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Abstract—Base stations in cellular networks must operate lin-
early, power efficiently, and with ever increasing flexibility. Recent
FPGA hardware advances have demonstrated linearization using
neural networks, however the latency introduced by these solutions
is a concern. We present a novel hardware implementation for
a low digital cost, high throughput pipelined Real Valued Time
Delay Neural Network (RVTDNN) structure with a hardware-
efficient activation function. Network training times are reduced
by minimizing the training signal samples used, based on a biased
probability density function (pdf). The design has been experimen-
tally validated using an AMD/Xilinx RFSoC ZCU216 board and
surpasses the data throughput of conventional RVTDNN-based
DPD while using a fraction of their hardware utilization.

Index Terms—Digital predistortion, Time Delay Neural Net-
works, FPGA, power amplifiers, MIMO

Power Amplifiers (PAs) are core components for cellular
network base stations. As PA bandwidths become wider and
more power efficient, their behavior becomes more non-linear.
To maintain the power efficiency but linearize the nonlinear PA
output, Digital PreDistortion (DPD) techniques are employed.

FPGA-based implementations for DPD have been published
for polynomial-based structures and neural networks [1]–[4].
This work extends the state-of-the-art by implementing a neural
network solution on FPGA fabric with lower latency. Previous
works have avoided investigating how the coefficient training
is to be carried out at the network edge. Implementations of
DPD with changing coefficients on FPGA fabric have been
performed by training offline [5]. In this paper, we present
an augmented neural network structure with advanced training
methodologies to reduce the training time. One focus is on
the minimisation of training time through intelligent selection
of training samples. A second focus is more efficient digital
instantiations for the activation functions to speed up the
forward path calculation of DPD.

The contributions of this work are: 1) A procedure for
reducing the number of training samples used while retaining
important signal characteristics to enable real-time training;
2) an efficient FPGA implementation of predistortion using
RVTDNN that makes use of an accurate activation function;
and 3) the application of training and DPD to multiple PAs for
MIMO operation.

RVTDNN FOR DPD
a) Training for DPD: To train the RVTDNN to perform

DPD, the Indirect Learning Architecture (ILA) is used com-
bined with biased pdf training. We do training on the RFSoC

ARM processor and inference on its FPGA fabric. This allows
us to rapidly adapt to changes in the current environment and
the devices’ region of operation. To speed up the training phase
of RVTDNN on the ARM processor, the training data set is
reduced without losing its range of characteristics. In this paper,
we use a subset of four PAs’ averaged output signal samples
guided by the biased pdf. This method first bins the inputs
to RVTDNN in hardware in a computationally efficient way.
Subsequently the linear and nonlinear parts of the training data
are separated according to a threshold, and random samples are
selected from each bin in the linear part as a fraction of the
bin size while also keeping previous samples according to the
memory tap size. In addition, all samples from the signal’s
nonlinear part and their previous samples (according to the
memory tap size) are selected. Fig. 1. shows the biased pdf
based sample selection used in a two layer RVTDNN where
the subsampling fraction of linear samples is chosen to be 0.3
and the threshold between linear and nonlinear samples is 0.7.
The yellow part shows the samples retained for training. After
biased pdf sample selection, the training sample size is reduced
from 204.8K to 64.7K in this example.

Fig. 1. pdf of Biased Subsampling

b) Pipelined RVTDNN: The RVTDNN digital implemen-
tation involves linear operations (weighted multiplications and
additions) for neural net outputs, while it also makes use of
Look-up Tables (LUTs) for nonlinear activation functions. To
use the hardware resources efficiently, the hidden layer neuron
structure makes use of the DSP48 slices available in the FPGA
fabric. Fig. 2 shows that in a single neuron, the inputs after
delay taps are multiplied by the corresponding weights and
accumulated in sequence to be fed into the activation function
block. The nonlinear hyperbolic tangent sigmoid function used
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is defined by:

tansig(n) =
2

1 + exp(−2n)
− 1 (1)

We multiply the output of the hidden layer neuron using
a shift operation, and use LUTs and adders to implement
the exponential function and get the 16-bit fixed-point output.
By using this pipelined architecture and LUT-based nonlinear
activation function, for N hidden neurons with M delay taps,
the design requires only 2N(M + 1) DSP48 slices.

Fig. 2. A Single Hidden Neuron Structure

c) RFSoC Architecture: Our MIMO DPD system is de-
signed based on the AMD/Xilinx RFSoC ZCU216 board to
test the performance. This RFSoC evaluation board with 16
pairs of integrated 14-bit ADCs and DACs, a quad core ARM
processor and FPGA fabric is an excellent target for verifying
this subsample-trained and pipelined-RVTDNN based DPD.
The SoC architecture is shown in Fig. 3. The signal to be
transmitted, sent from the host computer, will go through the
Processor System (PS) side DDR memory and then be stored in
the external DDR4 on the Programmable Logic (PL) side. The
RF front end DAC will transmit the signal by reading DDR4
memory repeatedly. After the signal passes through the four
power amplifiers, the four PAs’ outputs will be written back to
the PS and used in the DPD training phase.

Fig. 3. SoC Architecture

RESULTS

DPD testing targets four Skyworks SKY66297-11 4W PAs
with the AMD/Xilinx RFSoC ZCU216 board. A customized
5MHz LTE signal with peak-cancellation crest factor reduction
(PC-CFR) is used for a 16-neuron hidden layer, 2-neuron output
layer RVTDNN. For the activation functions, the hidden layer
uses the hyperbolic tangent sigmoid function, while the output
layer uses a purely linear function.

We set the sampling fraction to 0.8 and threshold to 0.4 for
the biased pdf-based subsampling function. The signal quality
is measured by Normalised Mean Square Error (NMSE) and
Adjacent Channel Leakage Ratio (ACLR). The NMSE and
ACLR from RVTDNN with bias pdf subsampling method is

-24.32 dB and -37.60 dB, while without subsampling it is -
23.04 dB and -37.55 dB. The biased pdf-based subsampling
RVTDNN can offer a similar or even slightly better result
in terms of accuracy while using less training time. The
signal without DPD only gets NMSE and ACLR as -15.77
dB and -32.17 dB. The improvement is because the biased
pdf-based subsampling method reduces the training data size
while making the neural network more focused on the nonlinear
characteristics. The DPD spectrum performance is shown in
Fig. 4, which shows the averaged AM/AM curve and spectral
response of all the PAs. The hardware utilization of pipelined
RVTDNN is much smaller than the conventional RVTDNN
structure with a similar operating frequency of around 270
MHz. The pipelined RVTDNN uses only 287 DSP slices, 2385
LUTs, and 2597 flip flops, while the conventional structure uses
700 DSP slices, 6061 LUTs, and 4732 flip flops.

CONCLUSION

Achieving a more computationally efficient implementation
for multi-path digital pre-distortion is critically important for
future cellular network base stations. In this paper, we present a
neural network structure that improves performance compared
to previous neural network based DPD instantiations on FP-
GAs. In addition, a novel approach to selecting samples to
reduce the training time has been presented that preserves the
non-linear samples.

Fig. 4. DPD performance
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