializer Error Checker

Data Bits Error

Packet

Receiver

Fig. 1. Receiver model for the time-based attack.

The first stage in the design of the receiver module is a filter,
formally described in Eq. (1). This filter smoothens the discrete
temperature signal from the thermal sensor and removes the
variations due to the sensor’s precision δ, which may affect
the accuracy of reception. If the magnitude of the difference
between the current and the previous temperature sample is
greater than δ, the output of the filter is assigned to the current
sample. Otherwise, the output is assigned to the previous output
sample. In the case of modulated attacks, the output of this
filter is then used as an input to a second band-pass filter that
eliminates the non-relevant frequency components.

y(k) =

{
x(k), |x(k)− y(k − 1)| > δ

y(k − 1), |x(k)− y(k − 1)| ≤ δ
(1)

The second stage of the receiver module is the de-serializer,
depicted as pseudo-code in Alg. 1. This module continuously
performs a comparison between the current and the previous
measurement of the GPU temperature. When it detects an
increase bigger than δ, it appends a bit value of 1 to the packet
(line 8). If this difference is not detected within the transmission
period (i.e, the inverse of the transmission rate), a timeout signal
occurs on a parallel timer thread (not shown in Alg. 1). When
this happens (line 11), the receiver interprets the sent bit as a 0,
appends it to the packet (shown in line 12) and then restarts
the timer thread. This process is repeated until the packet is
successfully de-serialized. After de-serialization, the header of
a packet is checked. Packets composed with a wrong header
are discarded. Once a packet with a correct header has been
de-serialized, we decode the data bits by using the Hamming
ECC, which reports whether there were errors in the received
packed.

By using a header of at least two bits (one to indicate the
beginning of the packet and one to identify the sender), both
malicious applications can act as transmitter and receiver in an
acknowledge-based protocol. By doing so, the communication

!

!

becomes more robust, since the receiver can ask the transmitter
to re-send an erroneous packet.

Algorithm 1 Receiver de-serializer
Input: currentGPUTemp, timeout, packetBits
Output: packet, resetT imer

1: packet← 0
2: N ← 0
3: prevTemp← currentGPUTemp
4: while N ̸= packetBits do
5: nextTemp← currentGPUTemp
6: deltaTemp← nextTemp− prevTemp
7: if deltaTemp > δ then
8: packet← (packet << 1) | 1
9: N ← N + 1

10: resetT imer ← 1
11: else if timeout then
12: packet← (packet << 1)
13: N ← N + 1
14: resetT imer ← 1
15: end if
16: prevTemp← nextTemp
17: resetT imer ← 0
18: end while

IV. COUNTERMEASURES

A. GPU Thermal Noise

In the context of CPUs, the baseband thermal noise technique
comes from the execution of background workloads on the
CPUs that are suspected to be involved in the channel. When
moving to a GPU domain, as previously motivated in Section I,
this naı̈ve approach requires further considerations. The first
one is the computing required to raise the temperature for the
GPU. As discussed, GPUs consist of hundreds or thousands
of smaller cores, which need to be heated up. This means
that the otherwise innocuous noise translates into a high com-
puting workload on the GPU. This noise will be present as
constant background affecting the power of the system and
the performance of all other GPU-accelerated applications. The
latter would not be the case for CPUs, as only the cores
involved in the attack are affected. To improve efficiency,
approaches in the state of the art for CPU-based TCCs have
suggested frequency-specific (or narrow-band) noise [14], as
discussed on Section II. By applying background processing
at a specific rate, the computational power and performance
impact is reduced over constant noise. Similar to the baseband
noise, the GPU-based narrow-band noise requires a highly
parallel computational workload, but it can be executed at a
much higher rate. However, since the GPU is still a shared
resource for all GPU-accelerated applications, the contention
for it creates performance degradation on all other GPU appli-
cation.
B. DVFS

Dynamically changing the voltage and frequency levels of
the CPU has been shown before as a way to jam CPU-based
TCCs as an improvement over noise-based solutions. In the
reference state-of-the-art approach for CPU-based TCCs [13],
authors suggest a periodic DVFS policy that switches the
frequency of the compromised CPU from the highest level to a
lower level every channel period T . To establish the frequency

values, they employ a down up rate β, computed as the ratio of
the time the CPU stays at a low frequency (tdown) and the time
that it stays at a high frequency (tup). Although this state-of-
the-art approach seems to successfully block the attack with
a slight performance degradation on other applications that
run on the same core, when translating this effect to GPU,
the performance loss is much bigger (as it is discussed in
Section V-B).

Because of this, we here propose a temperature-aware DVFS
policy that seeks to block the attack, while reducing the
performance loss on other GPU applications. Our policy is
depicted as pseudo-code in Alg. 2. In summary, our policy
sets a target temperature defined as the base temperature under
normal utilization. Then, while a covert channel is active, we
read the current temperature value. If the temperature is higher
than the target temperature (adding the sensor’s precision δ),
we scale down the GPU frequency (line 3) by setting it to
the next available lower level (defined by ∆F). On the other
hand, if the temperature is lower than the averaged value, we
increase the frequency, again by ∆F (line 5). To ensure a
correct functionally, we delimit the frequencies to a valid range
(line 7). Finally, we wait for period ms to start the process
again. In our experiments, we employ an empiric acting period
of 5ms to repeat the process, since it yields to fast reaction to
a possible attack. Because of the frequency oscillations caused
by constantly increasing and decreasing the frequency, the GPU
temperature also oscillates, which affects the expected behavior
of the attacker and hence mitigates the attack.

Algorithm 2 Proposed temperature-based DVFS Policy
Input: targetTemp, isActive, currentTemp, MaxFreq, MinFreq,
δ, ∆F
Output: currFreq

1: while isActive do
2: if currentTemp > targetTemp+ δ then
3: currFreq ← currFreq −∆F
4: else
5: currFreq ← currFreq +∆F
6: end if
7: currFreq ← clip(currFreq,MinFreq,MaxFreq)
8: sleep(period)
9: end while

V. EVALUATION

To evaluate the new GPU-based TCC, we perform a series
of experiments on two real-world platforms: a GPU-dedicated
general-computing and a GPU-integrated embedded platform.
The characteristics of these platforms are shown in Table I. Us-
ing these platforms, we proceed to evaluate our new attack, as
well as the expanded countermeasures introduced in Section IV.

A. Effectiveness of the New GPU-based Attack

To verify the feasibility and effectiveness of our new GPU-
based attack, we launched attacks with different packet sizes
and encoding mechanisms, for both platforms described in
Table I. In this setup, we did not limit the GPU to any
application. This means that the underlying OS and applications
use it at any time if needed. In fact, hardware-accelerated GPU
scheduling is enabled for graphical interface display in the OS.

!

!

TABLE I
CHARACTERISTICS OF THE EVALUATION PLATFORMS.

Characteristic Platform
General computing

(PC)
NVIDIA Jetson
TX2

GPU NVIDIA GeForce
RTX2070 NVIDIA Pascal

GPU architecture Turing Pascal
GPU cores 2304 256
Max GPU frequency 1620 MHz 1302 MHz
Fan speed 100 % 100 %
Thermal sensor
resolution (δ) 1 °C 0.5 °C

Sampling frequency 500 Hz 500 Hz
Operating System Windows 11 Ubuntu 16.04

TABLE II
DESCRIPTION OF THE GPU-BASED ATTACK SETTINGS ON THE

EFFECTIVENESS EXPERIMENT

Platform Sent bits Encoding Transmission rates
(bps)

PC 24,064 RZE, RZE + OOK 0.68, 1.38
Jetson TX2 4.375, 8.75

In this experiment, we run attacks with different encoding and
packet sizes, as summarized in Table II. We used an even
split of RZE and OOK encoding. With our new attack we
achieved maximum transmission rates of 1.38 and 8.75 bps
for the general computing and embedded platform respectively.
As seen in Table III, this error rate comes with very low
BER and PER for small packets (e.g., less than 2% for our
recommended packet size of 12 bits). Note that as previously
discussed, increasing the packet size (more than 16 bits in our
case), decreases the quality of the channel due to temperature
accumulations and background noise.

As a comparison, the first implementation of a CPU-based
thermal covert channel [2] achieved a lower transmission rate
of 1.33 bps, with a much higher BER of 11%. This is a
fair comparison, as our GPU-based attack is also the first
implementation of a TCC of its kind.
B. Evaluation of Countermeasures

As a second evaluation, we perform an experiment where we
submit our new GPU-based attack to the extended countermea-
sures discussed in Section IV. First, we evaluate the proposed
extended countermeasures themselves in terms of their capacity
to block the attack at the maximum transmission frequency. The
evaluated countermeasures are baseband (BB) noise, narrow-
band (NB) noise [14], the DVFS approach from [13] using β =
1 (low β, 50% duty cycle), β = 9 (suggested for most of
their experiments), β = 15.67 (high β), and our thermal-aware
DVFS technique (TAVFS). For the BB noise, we employed
the Gaussian kernel from the Rodinia benchmark [24] as the
generator application. For NB noise, we implemented a parallel
Single-Precision A·X Plus Y (SAXPY) operation as the noise
application due to its highly parallel nature and the fact that it
can be toggled fast enough, as discussed in Section IV. As the
minimum frequency, we employed a value of 300MHz. The
maximum frequency is the same value as shown in Table I.
The error rate results for running the attack alongside the

TABLE III
BER AND PER FOR DIFFERENT PACKET SIZES FOR THE GPU-BASED

ATTACK ON THE EVALUATION PLATFORMS

Packet size (bits) BER (%) PER (%)
PC Jetson TX2 PC Jetson TX2

8 0.09 0.25 0.34 0.34
12 0.14 0.29 1.00 1.50
16 0.30 1.15 1.33 4.00
24 1.28 1.73 6.00 9.00
32 4.25 4.82 9.21 14.48

countermeasures on the both platforms are depicted in Fig. 2.
As it can be seen from the figure, the channel gets severely
degraded with the majority of the extended DVFS and noised-
based techniques, as the PER rises as high as 98% for the high
β scenario, and around 78% for our proposed countermeasure.

Although our proposed solution produces less PER and
BER on the attacker compared to the extended state-of-the-art
approaches, in both platforms all meaningful communication is
nullified. Moreover, as we discuss further in this section, our
temperature-aware DVFS approach trades off the error rates
in favor of a reduced performance loss on other applications.
Note that on the Jetson TX2 platform, for the low β scenario
(β = 1), both BER and PER are lower that any other solution,
resulting in about 50% of the packets being unaffected by the
countermeasure.

[14] [14][13] [13]
(a) (b)

Fig. 2. Average BER and PER for the GPU-based attack under the extended
countermeasures on the PC platform (a) and the Jetson TX2 board (b).

(a) (b)

Fig. 3. Performance loss on benchmark applications due to DVFS counter-
measures (our solution and the β-based from [13]) on the PC platform (a) and
the Jetson TX2 board (b).

Finally, to evaluate the overhead of our new thermal-aware
DVFS policy, we compare our solution against the reference
DVFS countermeasure from the state of the art [13], as it
has proven to be more efficient than the previous noise-based
countermeasures. We evaluate our proposed DVFS technique

!

!

against the state-of-the-art DVFS approach for the β values
mentioned above. To keep consistency with their work, we use
the same metric (i.e., performance loss). To this end, we used
four applications from the Rodinia benchmark as application
set: streamcluster, particlefilter, guassian, and myocyte.

In the experiment, we measure the average execution time
of the application set without any DVFS, and then we measure
again applying each one of the evaluated approaches individu-
ally to compute the performance loss due to the countermea-
sure. We assume the attacker is present at all times (τ = 0
in [13]). The results for the performance loss evaluation are
depicted in Fig. 3. Here, the overall average performance loss
on the benchmark applications on the PC platform is less
than 10% for our solution. In this platform, our DVFS policy
outperforms the state-of-the-art approach by more than 3× for
the high β scenario and more than 2× for the lowest β one.

An interesting outcome of this experiment is the performance
loss on the embedded Jetson TX2 platform. Firstly, the perfor-
mance loss from all the countermeasures increases drastically
when compared to the PC platform, reaching almost 300% for
the high β scenario and around 70% for the lowest β. Secondly,
the lowest β scenario produces less performance loss than our
solution is this platform. However, when analyzing the bit error
rates depicted in Fig. 2 (b), the same countermeasure performs
poorly compared to our proposed solution for the same platform
(i.e., it produces much lower error rates on the attack). This
means that our thermal-aware DVFS policy outperforms the
state-of-the-art solution in this platform too when factoring
both the error rates and the performance loss. Finally, since
most of the attacks and countermeasures on TCCs found in
state of the art have tackled mostly high-end multi-/many-core
systems, we believe more attention should be put into disclosing
new TCC embedded attacks, and (more importantly) proposing
new countermeasures tailored for embedded devices. We see
our new GPU-based attack and countermeasure as a starting
point in this direction.

VI. CONCLUSION

In this paper, we have presented the first approach for a
GPU-based thermal covert channel (TCC) attack. We analyzed
and evaluated our attack on two different real-world computing
platforms to show their general applicability. Our results show
for the first time that a GPU-based TCC is feasible with high
enough transmission rates and low enough bit and packet error
rates that are comparable to existing CPU-based TCCs. More-
over, we have analyzed and extended existing countermeasures
for CPU-based TCCs for our new GPU-based TCC attack.
Consequently, we demonstrated how our implementation of
the extended countermeasures successfully blocks the attack
at the expense of added overhead in the system. Finally, we
have proposed a new temperature-aware DVFS countermeasure
that mitigates the attack while causing 2× less performance
loss than the state-of-the-art DVFS countermeasure on a set of
benchmark applications.

REFERENCES

[1] J. Millen, “20 years of covert channel modeling and analysis,” in
Symposium on Security and Privacy, May 1999, pp. 113–114.

[2] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun,
“Thermal covert channels on multi-core platforms,” in USENIX Confer-
ence on Security Symposium (SEC), 2015, p. 865–880.

[3] Z. Long, X. Wang, Y. Jiang, G. Cui, L. Zhang, and T. Mak, “Improving
the efficiency of thermal covert channels in multi-/many-core systems,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), April 2018, pp. 1459–1464.

[4] H. Huang, X. Wang, Y. Jiang, A. K. Singh, M. Yang, and L. Huang,
“Detection of and countermeasure against thermal covert channel in
many-core systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 2, pp. 252–265, 2022.

[5] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3apsule: Cross-FPGA
covert-channel attacks through power supply unit leakage,” in Symposium
on Security and Privacy (SP), 2020, pp. 1728–1741.

[6] S. Chen, W. Xiong, Y. Xu, B. Li, and J. Szefer, “Thermal covert channels
leveraging package-on-package DRAM,” in IEEE Int. Conf. on Trust,
Security and Privacy In Computing and Com./IEEE Int. Conf. on Big
Data Science and Eng. (TrustCom/BigDataSE), 2019, pp. 319–326.

[7] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous
isolated execution for commodity GPUs,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019, p. 455–468.

[8] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on GPUs,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2018, pp. 681–696.

[9] R. Liu, L. Garcia, Z. Liu, B. Ou, and M. Srivastava, “SecDeep: Secure and
performant on-device deep learning inference framework for mobile and
IoT devices,” in International Conference on Internet-of-Things Design
and Implementation (IoTDI), 2021, p. 67–79.

[10] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel, “Telekine: Secure computing with cloud GPUs,” in USENIX
Symp. on Networked Systems Design and Implementation (NSDI), 2020.

[11] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, L. Zhao, F. Yuan, P. Li,
Z. Wang, B. Zhao et al., “Enabling privacy-preserving, compute-and data-
intensive computing using heterogeneous trusted execution environment,”
arXiv preprint arXiv:1904.04782, 2019.

[12] D. B. Bartolini, P. Miedl, and L. Thiele, “On the capacity of thermal
covert channels in multicores,” in European Conference on Computer
Systems (EuroSys), 2016.

[13] H. Huang, X. Wang, Y. Jiang, A. K. Singh, M. Yang, and L. Huang,
“On countermeasures against the thermal covert channel attacks targeting
many-core systems,” in Design Automation Conference (DAC), 2020.

[14] J. Wang, X. Wang, Y. Jiang, A. K. Singh, L. Huang, and M. Yang, “Com-
bating enhanced thermal covert channel in multi-/many-core systems with
channel-aware jamming,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3276–3287, 2020.

[15] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh, “Construct-
ing and characterizing covert channels on GPGPUs,” in International
Symposium on Microarchitecture (MICRO), Oct. 2017.

[16] S. B. Dutta, H. Naghibijouybari, A. Gupta, N. Abu-Ghazaleh,
A. Marquez, and K. Barker, “Spy in the GPU-box: Covert and side
channel attacks on multi-GPU systems,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.15981

[17] A. Nayak, P. B., V. Ganapathy, and A. Basu, (Mis)Managed: A Novel
TLB-Based Covert Channel on GPUs, 2021, p. 872–885.

[18] J. Ahn, J. Kim, H. Kasan, L. Delshadtehrani, W. Song, A. Joshi, and
J. Kim, “Network-on-chip microarchitecture-based covert channel in
GPUs,” in International Symp. on Microarchitecture (MICRO), 2021.

[19] ARM, “Building a secure system using trustzone technology,”
https://documentation-service.arm.com/static/5f212796500e883ab8e74
531, 2009, accessed: May 16, 2022.

[20] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, Report 2016/086, 2016, https://ia.cr/2016/086.

[21] NVIDIA, “Nvidia system management interface,” 2022, accessed:
May 20, 2022. [Online]. Available: https://developer.nvidia.com/nvidia-
system-management-interface

[22] Nvidia, “NVIDIA Jetson TX2 NX thermal design guide,”
2021, accessed: May 20, 2022. [Online]. Available:
https://developer.nvidia.com/embedded/downloads

[23] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in International Symp. on Workload Characterization (IISWC), 2009.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

