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Abstract—Digital microfluidic biochips exploit the electrowet-
ting on dielectric effect to move and manipulate microliter-sized
liquid droplets on a planar surface. This technology has the
potential to automate and miniaturize biochemical processes, but
reliability is often an issue. The droplets may get temporarily
stuck or gas bubbles may impede their movement leading to a
disruption of the process being executed. However, if the position
and size of the droplets and bubbles are known at run-time, these
undesired effects can be easily mitigated by the biochip control
system. This paper presents an AI-based computer vision solution
for real-time detection of droplets and bubbles in DMF biochips
and its implementation that supports cloud-based deployment.
The detection is based on the YOLOv5 framework in combination
with custom pre and post-processing techniques. The YOLOv5
neural network is trained using our own data set consisting of
5115 images. The solution is able to detect droplets and bubbles
with real-time speed and high accuracy and to differentiate
between them even in the extreme case where bubbles coexist
with transparent droplets.

I. INTRODUCTION

Digital microfluidic (DMF) biochips are devices that al-

low to move and manipulate microliter-sized liquid droplets

on a planar surface patterned with individually controllable

electrodes. The movement of the droplets, which serve the

function of fluidic vehicles and reaction chambers, can be

controlled to perform fundamental operations, such as mixing,

merging, splitting, dispensing, and disposing, needed to carry

out biochemical processes. This technology has the potential

to automate and miniaturize traditional laboratory processes

and possibly enable advanced biochemical and medical tests

to be carried out directly at home or in the field. The droplet

movement is achieved by applying an electric potential to the

electrodes along the droplet path. Droplets tend to follow this

path due to electrowetting on dielectric effect [1].

The actuation and physical process that causes the droplets

to move is in general quite reliable. However, sporadic

missing-movement events can happen, leading to droplets

getting temporarily stuck in one place. The cause for these

events can be found in small impurities, imperfections in

the surface fabrication, and transient charge build-up in the

droplet. Missing-movement events are easily recoverable by

just repeating one or more times the same electrodes actuation

sequence that was missed. However, in order to perform

this correction, the controlling system needs to know that a

missing-movement event has happened. In addition to missing-

Fig. 1. A top view of a DMF biochip including colored and transparent
droplets and bubbles.

movement events, gas bubbles might form when biochemical

processes require heating up a sample. These bubbles get

trapped in the region of space where the droplets move and,

depending on their dimensions, they might interfere with the

movement of the droplets. This effect can be mitigated by the

controlling system by repeating one or more times the same

actuation sequence to push the bubble out of the path of the

droplet, or by re-routing the droplet around the bubble. To

achieve this, the controlling system needs to know the position

and size of the bubbles.

This paper presents an AI-based computer vision solution

for real-time detection of droplets and bubbles in DMF

biochips. The solution is based on the YOLOv5 framework,

in combination with pre and post-processing techniques for

image preparation and result computation. The YOLOv5 neural

network is trained using our own data set consisting of 5115

images. The proposed solution is able to detect droplets and

bubbles with real-time recognition speed and high accuracy.

One of the most important contributions is the ability to

differentiate bubbles from droplets even in extreme cases.

For example, the solution is able to properly differentiate a

bubble from a transparent droplet, even when they are almost

indistinguishable to the human eye.

In addition to the AI-based solution for the detection, the

paper also presents an implementation that supports cloud-based

deployment for running the computationally-heavy part of the

solution on a high-performance remote server. Thus, increasing

detection performance and allowing for better maintainability

and deployment of new detection models. The entire solution

can also be deployed locally.
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The rest of this paper is structured in four sections. Section II

provides an overview of the DMF and AI technologies used in

this work, and includes a summary of related works. Section III

presents the developed AI-based detection solution and our

data set. Section IV describes the experiment-driven evaluation

and discusses the results. Finally, Section V concludes the

paper.

II. BACKGROUND AND RELATED WORK

A. DMF Biochip Technology

The target DMF biochip used in this work is the Bioware

platform [2]–[4]. However, the proposed solution is also

applicable to other state-of-the-art DMF devices such as

DropBot [5], OpenDrop [6], and Puddle [7]. The Bioware

platform consists of a 32 by 20 regular array of individually

controllable square electrodes, which allow to move any droplet

along any path on the surface. The platform is designed to

support modularity, and sensors and actuators can be integrated

into the DMF biochip. For example, color, pH, impedance,

etc. can be measured to verify that the biochemical process

execution is proceeding as expected or as final process. Actions

such as heating, cooling, magnetic field, etc. can be applied to

promote transformations as part of the biochemical process.

Figure 2 shows the section drawing of a DMF biochip. The

droplets are confined between the substrate consisting of a

PCB patterned with the electrodes and an ITO-coated glass top

plate. This space is filled with silicon oil and, as previously

mentioned, droplets are moved by activating electrodes along

the desired path. The figure also shows a heating actuator

used to warm up the droplets, the gas bubbles formed as a

consequence of the heating process, and a surface defect and

an impurity, which are possible causes of missing-movement

events.

Experiments have shown that real-life biochemical processes

can successfully be carried out on the platform. The fundamen-

tal steps of two traditional bioassays have been performed on

the platform: PCR-based full cell cloning and magnetic beads-

based ELISA with both MRSA and SARS-CoV2 proteins [8].

For these real-life experiments, human supervision is currently

necessary to correct sporadic missing-movement events and

to avoid bubbles. Thus, remarking the need for an automated

feedback system based on the detection solution presented in

this paper.

B. The YOLO Framework

The proposed AI-based solution is based on the YOLO

framework. YOLO, an acronym for ‘you only look once’, is

a state-of-the-art real-time framework based on convolutional

neural networks (CNN) for object detection and classification

in images [9]. In YOLO, a single CNN is applied to the

entire image. The image is divided into cells and each cell is

responsible for detecting objects within itself [10]. The object

detection based on the CNN from YOLO [11] delivers low

recognition time and high accuracy, making it a suitable choice

for our droplet and bubble detection task. In this work, we use

YOLOv5 [12].

Biochip substrate (FR4)

Droplet

ITO glass

Surface defectSilicon oil

Heating element
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Electrode
Hydrophobic 
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Gas bubbles

Biochip substrate (FR4)

Fig. 2. Section drawing of a DMF biochip showing a droplet and bubbles
confined between the substrate and the ITO-coated glass. A surface defect or
an impurity (enlarged) are possible causes of missing-movement events.

C. Related Work

An existing method for detecting droplets is to use capacitive

sensing techniques to detect the change of the relative dielectric

constant between the electrodes and the top plate caused by the

presence of a droplet [5], [13]. This method is rather precise,

but it struggles to detect bubbles and distinguish them from

droplets.

Solutions based on applied computer vision are also used

to detect droplets. The work presented in [14] tries to detect

droplet motion using real-time background subtraction and

color plane extraction methods. The solution is quite fast,

taking around 200 ms to detect one droplet. The work presented

in [15] combines median filtering, Gauss filtering, the Canny

algorithm, and the Hough transform (line and circle detection)

for identifying droplets. Their solution also takes around 200 ms

to locate a droplet. The work presented in [16] also uses

computer vision to monitor droplet movement and calculate

the corresponding volume by identifying droplet geometry and

performing velocity measurements. None of these works is

able to detect bubbles.

The work presented in [17] uses YOLOv3 to track moving

droplets within images from fluid dynamic simulations of multi-

core emulsions and soft flowing crystals. It proves that the

YOLO framework is able to detect droplet-like structures with

low error levels and speeds exceeding 30 frames per second

when using commonly available desktop GPUs.

III. DETECTION SOLUTION

A. Overview

The full detection process consists of several phases. At first,

a camera produces a video stream of the biochip, from which

images are extracted at periodic intervals. These images are

then pre-processed and used as input to the YOLOv5 CNN. The

YOLOv5 framework produces a list of detected droplets and

bubbles including their position and size relative to the image

coordinate system. Detected droplets and bubbles characterized

by a confidence score lower than a certain threshold are then

filtered out and their location and size on the physical biochip

are computed using fiducial markers as reference points in

the input images. In the following, we explain the details of

these phases, the characteristic of the training data set, and we

discuss the implemented cloud-based solution.
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Fig. 3. During the pre-processing phase of the detection process, Apriltags
are used to extract (de-warp and crop) the biochip region from the full image.

B. Image Collection and Pre-Processing

The input video stream is recorded using a camera placed

directly above the DMF biochip. The camera used in our

solution records 30 frames per second with a resolution of

3840 by 2160 pixels and a field-of-view of 67.2◦ horizontal

and 53.0◦ vertical. Depending on the rate of droplet activity,

ten to twenty frames per second are extracted from the videos

and saved as images in JPEG format.

A visual fiducial system based on Apritags [18] is used to

locate and identify the biochip in images or video streams,

as shown in Figure 3. Four numbered Apriltags are placed

in known positions on the four corners of the stainless steel

frame surrounding the biochip and are used to extract physical

reference points in the image. These points are used to de-

warp and crop the original image in order to produce images

that consistently contain only the biochip active area. In this

way, the pixel coordinates of each electrode in a set of images

remain the same independently of external disturbances such

as camera shack, tilt, or rotation. In addition, it also eliminates

the possibility of erroneously identifying objects outside the

biochip as droplets. If needed, the images are then scaled to

the desired resolution, such as 640 by 360 pixels.

For testing purposes, we trained and used models for RGB

images, as well as models for grayscale images. For the latter,

an additional grayscale conversion step is carried out during

the pre-processing phase. Converting RGB images to grayscale

reduces the input dimension leading to faster training and

detection [19]. However, this introduces a trade-off between

speed and detection accuracy, as shown later in the experimental

evaluation.

C. Post-Processing

The results produced by the YOLOv5 framework consist

of a list of descriptors of the detected droplets and bubbles.

Each descriptor includes the detected class, the coordinates of

the center of a bounding box enveloping the detected object,

the width and height of the box, and the detection confidence

TABLE I
DATA SET DIVIDED INTO THREE GROUPS. FOR EACH GROUP, THE AMOUNTS

OF IMAGES AND LABELED OBJECTS ARE REPORTED.

Data set Images Bubbles Droplets Hands

Dclose up 1069 0 2383 0

Dfull 4272 0 19642 267

Dfull bubbles 843 11397 4860 0

score. The box coordinates and sizes are provided as normalized

values against the image width (for x-values) and height (for

y-values) of the input image.

At first, the detections are filtered depending on the confi-

dence score to discard false detections. Then, an output image

is generated by overlay boxes enveloping the detected objects.

Using the AprilTag-based fiducial system and the topology

information of the biochip electrodes, we can compute the

electrode coordinates on which the center of the droplets lies.

For droplets, this information can be used to detect missed-

movements events by comparing the detected position with the

expected ones. For bubbles, it can be used to divert the path

of a droplet or to attempt to push the bubble away.

D. Training Data Set

To train the CNN, we have generated a large data set con-

sisting of images created with the pre-processing methodology

previously presented. YOLOv5 expects annotations in a text

file according to a format similar to the one used in the results,

where each line of the file describes a bounding box. We

used Roboflow1, a popular image annotation tool, to label the

objects of interest in the images. We labeled every droplet

that occupies from half to 22 electrodes (approx. 1 - 44 µl)

as “droplet” and every bubble that occupies from a quarter to

seven electrodes as “bubble”. To test the extensibility of our

models, we also added the label “hand” in a subset of images

to mark user hands entering the frame to perform operations

on the biochip.

Overall, we have divided our data set into three groups, as

shown in Table I. The data set Dclose up contains close-up

images without any pre-processing. This data set was used

to train a preliminary test model. The data sets Dfull and

Dfull bubbles contain full-view images with and without bubbles,

respectively. These two data sets were used to train the main

models. The table also shows the size of the data set groups

and the number of labeled objects in each group. Each data

set group can be used to train models using RGB or grayscale

images since color does not affect the position of droplets and

bubbles.

The images of every data set group were randomly divided

into the training set, validation set, and test set with the

proportion of 7:2:1, respectively. The training set was used for

the development of the YOLOv5 model, the validation set was

used for evaluating the performance of the model while tuning

1Roboflow: https://roboflow.com/
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Fig. 4. Diagram of the cloud-based solution with multiple clients. The detection
application and the MQTT broker are deployed on two different remote
machines.

the hyperparameters of the model, and the test set was used

for testing the performance of the final model.

E. Implementation

We structured the implementation of the detection application

in three parts: a client, a detection server, and a MQTT broker

server. The client contains the logic close to the DMF platform.

It manages the camera input and forwards the video stream to

the detection server. The detection server performs the image

pre-processing, the detection using the YOLOv5 framework,

and the post-processing of the result. The results are then sent

to an MQTT broker server to which the client can subscribe

to access the detection information.

The three parts can be deployed in the same machine or

in different ones depending on the use-case requirements. For

example, for point-of-care diagnostic applications in regions

with limited connectivity, the local deployment could be

preferable. On the contrary, for use in research or high-

throughput diagnostic, the detection server can be deployed

in a remote machine with high-performance GPUs. Remote

deployment can also help reduce the cost of the DMF platform

due to reduced local computational requirements. In addition,

it allows for centralized detection model updates and data

collection for further training. Figure 4 shows a diagram of the

cloud-based solution where multiple clients use the detection

application and the MQTT broker deployed on two different

remote machines.

IV. EXPERIMENTAL EVALUATION

A. Overview

The proposed solution is evaluated in terms of detection

speed, mean average precision (mAP), extensibility, and

robustness. In total, eight models were trained and evaluated

using the three data sets presented in Table I. Table II reports

the results for all the models. The subscript in the models’

names are defined as follows:

c : the close-up data set (Dclose up) is used;

f : the full-view data sets (Dfull and/or Dfull bubbles) are used;

b : bubbles are included;

h : hands are included;

g : grayscale images are used;

r : RGB images are used.

For example, Mfgb represents a model trained with full-view

grayscale images that contain droplets and bubbles.

At first, we trained the models Mcg and Mcr as a preliminary

test to verify the feasibility of using the YOLOv5 framework

for droplet and bubble detection before carrying out the labeling

of a large image set. The data set used to train these models

is Dclose up. The two models were trained using the same

annotations on grayscale and RGB versions of the images.

Results are reported in the first two rows of Table II. The model

achieved a high level of accuracy, which justified advancing

with further experiments.

The other six rows of the table are dedicated to models

trained upon the full-view data sets Dfull and Dfull bubbles.

Each model was trained with the grayscale and RGB versions

of the images. Mfg and Mfr were trained using the data set

Dfull, but excluding the labeled hands, while Mfgh and Mfrh

were trained using the same data set including hands to test

extensibility. Finally, Mfgb and Mfrb include bubbles and were

trained using the Dfull and Dfull bubbles data sets.

B. Detection Speed

To evaluate the detection speed, we executed tests for all

the models on the corresponding validation set targeting a

‘Tesla V100 PCIE 16GB’ GPU and a ‘12th Gen. Intel Core

i7-12650H 2.30 GHz’ CPU. Table II shows the detection time

for all the models.

By running trained models with the GPU and comparing

every grayscale model and its corresponding RGB model, we

can notice that the grayscale versions tend to have a smaller

detection time due to the smaller data size associated with

each pixel. The speed of the proposed solution is overall high,

with a total detection time smaller than 2.7 ms for models

containing a single class and smaller than 8.1 ms for models

containing multiple classes.

When running the models on the CPU (personal computer

without GPU support), the total detection time is smaller than

76 ms for models containing a single class and smaller than

83 ms for models containing multiple classes. These detection

speeds are more than sufficient for practical applications. In this

case, grayscale models do not always perform faster than RGB

models, even if they appear to perform better when deployed

on a GPU.

C. Accuracy (mAP)

To evaluate the detection accuracy, we use the average preci-

sion (AP) and mean average precision (mAP) metrics.Average

precision (AP) estimates the area under the curve (AUC) of

the precision vs. recall relationship [20]. The AP@0.5 means

that the AP is calculated using an intersection over union

(IoU) threshold of 0.5, where IoU indicates the overlap of the

predicted and the ground truth bounding boxes. The AP@.5:.95
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TABLE II
PERFORMANCE RESULTS FOR ALL TRAINED MODELS.

Detecting time (ms)

Model name Color mode Class name AP@.5 AP@.5:.95 mAP@.5:.95 Intel Core i7 Tesla v100

Mcg Grayscale Droplet 0.995 0.938 0.938 72.4 2.5

Mcr RGB Droplet 0.993 0.874 0.874 74.3 2.7

Mfg Grayscale Droplet 0.995 0.921 0.921 73.2 2.4

Mfr RGB Droplet 0.995 0.920 0.920 76.0 2.7

Droplet 0.995 0.921
Mfgh Grayscale

Hand 0.935 0.755
0.838 74.1 2.5

Droplet 0.995 0.921
Mfrh RGB

Hand 0.960 0.801
0.861 74.4 2.5

Droplet 0.995 0.783
Mfgb Grayscale

Bubble 0.974 0.630
0.706 83.0 6.5

Droplet 0.994 0.811
Mfrb RGB

Bubble 0.923 0.637
0.724 81.4 8.1

is the average AP over ten IoU thresholds from 0.5 to 0.95

with a step of 0.05. The mAP for object detection is the mean

of the APs over all object classes.

Table II reports the AP@.5 and AP@.5:.95 metrics for all

the classes in each model. All the AP@.5 are higher than

0.923 and, for the droplet class, they are higher than 0.993.

The AP@.5:.95 is higher than 0.874 for the models detecting

the single droplet class. However, for models containing two

classes, the AP@.5:.95 is lower, reaching a minimum of 0.630.

This means that the models are overall very good at detecting

the presence of droplets and bubbles, but the accuracy decreases

as the IoU threshold approaches 0.95. This is particularly true

for the Mfgb model. In other words, if the IoU threshold turns

higher, detections with lower IoU values will be considered as

false. Thus, reducing the AP value. Nevertheless, the mPAs for

all models are higher than 0.706 and experiments have shown

that the achieved accuracy is more than sufficient for practical

applications in the DMF context.

Comparing the mAP@.5:.95 of RGB models and grayscale

models, we can observe that grayscale models can detect

droplets better when only the droplet class needs to be detected.

However, if we need to recognize both droplets and bubbles, or

droplets and hands, the RGB model performs better. This shows

that the information on distinguishing features of bubbles is

partially contained in the color channels.

D. Extensibility

To verify that our model can be extended when more classes

need to be detected, we introduced hand detection in the

existing models Mfg and Mfr to get Mfgh and Mfrh, respectively.

The mAP@.5:.95 of both extended models is higher than

0.838. This confirms that it is possible to extend our models

to introduce more objects, such as pipettes and tweezers.

E. Robustness

As previously stated, external disturbances from the camera

and objects outside the biochip can be effectively eradicated

by pre-processing. An ideal detector should be insusceptible

to the intra-class variation such as different shapes, sizes, and

colors of droplets, while maintaining sensitivity to the inter-

class variations (droplets and bubbles). The robustness of our

system is measured by the ability to accurately detect and

distinguish droplets from bubbles, especially for transparent

droplets which are almost invisible and indistinguishable from

bubbles to the human eye.

To demonstrate robustness, we tested the Mfrb model with

images containing extreme cases. Figure 5 shows a selection

of detection results. Detection videos are also available2,3.

Droplets are enclosed in green rectangles, while bubbles are

enclosed in red rectangles. In the figure, we can observe that

the model can detect droplets regardless of their colors, also

including transparent ones.

The model also succeeded in detecting merging droplets

as shown in Figures 5e and 5h, even when the two droplets

do not have the same color. Moreover, transparent droplets in

2Droplets and bubbles: https://tinyurl.com/3acfa723
3Droplets with different colors and shapes: https://tinyurl.com/bdcnrw2c
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(a) Green droplets. Left one is split-
ting.

(b) Green droplet has split. Red
droplet is splitting.

(c) Colored droplets. Few small bub-
bles.

(d) Colored and transparent droplets.

(e) Red and green droplets are merg-
ing.

(f) Red and transparent droplets. large
and small bubbles.

(g) Blue, black and transparent
droplets. Small bubbles.

(h) Blue droplet. Black and trans-
parent droplets are merging. Small
bubbles.

Fig. 5. A selection of detection results.

Figures 5d–5g were distinguished from bubbles as expected.

Figures 5f–5h show a complex biochip configuration with

numerous droplets and bubbles. Also in this case, the model

can detect droplets and bubbles with almost all confidence

scores above 0.8. In Figures 5g and 5h, some minuscule

bubbles (approx. less than 0.5 µl) were not identified. This is

an expected behavior since they were not labeled in our data

set. These minuscule bubbles do not pose a threat to droplets

and can be easily pushed away by droplets without interfering

with their motion.

V. CONCLUSION

In this paper, we presented a solution for real-time detection

of droplets and bubbles in DMF biochips based on the YOLOv5

framework in combination with specialized pre and post-

processing techniques. Our own data set consisting of 5115

images containing a total of 24502 labeled droplets and 11397

labeled bubbles was used to train six main models. We also

presented an implementation to support cloud-based and local

deployment of the solution. The solution was evaluated in

terms of speed, accuracy, extensibility, and robustness, showing

excellent results. In summary, the contributions of this paper

are: (1) the AI-based solution able to detect and distinguish

bubbles and droplets, (2) the versatile solution for cloud-based

and local deployment, and (3) the large labeled data set.
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