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Abstract—Recent machine learning (ML) models have advanced
from single-modality single-task to multi-modality multi-task (MMMT).
MMMT models typically have multiple backbones of different sizes along
with complicated connections, exposing great challenges for hardware
deployment. For scalable and energy-efficient implementations, multi-
FPGA systems are emerging as the ideal design choices. However, finding
the optimal solutions for mapping MMMT models onto multiple FPGAs
is non-trivial. Existing mapping algorithms focus on either streamlined
linear deep neural network architectures or only the critical path of simple
heterogeneous models. Direct extensions of these algorithms for MMMT
models lead to sub-optimal solutions. To address these shortcomings, we
propose M5, a novel MMMT Model Mapping framework for Multi-
FPGA platforms. In addition to handling multiple modalities present
in the models, M5 can flexibly explore accelerator configurations and
possible resource sharing opportunities to significantly improve the system
performance. For various computation-heavy MMMT models, experiment
results demonstrate that M5 can remarkably outperform existing mapping
methods and lead to an average reduction of 35%, 62%, and 70% in the
number of low-end, mid-end, and high-end FPGAs required to achieve
the same throughput, respectively. Code is publicly available1.

Index Terms—Multi-FPGA, DNN Model Mapping Framework

I. INTRODUCTION

Multi-FPGA acceleration has become imperative for state-of-the-
art machine learning (ML) models due to the growing sizes of these
models as well as their inputs. The prohibitively large computation
complexity makes their deployment on a single device infeasible. In
addition, hardware development tools are becoming the bottlenecks,
requiring days or even weeks to synthesize large-scale designs, drasti-
cally increasing the development cycle and the time-to-market. Thus,
multi-FPGA is appealing for energy-efficient and scalable ML system.

Related work has discussed ways for mapping streamlined ML
models to multi-FPGA systems [1]–[7]. For instance, [1] and [7]
propose dynamic-programming-based model partitioning to maximize
multi-FPGA throughput. CNN-on-AWS [2] formulates the model par-
titioning as a mixed-integer non-linear programming problem, while
[6] further extends to dynamic re-programming of FPGAs at runtime to
reduce power. However, ML models have been rapidly evolving from
single-modality single-task to multi-modality multi-task (MMMT)
[8]–[13]. For example, in AR/VR applications, image, gesture, and
speech are learned together [14]; in emotion recognition, MoCap [15]
learns from speech, text, and motions jointly.

Despite the success of existing mapping algorithms on multi-FPGA
systems [1], [2], [4], [5], [7], there are significant limitations for
their application towards MMMT models. First, most multi-FPGA
mapping algorithms focus on streamlined and linear DNNs with a
single backbone and no branches. However, MMMT models [8]–[10],
[16] usually have multiple backbones of different sizes and complicated
connections (e.g., cross-talk between backbones). Fig. 1 illustrates
the situation where a direct extension of existing mapping algorithms
produces a sub-optimal solution (4 FPGAs), whereas a better solution
(3 FPGAs) exists. Second, H2H [9] is the only mapping algorithm
that uses an iterative heuristic to map MMMT models to multi-
FPGA. However, H2H ignores the configurability of the FPGAs by

1https://github.com/akshay-k2/m5
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Fig. 1: For MMMT models, naive extension of existing mapping
algorithms can result in sub-optimal mapping.

assuming a fixed accelerator architecture, and thus does not explore
optimal resource sharing and allocation when multiple layers are
being mapped to the same FPGA. As we will demonstrate in Sec. II,
failing to do so can also result in sub-optimal mapping. Third, most
previous works focus on optimizing either the end-to-end latency or the
throughput for a fixed number of FPGAs. Consequently, optimization
of energy consumption is under-explored. In applications such as video
processing, the energy consumption is expected to be minimized in
addition to meeting the performance objectives. This can be achieved
by reducing the number of FPGAs needed for mapping.

In this work, we address the limitations of existing algorithms
by proposing a novel mapping framework, named M5, specifically
targeted for MMMT models on Multi-FPGA. M5 not only handles
multiple backbones with complicated connections, but also flexibly
explores accelerator configurations and possible resource sharing op-
portunities to greatly boost the mapping quality while decreasing the
resources (number of FPGAs) required to minimize the system power
consumption. We summarize our contributions as follows:

• M5 is the first mapping algorithm for MMMT models on multi-
FPGA which explores flexible accelerator configurations and
possible resource sharing among layers. It is both computation-
and communication-aware and aims to minimize the number of
FPGAs for given throughput objective and resource constraints.

• Since M5 tackles MMMT models, it has a large solution space
compared to streamlined DNNs. We propose a two-stage algo-
rithm: (1) generating uniformly-sampled topological sorts within
the solution space; (2) for each topological sort, using dynamic
programming to generate load-balanced mappings and searching
for the best accelerator configuration for each model layer.

• Our proposed novel Uniform Sampling (US) method introduces
significantly higher randomness that covers more design points
compared to traditional topological order generation methods,
enabling a much broader and efficient design space exploration.

• M5 demonstrates remarkable improvements over existing map-
ping algorithms by reducing the number of low-end, mid-end, and
high-end FPGAs required, on an average, by 35%, 62%, and 70%
respectively for popular computation-heavy MMMT models.
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Fig. 2: Considering accelerator configuration and resource sharing
leads to higher chance of obtaining better solutions.
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Fig. 3: Based on the layer type and layer dependency, the latency and
resource formulations are different. Meanwhile, different accelerator
configurations (e.g., parallelism) result in different mapping quality.

II. MOTIVATING EXAMPLES

Fig. 1 demonstrates that direct extensions of existing mappers
designed for linear DNN architectures may result in sub-optimal
solutions. Fig. 2 demonstrates that resource sharing can be beneficial
and must not be ignored. In this example, we enumerate possible
accelerator configurations with P representing parallelism (i.e., the
number of DSPs) and L denoting latency. In example Solution 1,
assuming a video processing application, Conv1 and GEMM2 are
mapped to one FPGA but do not share resources due to different layer
types, and the throughput is 35.7 FPS (frames per second). In contrast,
Solution 2 maps GEMM2 and GEMM3 to one FPGA with resource
sharing, achieving a higher throughput (100 FPS) than Solution 1
for the same resource usage. This motivating example explains the
necessity of resource sharing while partitioning the MMMT model.
Fig. 3 demonstrates the benefit of accelerator configuration. We
categorize resource sharing into four situations (a to d), depending
on whether neighboring layers are of the same type or have data
dependency. In situation (a), for instance, two adjacent layers are of
different types but have dependency. Mapping solution 1 achieves a
latency of 30 ms with 384 DSPs, while mapping solution 2 achieves
a latency of 32 ms with 576 DSPs, evidently worse than solution 1.
This example motivates the necessity of accelerator configuration.

III. PROBLEM FORMULATION

Model Representation. An MMMT model can be represented as a
Directed Acyclic Graph (DAG), G = (V,E), with one or more sources
(inputs) and one or more sinks (outputs). Each node v ∈ V represents a
layer of the model, associated with attributes including layer type (e.g.,
convolution, fully connected, LSTM, attention, etc.) and computation
cost (e.g., number of MACs). Each edge e ∈ E represents a data
dependency between two layers and is associated with a weight quan-
tifying the cost of inter-layer data transfer (communication overhead).
Target Platform: Chained FPGAs. We target a linearly chained
FPGA system and utilize throughput as the performance indicator as
opposed to end-to-end latency, since for real-world applications such
as real-time video processing, throughput across consecutive video
frames is more important than the latency of processing an individual
frame. For a system with N FPGAs, the overall throughput Tsys is de-
cided by the FPGA with the highest latency: Tsys =

1
max(L1,L2,··· ,LN )

,
where Li is the i-th FPGA latency.
Computation and Communication Costs. We use the number of
MAC operations to describe a layer’s computation cost. This cost is
decided by the model parameters and the input size (e.g., HD images).
The communication cost associated with edges W (ei,j), as described
in [2], is the ratio of the size of ith layer output Di and the inter-FPGA
bandwidth BW . In this work, we assume a homogeneous cluster of
FPGAs with identical inter-FPGA bandwidth.
Mapping Model Layers on FPGAs. For an MMMT model with |V |
layers, the goal is to find cost-balanced mappings on N FPGAs, where
N is to be minimized as long as the target objective (e.g., throughput)
is met. Each FPGA can contain one or more accelerator instances
with different types and parallelism factors, and each accelerator can
execute one or more model layers. Specifically, for each layer, the
following mapping variables must be decided -

1) FPGA allocation: which FPGA the layer is mapped to;
2) Accelerator configuration: parallelism factor of its accelerator;
3) Resource sharing: can its accelerator be shared with other layers.

Notably, very limited existing works explore accelerator configura-
tion, while no existing work discusses resource sharing to the best of
our knowledge. In this work, we explicitly explore the situation that
two or more layers share the same accelerator when they are of the
same layer type or have the same computation pattern.
Mapping Objectives and Constraints The objective of M5 opti-
mization problem is to minimize the total number of FPGAs under
throughput and resource constraints. We use the number of DSPs
as the resource constraint for each FPGA and assume that each
DSP performs 1 MAC operation per cycle. Throughput constraint is
described by its inverse, the Initiation Interval (II). As long as the
layer with highest computation cost has a latency less than the target
II, the throughput constraint is satisfied.
Layer modeling for accelerator configuration. We adopt the layer
performance model from the most recent work, H2H [9], to model
layer latency li and resource utilization ri. Since the number of DSPs
is usually linearly proportional to the accelerator parallelism factor
and is the dominating resource, we let ri denote the DSP usage and
use it interchangeably with parallelism. Let Pi be the accelerator
performance model for layer i (e.g., Pi differs from convolution
to fully connected) so that li = Pi(ri). An accelerator can have
multiple choices of parallelism; we enumerate a fixed set of parallelism
factors (divisible by power of two) for each layer, and each factor
corresponds to a determined layer latency. Consequently, ith layer’s
performance and resource model is a set of possibilities, denoted as
{< ri, li > |ri ∈ {32, 64, 96, 128, · · · }, li = Pi(ri)}.
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FPGA modeling for resource sharing. As discussed in Sec. II, since
we explore layer sharing on an FPGA, there are four scenarios for
layers i and j, as shown in Fig. 3.

1) Two layers have data dependency and differ in layer type, as
in Fig. 3(a). In this scenario, two layers cannot share the same
accelerator. Therefore, the FPGA latency is LAT = Sum(li, lj)
and resource is RES = Sum(ri, rj).

2) Two layers are not dependent and differ in layer type, as in
Fig. 3(b). It is beneficial to use two separate accelerators which
run in parallel. Thus, LAT = Max(li, lj), RES = Sum(ri, rj).

3) Two layers have data dependency and are of the same type, as in
Fig. 3(c). Because of data dependency, the two layers cannot be
executed in parallel, so it is beneficial for them to share resource.
Thus, LAT = Sum(li, lj), RES = Max(ri, rj).

4) Two layers are not dependent but are of the same type. In this
scenario, the two layers can either share the same accelerator or
use two separate ones. For simplicity, we consider the latter and
thus LAT = Max(li, lj), RES = Sum(ri, rj).

IV. PROPOSED M5 ALGORITHM

The primary input to our M5 algorithm is an MMMT model
specification, expressed as a DAG. Since an MMMT model has
multiple backbones, branches, and complicated connections, together
with accelerator configuration and resource sharing, the design space
is much larger compared to streamlined DNNs. To efficiently explore
the design space, we propose a two-stage algorithm:

1) Find valid topological sorts of the given DAG, which serve as
initial solutions for mapping (Sec. IV-A);

2) Based on each topological sort, determine the optimal mapping,
accelerator configuration, and resource sharing (Sec. IV-B).

Note that the first step samples initial solutions from the entire
design space, and thus its sampling efficiency is crucial to the
algorithm quality: how well can the algorithm visit as many diverse
design points as possible by maximizing sampling randomness? In the
following sections, we first discuss our proposed sampling algorithm
which significantly outperforms revised deterministic algorithms with
much higher randomness. Then, we discuss dynamic programming
based mapping given each sampled initial solution.

A. Generating Topological Orderings of MMMT Model Graph

A topological sort or topological ordering of a directed graph is a
linear ordering of its vertices, such that for every directed edge (u, v)
from vertex u to vertex v, u comes before v in the ordering. Given
a DAG for an MMMT model, finding a proper topological sort can
serve as an initial solution for determining a valid mapping together

with accelerator configuration and resource sharing. Fig. 4(a) is an
example of a DAG; (b) and (c) show two of its topological sorts.

Finding a good topological sort, however, is non-trivial. In contrast
to streamlined ML models which have only one topological sort,
MMMT models have multiple topological orders. Determining an
optimum mapping solution can be sensitive to the topological order
chosen. This is demonstrated in Fig. 4 using a simplified example with
fixed accelerator configurations, where the node values refer to the
layer resource usage. Assuming that each FPGA capacity is 7 units, the
first topological order results in 4 FPGAs, while the second one results
in only 3 FPGAs. However, enumerating all possible topological orders
is equivalent to finding all the linear extensions for a given partially
ordered set, which is a #P-complete problem [17] and is as least as
hard as NP-complete problems [18]. For instance, the total number of
topological sorts for an MMMT model with just 20 layers can be in
billions and require several days or even weeks for enumeration. This
effectively highlights the fundamental difference between MMMT and
streamline models. Combined with accelerator configuration search
and resource sharing exploration, the complexity is further elevated.
Sampling Topological Sorts. As a brute-force search of the entire
space of valid topological sorts is intractable, we instead focus on
how to randomly sample the space of all valid topological sorts in an
efficient and uniform manner. Through this approach of sampling, a
fixed number of sampled sorts can be evaluated and the best mapping
can be presented as the final mapping. To achieve this goal, we first
discuss two sampling algorithms that modify traditional deterministic
methods to non-deterministic variations in order to expand the solution
space (as shown in Fig. 5):

1) Kahn’s algorithm based [19]: forward sort and reverse sort.
2) List-scheduling based: As-Soon-As-Possible (ASAP) and As-

Late-As-Possible (ALAP).

(1) Kahn’s algorithm based. Typical implementations of topological
sorting algorithms are variations of Kahn’s algorithm [19]. It iteratively
finds vertices with no incoming edges and removes all outgoing edges
from these vertices, resulting in an ordering with all the dependency
constraints satisfied. To make this algorithm non-deterministic, we
introduce randomness when there are multiple nodes that qualify for
selection at any given stage. As shown in Fig. 5(a), first, we randomize
which of the zero in-degree nodes will be selected for removal and
inserted into the sort list at each iteration of the algorithm. We refer to
this variation as the “forward sort” algorithm. Second, we modify the
algorithm to build the topological sort in reverse order by removing
nodes with zero out-degree and adding them to the front of the sort
list. We refer to this variation as the “reverse sort” algorithm.

(2) List-scheduling based. Another approach is to use the classic list
scheduling algorithms. We modify the ASAP and ALAP algorithms to
make them non-deterministic by introducing randomness, as shown in
Fig. 5(b). ASAP and ALAP organize graph nodes into different levels.
The nodes within the same level can be considered a contiguous block
of nodes in the topological sort. The ordering of the nodes within a
block can be permuted since nodes at the same level do not have
any dependence on each other. The blocks of nodes corresponding to
each level are then concatenated together in level-order to produce the
final topological sort. To make this algorithm non-deterministic, we
randomize the permutation of node blocks at each level.

The drawback of these two algorithms, however, is that their
“randomness” is limited, i.e., the possible randomness is based on
a deterministic solution, which largely constrains the solution space.
To address this limitation, we propose a fully randomized Uniform
Sampling (US) algorithm, which achieves the best sampling efficiency
by covering the largest solution space.

!

!



𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣଺

𝑣଻

𝑣ଵ 𝑣ହ

• Step 1: randomly select 𝑣1 or 𝑣5; 
• Step 2: if 𝑣1 is removed, randomly 

select 𝑣2 or 𝑣5
• ...

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣଺

𝑣଻

𝑣ଵ 𝑣ହ Level 1

Level 2

Level 3

Level 4

• Randomly decide the order 
within each level

Possible Topo. 
Order: 
[𝑣1, 𝑣2, 𝑣5, 𝑣6, …] Possible Topo. Order: 

[[𝑣1, 𝑣5], [𝑣6, 𝑣2], …]

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣଺

𝑣଻

𝑣ଵ 𝑣ହ

Start from 𝒗𝟕

“top” nodes: 𝑣7’s 
predecessor

“bottom” nodes: 
𝑣7’s successors

head (“top”) [ 𝒗𝟕 ] tail (“bottom”)

• Randomly pick an arbitrary node, tag its neighbors as “top” and “bottom”
• Place top and bottom at the head or tail of the list; recursively repeat

𝑣ଶ

𝑣ଷ

𝑣ସ

𝑣଺

𝑣଻

𝑣ଵ 𝑣ହ Next, pick 𝒗𝟔
New “top” nodes: 
𝑣6’s predecessor 𝑣5

Topo. Order: 
head (“top”) [ 𝒗𝟔, 𝒗𝟕 ] tail (“bottom”)

(c) Our proposed Uniform Sampling (US)

(a) Revised Kahn’s algorithm based 

forward 
sort

(b) List Scheduling based

Much higher 
randomness

𝑣6 inserted to list head
Topo. Order: 

Fig. 5: Examples of sampling based on Kahn’s algorithm (a) and list-
scheduling (b) along with our proposed Uniform Sampling (c).

Uniform Random Start Topological Sort. To increase the random-
ness greatly, we propose a novel sorting algorithm, described by
Algorithm 1, that builds a topological sort from any arbitrary starting
node in the DAG. This approach combines ideas from the forward
and reverse versions of Kahn’s algorithm to build the sort list in two
directions as shown in Fig. 5(c). First, a starting node is randomly
selected, removed from the graph, and added to the sort list (line 10-
11). All predecessors of the starting node are tagged as “top” while all
the successors are tagged as “bottom”. The algorithm then iteratively
removes nodes tagged as “top” or “bottom” and adds them to the head
or tail of the sort list respectively. When these nodes are removed, they
also tag their predecessors and successors as “top” or “bottom” nodes
without overwriting any existing tags. During node selection, a filtering
step is needed to remove candidate nodes who also have dependence
on other candidate nodes (line 15-16). To make this algorithm non-
deterministic, the “top” or “bottom” node for removal at each iteration
is randomly selected out of all the possible candidate nodes at that step.
We randomize the sort generation further by also randomly selecting
the start node that is to be used for the algorithm. We refer to this
implementation as “uniform random start” sort.

Fig. 6: Projection of sampled topological orders by different sampling
algorithms for QDTrack [20] model graph.

Our proposed algorithm can generate topological orders uniformly
in the topological sort space, covering much larger solution space

Algorithm 1: Uniform Random Start Topological Sort
Input : Model Graph G
Output: Topological Sort List S

1 Function TagConnectedNodes(n):
2 for child in n.successors if child.tag != ”top” do
3 child.tag ← ”bottom”

4 for parent in n.predecessors if child.tag != ”bottom” do
5 child.tag ← ”top”

6 Function RemoveAndAddToSort(n, G, S):
7 S ← Append n, to the left if n.tag == “top” else to the right
8 TagConnectedNodes(n)

9 S ← []
10 startNode ← Randomly choose a node in G
11 RemoveAndAddToSort(startNode)
12 while len(S) < len(G.nodes) do
13 topNodes ← All nodes with “top” tag
14 bottomNodes ← All nodes with “bottom” tag
15 topF iltered ← FilterTopNodes(G, topNodes)
16 bottomFiltered ← FilterBottomNodes(G, bottomNodes)
17 possibleNodes ← topF iltered and bottomFiltered
18 randomNode ← Randomly choose a node in possibleNodes
19 RemoveAndAddToSort(randomNode, G, S)

20 return S

than the other two methods. Fig. 6 visualizes the differences between
our proposed uniform sampling and the deterministic-based sampling.
First, we find that the traditional “forward sort” and “reverse sort”
algorithms are biased and generate sorts that are clustered together in
the topological sort space. This can be explained based on the branch-
ing choice effect when building the sorts using Kahn’s algorithm. The
initial set of candidate nodes is the same for each run of the algorithm
leading to similar starting node sequences. After the first few nodes,
there is a combinatorial branching effect for the order in which the
rest of the nodes are selected. We also find that generating sorts using
ASAP and ALAP are subsets of forward and reverse sort algorithms.

With random start nodes, we reduce the bias of having predictable
sequences within a sort across all sampled sorts. We justify the
generality of “random start” algorithm based on the projections of
topological sorts from various algorithms as shown in Fig. 6. Our
proposed approach covers the space of all other topological sorts while
creating additional sorts in spaces between the traditional algorithms.

B. Finding the Optimal Mapping

After uniformly sampling a large enough set of topological sorts of
the input DAG, for each sort, we explore its optimal mapping. First,
we generate k partitions of the topological order, 1 ≤ k ≤ N , where
N is the upper bound of the total number of FPGAs. For different
k, we evaluate each to find the smallest k while satisfying the given
resource, throughput and bandwidth constraints.

We adopt the dynamic-programming-based polynomial-time load-
balancing algorithm from [7] (after correcting a minor error in the
original equation – changing the limit from r = 1 to r = k − 1) for
mapping |V | layers on to 1, 2, ..., N FPGAs based on the computation
cost as shown in Eq. 1:

Cj,k =

{∑j
l=1 Cl if k = 1

minj−1
r=k−1(max(Cr,k−1,

∑j
l=r+1 Cl)) if 1 < k ≤ N

(1)
In Eq. 1, Ci represents the computation cost of ith layer where

i ∈ [1, N ]. Cj,k, on the other hand, represents the total computation
cost (computation load) of the first k FPGAs when mapping layers
from 1 to j. For a single FPGA in the cluster, the computation load is
obtained by adding individual computation costs of the first j layers.
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Algorithm 2: Optimal Mapping using Dynamic Programming
Input : G, Topo Order, DSP , II , TCLK , BW , AC En
Output: Valid mapping with minimal partitions

1 Function DPsolver(G(V,E), Topo Order):
2 N ← |V | // Number of nodes in G
3 Mappings ← Map G to {1, 2, ..., N} FPGAs as per Eq. 1
4 return Mappings

5 Function CriticalPartition(Mapping):
6 Find Partition of Mapping with highest cumulative cost
7 return Partition

8 Function findValidConfigs(criticalPart):
9 validConfigs← []

10 for every node ∈ criticalPart do
11 for every resource-latency pair of node do
12 if usage does not exceed DSP-II budget then
13 Update validConfigs with this pair

14 if validConfigs is not empty then
15 return True

16 return False

17 N ← |V | // Max. number of partitions
18 allMappings[1 : N ]← DPsolver(G,Topo Order)
19 bestMapping ← allMappings[N ]
20 N ← |V | − 1
21 while N ̸= 0 do
22 currentMap← allMappings[N ]
23 criticalPart← CriticalPartition(currentMap)
24 configExists← findValidConfigs(criticalPart)
25 if configExists then
26 bestMapping ← allMappings[N ]

27 N ← N − 1

28 return bestMapping

For a cluster with multiple FPGAs, the computation load is calculated
based on assigning the first r layers to k−1 FPGAs and the remaining
layers (r + 1 to j) to the last FPGA. The former component acts as
the sub-problem in this dynamic programming algorithm.

Once all the mappings are generated, we evaluate the validity of
each mapping to check if it satisfies the specified constraints and
objectives starting with the mapping having the highest number of
partitions. Since the overall system throughput is limited by the latency
of the partition with the highest computation cost, termed critical
partition, as long as there is at least one resource-latency combination
(described in Sec. III) in this partition that does not exceed the DSP, II
and BW budgets, the mapping can be considered valid as described in
Algorithm 2. Moreover, since the computation latency is much higher
than communication delays [21], we cross-check the validity by adding
the maximum of incoming edge weights to the critical partition latency.
We assume the usage of double buffer to hide the communication
delays within a partition.

V. EXPERIMENTS

A. Experiment setup and baselines.

MMMT Models. To evaluate our mapping framework, we experiment
using six MMMT models as shown in Table I, following the same set-
ting from H2H [9]. The dominating layer types are convolution, fully
connected, and LSTM. We also include near-streamlined ResNet50
model with SD inputs (480× 640) for reference.
Experiment Settings. For evaluation, we consider three Xilinx FPGA
boards: Ultra96v2, KC705 and ZCU104 with 360, 840 and 1728 DSP
units respectively. The clock frequency is set to 125 MHz. The target
throughput constraint is 30 FPS as is typical of any video processing
application. We assume 16-bit fixed point as the data precision but M5

Domain Model GMAC
Image Classification ResNet-50 (SD) [22] 25.04
Augmented Reality VLocNet [16] 59.05
Face Recognition CASUA-SURF [23] 7.10

Sentiment Analysis VFS [11] 21.46
Multiple Object Tracking QDTrack (SD) [20] 57.63

Face Recognition FaceBagNet [24] 9.68
Emotion Recognition MoCap [15] 0.68

TABLE I: MMMT Models used for evaluation.

can be easily extended to model other quantized precision types. For
instance, with 8-bit data, two MAC operations can be executed by a
single DSP unit in one clock cycle. The input image size varies from
HD to SD such that the bottleneck layer of the model, when mapped
to a single FPGA, achieves the target throughput requirement (so that
we can guarantee there is a solution). Our proposed algorithms and
the baselines are implemented using Python and executed on Intel i9
8-core CPU with 16 GB memory.
Baselines. As there is no existing algorithm that directly solves the
problem discussed in this work, we make the best effort to extend
the existing approaches to be applicable and conduct ablation study
to demonstrate the effectiveness of our proposed M5 framework. In
particular, we evaluate the following algorithms:

1) Baseline-1. Direct extension of existing mapping algorithm [7]
without accelerator configuration and resource sharing. The
algorithm in [7] prioritizes layers (vertices) on the critical path
(CP) and adopts dynamic programming; the algorithm then
iteratively maps the critical paths of sub-graphs obtained by
removing the nodes in the previously processed critical paths.
Although H2H [9] is the only known work targeting MMMT
model mapping, its algorithm centers at optimizing end-to-end
latency for a fixed number of FPGAs and does not consider
accelerator configuration or resource sharing.

2) Baseline-2. On top of Baseline-1, we traverse all possible accel-
erator configurations and explore resource sharing possibilities
as discussed in Sec. III.

3) Baseline-3. We apply the classic list scheduling [25] (ALAP
and ASAP) with the exploration for accelerator configuration
and resource sharing.

4) Ours. Our proposed framework based on evaluation of uni-
formly sampled (US) topological orders as discussed in Sec. IV
with accelerator configuration and resource sharing.

Overall Mapping Results. Fig. 7 shows the overall mapping results
on Ultra96v2, KC705 and ZCU104 respectively across all the MMMT
models considered in this work with baselines and our proposed
framework. For a computation-heavy model like QDTrack, we can
observe that the number of mid-end ZCU104 FPGA boards required
reduces by around 85% and around 78% for VLocNet. Fig. 8 illustrates
the actual mapping of VLocNet model on 11 ZCU104 FPGAs using
our approach involving accelerator configuration and resource sharing.
In contrast, the same model requires over 30 such FPGAs with any
of the baselines. Furthermore, for every model, our uniform sampling
approach results in mappings that are as good as or better than those
obtained from the classic list scheduling algorithms. This affirms
the validity of our sampling approach in efficiently exploring the
topological ordering search space.

Overall, compared to the baseline, M5 reduces the number of
low-end, mid-end and high-end FPGAs required for mapping these
MMMT models, on an average, by 35%, 62% and 70% respectively.
These results conclusively highlight the efficacy of our approach of
uniformly sampling the topological ordering space and the advantages
of using accelerator configuration and resource sharing in drastically
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Fig. 7: M5 results showing the number of partitions (i.e. FPGAs required) in the optimal mapping for each configuration

Fig. 8: Optimal mapping of VLocNet on 11 ZCU104 FPGAs.

reducing the number of FPGAs required for model implementation,
thereby demonstrating a highly energy-efficient alternative compared
to existing baseline approaches.

VI. CONCLUSION

In this work, we tackle the problem of mapping Multi-Modal Multi-
Task (MMMT) deep learning models on a multi-FPGA system using
a novel framework, named M5. Through comprehensive experiments,
we demonstrate that the existing mapping algorithms, such as critical-
path based and list-schedule based mappings, lead to sub-optimal
solutions when applied to MMMT models. In our framework, we
generate uniformly-sampled topological orderings of the given task
graph to efficiently explore the solution search space and employ a
comprehensive evaluation method that uses dynamic programming to
determine the optimal mapping of the model layers onto the FPGAs.
We also perform accelerator configuration search for better resource
utilization by analyzing the model layer types and layer dependencies
in the model. Using popular MMMT models such as VLocNet and
QDTrack as reference, we show that M5 provides a remarkable gain
in terms of energy efficiency by significantly lowering the number of
FPGA boards required for model implementation.
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