
Automated Energy-Efficient DNN Compression

under Fine-Grain Accuracy Constraints

Ourania Spantidi and Iraklis Anagnostopoulos

School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, U.S.A.

{ourania.spantidi,iraklis.anagno}@siu.edu

Abstract—Deep Neural Networks (DNNs) are utilized in a
variety of domains, and their computation intensity is stressing
embedded devices that comprise limited power budgets. DNN
compression has been employed to achieve gains in energy
consumption on embedded devices at the cost of accuracy loss.
Compression-induced accuracy degradation is addressed through
fine-tuning or retraining, which can not always be feasible.
Additionally, state-of-art approaches compress DNNs with respect
to the average accuracy achieved during inference, which can be
a misleading evaluation metric. In this work, we explore more
fine-grain properties of DNN inference accuracy, and generate
energy-efficient DNNs using signal temporal logic and falsification
jointly through pruning and quantization. We offer the ability to
control at run-time the quality of the DNN inference, and propose
an automated framework that can generate compressed DNNs
that satisfy tight fine-grain accuracy requirements. The conducted
evaluation on the ImageNet dataset has shown over 30% in energy
consumption gains when compared to baseline DNNs.

Index Terms—Deep Neural Networks, Signal Temporal Logic,
Pruning, Quantization, Falsification

I. INTRODUCTION & RELATED WORK

Deep Neural Networks (DNNs) have attracted a lot of

research attention in the past years, becoming more and more

complex to accommodate modern demands in multiple co-

mains [1]. Embedded devices struggle to meet these demands

since they comprise limited budgets in terms of both computa-

tion and power and thus, they integrate hardware accelerators

that consist of multiple multiply-accumulate (MAC) units [2].

However, the inclusion of high numbers of MAC units can

result in elevated energy requirements and power consump-

tion [3] and therefore, there is a need to balance the DNN

energy consumption with their inference accuracy.

Compressing DNNs to smaller model sizes reduces their en-

ergy consumption at the cost of accuracy degradation [4]. One

commonly followed approach is quantization, where methods

quantize DNN weights to lower bit-widths. Each DNN layer

has varying sensitivity to lower bit-width quantization and thus,

works that quantize all layers to the same bit-width [5], [6] can

achieve non-efficient solutions. A way to combat this issue is to

apply mixed precision quantization to both the weights and the

activations. However, the search space for this problem is vast:

for a DNN comprising L layers and 8 available bit-widths (1

to 8), the number of possible combinations is 82×L. The work

in [4] addresses this problem through Reinforcement Learning

(RL), fine-tuning, and retraining.

Another way to compress a DNN model is pruning, where

the non-zero parameters in the DNN are decreased through a

variety of ways, deeming its layers sparse. The work in [7]

zeroes weights whose magnitude exceeds a specified thresh-

old, but another approach is to remove entire channels (fil-

ters/neurons) [8]. The work in [9] introduced depth-wise and

shape-wise sparsity in DNN pruning, where instead of pruning

individual weights, groups of weights are pruned instead. The

work in [10] employs RL to prune convolution channels. To

recover from the pruning-induced accuracy loss, these works

fine-tune the compressed generated models.

The combination of both pruning and quantization has also

been employed to generate compressed DNNs. It is evident that

the search space becomes even more abysmal when compared

to only employing quantization as a compression technique.

The work in [11] performs training jointly with pruning and

quantization through Bayesian optimization. However, this

work alongside others use human heuristics [12], [13], therefore

another issue that arises is how to automatically generate com-

pressed DNNs. The work in [14] jointly quantizes and prunes

DNNs by updating the weight parameters with unified channel-

wise pruning, while the work in [15] jointly compresses DNNs

through the alternating direction method of multipliers. Both of

these works propose automated frameworks, however they still

employ retraining/fine-tuning to recover from the compression-

induced accuracy loss [12]. Retraining is a time-consuming

process that might not even be feasible [16]. Therefore, there

is still a need for an automated DNN compression framework

that does not rely on retraining or fine-tuning.

In this work, we utilize Signal Temporal Logic (STL) to con-

duct an automated systematic search for compression configu-

rations that satisfy fine-grain accuracy properties. The proposed

framework generates energy-efficient compressed DNNs using

both pruning and quantization. The contributions of this work

are many-fold: (1) we formalize accuracy properties of DNNs

through STL and formulate fine-grain accuracy requirements,

(2) the proposed framework utilizes robustness metrics to

guide the optimization procedure that generates compressed

DNNs, (3) the optimization phase explores the joint pruning-

quantization search space based on formal properties, (4) we

enable the run-time control of the quality of DNN inference in

terms of both accuracy and energy consumption, (5) we gen-

erate compressed DNNs without any additional fine-tuning or

retraining, and (6) we evaluate our work on different hardware

architectures to show its adaptability.

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Weight

bit-width

Activation

bit-width

Pruning

ratio

Optimization Knobs

Layer 1 Layer 2 Layer L

...

Pre-trained

DNN Model

STL queries

Sec. II.B.1

Robustness

Calculation

robustness

Pruned &

quantized

model

DNN

Accelerator

Inference

A
cc

u
ra

cy
Batch #

Automated exploration of joint search space

Sec. II.B.2

Pareto-front

Operating Points

<Energy gains, average accuracy

drop, compression configuration>

Operating points

Sec. II.B.3

Run-time

Sec.III.B

DNN Accelerator

A
cc

u
ra

cy

d
ro

p

Energy gains

Accuracy, Energy

Compressed

DNNs ranked

by robustness

High

Performance

Standard

Mode

Power

Saving

0.5%

1%

2%

User Selection

inference

φᴬ = □a...

φᴮ = □a∧b...

φᶜ = □a∧b∧c...

Fig. 1: The execution flow of the proposed framework.

Fig. 2: Per-batch accuracy signal for ResNet-18 on ImageNet.

II. METHODOLOGY

A. Motivation - Every batch matters

Related works targeting DNN compression [4], [15] focus

on Top-1 and/or Top-5 average accuracy. Even though these

have been widely used as the DNN performance evaluation

metrics, we argue that targeting only average accuracy can hide

accuracy drops per batch that may be crucial at run-time. The

accuracy drop per batch can be so low that it can be deemed

unacceptable [17], and large accuracy drops can impose issues

when a specific quality of service is required over the entire

inference phase [18]. Specifically, in edge devices the batch size

on DNN inference is fairly small (e.g., 16 or even 1) and thus,

large consistent drops in accuracy could gravely affect run-time

performance. Therefore, only targeting and examining the final

average accuracy of the inference can be misleading. Contrary

to related works, we consider the inference accuracy to be a

trajectory with elements Acccompressed,i −Accbaseline,i where

i ∈ [1, batches]. By following such an approach, we can further

examine how a compressed DNN behaves during inference

for each incoming batch, while also aiming for a specific

average accuracy target. For simplicity purposes, we consider

image classification tasks and DNNs, even though the proposed

method can be applied to any type of DNN. Figure 2 shows an

example of how an accuracy trajectory looks on a compressed

ResNet18 DNN on the ImageNet dataset for 100 random

batches of size 16 according to [4], with the baseline being the

8-bit pre-trained ResNet-18. The average accuracy drop from

the baseline is just 2%, however it can be seen that there are

accuracy drops for multiple batches. Specifically, the accuracy

drop for one batch is even less than -30%. Additionally, more

than 40% of the batches are below 0, meaning that an additional

misclassification on top of the baseline occurs more than 40%

of the time. This behavior can be deemed unacceptable in some

scenarios, e.g., in DNN inference on steady streams of data

through sensors (e.g., LiDAR or RADAR) in image recognition

tasks for autonomous vehicles. In this work, we show how we

can generate solutions that not only target the average accuracy

during DNN inference, but also take into consideration more

intricate accuracy properties.

B. Proposed Framework

The target of the proposed framework is to use formal

properties to jointly and systematically explore the pruning

and quantization search space, automatically generating DNNs

that satisfy specific performance constraints without additional

retraining or fine-tuning. Figure 1 provides an overview of

the proposed framework, presented in detail in this section.

First, we define the Signal Temporal Logic (STL) queries

that formally express the fine-grain accuracy properties each

given DNN must satisfy (Section II-B1). Each layer of a

given pre-trained DNN model gets assigned a weight bit-width,

an activation bit-width and a pruning ratio, and the resulting

compressed DNN is evaluated for its inference accuracy and

energy consumption. The inference accuracy is analyzed for

its robustness, which is calculated based on the initially defined

STL specification. A stochastic optimization process is guided

by the robustness value to select on the next weight bit-

width, activation bit-width and pruning ratio values for each

layer (Section II-B2). Afterwards, all the generated compressed

DNNs are ranked based on their robustness, and we extract

operating points based on the DNN compression configurations

that lie on the Pareto-front. We further filter these configurations

to create three different modes of operation that enable the

end user to control the quality of DNN inference at run-time

(Section II-B3). In this section, we describe in detail all of the

aforementioned steps.

1) Capturing Accuracy Properties with Signal Temporal

Logic: As mentioned in Section II-A, in this work we intend

to explore more accuracy properties during DNN inference

contrary to state-of-art where only average accuracy matters [4],

[15]. We achieve this by treating the inference accuracy as

an output trajectory, where each of its points is the achieved

accuracy per batch. To directly derive information about the

inference accuracy of a compressed model, we examine the

accuracy drop per batch when compared to the initial DNN

!

!

model. Specifically, each output trajectory point corresponds to

AccDNNc,i −AccDNNb,i where AccDNNc,i is the compressed

model’s accuracy for batch i and AccDNNb,i is the baseline

model’s accuracy for batch i. By incorporating more fine-

grain accuracy information in the exploration procedure of

the proposed framework, we avoid additional time-consuming

retraining and/or fine-tuning. At the same time, we guarantee a

compression combination of pruning and quantization that can

satisfy tight accuracy constraints.

By considering DNN inference as a trajectory, we can

use STL, a specification formalism that is used to describe

system properties [19]. The metric of robustness is utilized to

quantify how near or far a trajectory is from violating a system

requirement ϕ. STL requirements are posed using combinations

of Boolean and temporal operators. In this work we will be

using the notions of conjuction ∧, and the “always” operator

✷φ which means that the STL specification φ should always

hold in the entirety of the trajectory. We also use the “relaxed

always” operation X
✷φ, where φ is allowed to hold just for

X% of the trajectory points [17].

We construct a variety of STL queries in an attempt to gen-

erate as many diverse compression combinations as possible.

We start with the initial query ϕA and build more elaborate

queries on top of it.

A: The average accuracy drop of the compressed DNNc

network should not fall below a predefined drop threshold

from the average accuracy of the baseline DNNb network.

ϕA = □(AccDNNc,avg ≥ AccDNNb,avg −Accthr,avg)

Query ϕA expresses a constraint commonly found in related

works which only targets a specific average accuracy thresh-

old [4], [15], [16]. To fully utilize the ability to systematically

explore DNN inference accuracy properties, we augment query

ϕA with additional requirements.

B: The average accuracy drop of the compressed DNNc

network should not fall below a predefined drop threshold

from the average accuracy of the baseline DNNb network.

Additionally, the maximum number of images that can be

misclassified in each batch is Imax.

ϕB = □(AccDNNc,avg ≥ AccDNNb,avg −Accthr,avg) ∧

□(AccDNNc,batch −AccDNNb,batch ≤
Imax

batchsize

)

In query ϕB we add the requirement of per-batch additional

misclassification. Note that, we count the misclassification

occurences when compared to the baseline DNNb network.

Therefore, if Imax = 5 and DNNb for a random batch

misclassifies 2 images and the compressed DNNc network

misclassifies 3 images for the same batch, the requirement is

not violated. With this requirement we aim to eliminate big

per-batch accuracy drops that would severely deteriorate the

quality of run-time inference. Finally, we further augment ϕB .

C: The average accuracy drop of the compressed DNNc

network should not fall below a predefined drop threshold

from the average accuracy of the baseline DNNb network.

Additionally, the maximum number of images that can be

misclassified in each batch is Imax. Additionally, there

cannot be image misclassifications for more than X% of

the entire inference duration.

ϕC = □(AccDNNc,avg ≥ AccDNNb,avg −Accthr,avg) ∧

□(AccDNNc,batch −AccDNNb,batch ≤
Imax

batchsize

∧

X%
□(AccDNNc,batch −AccDNNb,batch ≥ 0)

In this query, we refine the final accuracy requirements by

combining queries ϕA and ϕB to demand a certain quality

of run-time inference. For instance, if X = 70% for 100

batches, then we can have image misclassifications occur only

in 30 of the total batches. Again, note that we count these

misclassifications on top of the misclassifications of the baseline

DNNb network. The values of Accthr,avg , Imax and X% are

selected based on the demanded quality of DNN inference.

2) DNN compression through Falsification: In this section,

we describe how we combine pruning and quantization on

given pre-trained DNNs, without violating a given STL re-

quirement. At this point we want to note that, the goal of

this work is not to propose a new pruning or quantization

technique, but to combine them in an automated framework

that produces energy-efficient compressed DNNs through the

exploration of the joint search space. Any existing pruning and

quantization algorithm can be integrated into our framework. To

automatically generate compression combinations that satisfy

STL requirements, we use falsification. Falsification is the

process that aims to find violating behaviors of a given STL

specification through stochastic optimization that utilizes the

robustness metric [20]–[22].

Assuming (i) a given pre-trained DNN consisting of L

convolution layers, and (ii) given accuracy specifications, we

characterize each layer li, ∀i ∈ [1, L] with three different

properties: (a) weight bit-width Wli , (b) activation bit-width

Ali , and (c) pruning ratio PRli . We want to jointly combine all

of this information for each DNN layer concisely. Therefore, for

any DNN that comprises L layers, we formulate its properties

through three different vectors: VDNN,w = [Wl1 , ...,WlL],
VDNN,a = [Al1 , ..., AlL] and VDNN,pr = [PRl1 , ..., PRlL].
These three vectors are the compression configuration of the

DNN. Vectors VDNN,w and VDNN,a can have values ranging

within predefined lower and upper bit-width limits. Accord-

ingly, vector VDNN,pr can have values in the range [0, 0.9].
The falsification procedure comprises the following steps:

Step 1: Initially, all the element values of vectors VDNN,w,

VDNN,a and VDNN,pr are random. The lower the selected

values for VDNN,w and VDNN,a, the larger the energy gains of

the DNN inference. Respectively, large values for the pruning

ratios in VDNN,pr are expected to yield elevated gains in

energy consumption. The initially random output compression

configuration is applied on the given DNN, and after the

inference phase on the DNN accelerator, its accuracy trajectory

and output energy consumption are monitored.

Step 2: After the compressed DNN inference, the respective

output accuracy trajectory is analyzed for its robustness based

on the given STL requirement. A positive value of robustness

!

!

indicates satisfaction of the STL requirement, while a negative

value indicates a violation.

Step 3: The robustness value from Step 2 is used as a guide

in a stochastic optimizer that selects the next values of vectors

VDNN,w, VDNN,a and VDNN,pr. We utilize the stochastic

Nelder-Mead algorithm [23], but note that any minimization

algorithm can be employed in this part of the framework. At

first, the vector values selected by the optimizer are expected

to yield negative robustness results, but with each iteration the

robustness value is correlated with the compression configura-

tion, leading eventually to acceptable results.

Steps 1-3 constitute the falsification procedure which is

repeated for a pre-determined amount of iterations. Through

falsification, we aim to find robustness values close to zero

in order to push the compressed DNN accuracy towards the

requirement boundaries. This way, the generated compression

configurations will satisfy the initial set requirements, while

achieving gains in energy consumption.

3) Creating operating points: The falsification loop de-

scribed in Section II-B2 results in the generation of multiple

compression configurations. However, we are only interested

in keeping the configurations that are correlated with non-

negative robustness values. To that end, we construct a Pareto-

front from the results of the falsification process with respect

to the average accuracy drop and the energy gains monitored

in Section II-B2. For each combination that lies on the Pareto-

front, we construct operating points that contain the following

information: (a) the associated energy gains, (b) the average

accuracy drop AccDNNc,avg , and (c) the compression con-

figuration. We further filter these operating points to achieve

run-time control of DNN inference. We vary Accthr,avg ∈
{0.5%, 1%, 2%} and offer three different modes of operation

to the end user shown in Figure 1, namely:

(a) High Performance mode (HP): When HP is selected,

the configuration that corresponds to the highest energy

savings value is selected, with Accthr,avg = 0.5%.

(b) Standard mode (SM): Initial mode of operation. User can

switch back to SM at any given time. The configuration

with the highest energy savings is selected with the

accuracy constraint: Accthr,avg = 1%.

(c) Power Saving (PS): This mode expands the accuracy drop

tolerance threshold, aiming to offer the ability to maximize

energy gains. The accuracy constraint is Accthr,avg = 2%.

By setting Accthr,avg ∈ {0.5%, 1%, 2%} we therefore enable

the co-existence of three different user modes of operation. Al-

lowing for interactive user input requests that affect the quality

of run-time performance (in this case DNN inference accuracy)

is common in systems that are powered by batteries such as

smartphones [24]. Each one of these three final configurations

is stored in memory and can be loaded at run-time based on

the user input command.

III. EXPERIMENTAL EVALUATION

We evaluate the proposed framework on the ImageNet

dataset and compare our results with the state-of-the-art works

HAQ [4] and ANNC [15]. The DNNs chosen for the evaluation

TABLE I: Evaluation of queries ϕEi across multiple DNNs on

the ImageNet dataset for Accthr,avg = 1% on Eyeriss [25].

ϕ
E1

1%
ϕ

E2

1%
ϕ

E3

1%

ResNet-18
Acc Drop 0.56% 0.8% 0.66%

Energy Gains 21.65% 27.41% 18.85%

ResNet-50
Acc Drop 0.74% 0.78% 0.53%

Energy Gains 15.5% 18% 11.77%

VGG-11
Acc Drop 0.63% 0.93% 0.57%

Energy Gains 10.72% 13.87% 8.08%

VGG-16
Acc Drop 0.56% 0.84% 0.78%

Energy Gains 33.03% 36.86% 21.38%

AlexNet
Acc Drop 0.95% 0.97% 0.69%

Energy Gains 15.51% 16.32% 9.44%

MobileNetV2
Acc Drop 0.72% 1% 0.62%

Energy Gains 11.2% 14.45% 6.74%

SqueezeNet
Acc Drop 0.73% 0.89% 0.7%

Energy Gains 9.85% 10.61% 6.54%

are the ResNet-18, ResNet-50, VGG-11, VGG-16, AlexNet,

MobileNetV2 and SqueezeNet, which are all trained through

PyTorch. As a baseline for the accuracy and energy consump-

tion shown in our experiments, we consider the 8-bit quantized

equivalent of each DNN. We evaluate the proposed framework

on an Eyeriss-based accelerator [25] and BitFusion [26]. Re-

garding pruning, we employ the filter pruning in [8], while

for quantization we use the post-training method in [27]. Note

that, any pruning and quantization algorithm can be integrated

in our framework. The optimization procedure described in

Section II-B3 is repeated for 100 iterations.

A. Evaluated STL Queries

We utilized, as a template, the general query ϕC shown in

Section II-B1. In particular, we considered batch size of 16 and

we evaluated the following query variations ϕEi :

(a) ϕE1 : for each batch at most 25% of the images can be

misclassified and therefore, Imax = 4. For the entirety

of the inference duration, there will be no additional

misclassifications on top of the baseline ones for 70% of

the time and thus, X = 70%.

(b) ϕE2 : Imax = 5 and X = 60% (more relaxed than ϕE1)

(c) ϕE3 :Imax = 3 and X = 80% (more strict than ϕE1)

As aforementioned in Section II-B3, we vary Accthr,avg ∈
{0.5%, 1%, 2%} Even though we consider batch size of 16,

the proposed approach is scalable to any desired number of

batch sizes as long as the values for Accthr,avg , Imax and X%
change accordingly. For instance, for a batch size of 1, which

is commonly used in edge devices, Imax should be removed

since there can only be 0 or 1 miss-classification per batch.

Table I shows the conducted evaluation on the three

queries ϕE1 , ϕE2 and ϕE3 for the average accuracy threshold

Accthr,avg = 1% on Eyeriss [25]. As expected, in all cases the

relaxed query ϕE2 achieves the highest gains in energy, and the

strict ϕE3 query the lowest. On average, ϕE1 achieved 16.78%,

ϕE2 19.65%, and ϕE3 11.83% in energy savings across all

DNNs. The proposed framework was able to produce com-

pression configurations under all accuracy constraints imposed

by the ϕEi queries, both strict and relaxed.

!

!

Fig. 3: ResNet-18 on ImageNet: Candidate configurations from

the ϕE1 query on Eyeriss [25].

Fig. 4: ResNet-18 on ImageNet: The effect of High Perfor-

mance (HP), Standard Mode (SM) and Power Saving (PS) at

run-time inference on Eyeriss [25].

B. Run-time flexibility of DNN inference

Figure 3 shows a portion of the solutions produced by

the proposed framework on Eyeriss [25] for the ResNet-18

for query ϕE1 . The three different accuracy drop thresholds

Accthr,avg for each mode are indicated on the plot, alongside

the Pareto-front from which we select operating points as

explained in Section II-B3.

Figure 4 shows an example of the usage of different operating

modes for the ResNet-18. Each time instance represents a batch

of 16 incoming images. At each time instance, we calculate the

accumulated accuracy up to that point and show the drop from

the baseline for each operating mode. The mode of operation is

being changed every 400 batches except at the very end where

the HP mode is selected for the last 724 batches. By combining

different modes, we can achieve a run-time behavior that is

completely customized to the end user. In this example the HP

mode achieves an average of 0.48% accuracy drop from the

baseline, PS 1.08%, SM 0.89% and the custom user scenario

0.67%. For the entire inference phase, the energy gains from

just the HP mode would be 13.7%, the SM mode 21.65%

and the PS mode 38.38%. With this user combination the

energy savings are 23.3%. Consequently, it can be observed that

custom combinations of operating modes can achieve balanced

solutions that outperform the original operating modes in terms

of energy savings and accuracy drop.

C. Comparison with state-of-the-art

We compared our method against HAQ [4] and ANNC [15].

HAQ [4] only targets mixed precision quantization without con-

sidering pruning in the compression process, while ANNC [15]

considers both the weight bit-width and the pruning ratio as

the optimization knobs. Contrary to both of these works, the

proposed framework does not require any retraining or fine-

tuning. Without any retraining involved, neither of HAQ [4]

nor ANNC [15] were able to produce solutions with accuracy

drop less than 15%. Therefore, we only included part of the

retraining required in our evaluation, since the initially required

retraining is time-consuming. For instance, it took more than

2 days for ANNC [15] to produce a solution for AlexNet on a

server with two Tesla V100S PCIe 32GB GPUs.

Table II shows the energy gains and accuracy drop achieved

by our framework for query ϕE1 and all three modes of

operation SM, HP and PS against HAQ [4] and ANNC [15]

on Eyeriss [25]. The accuracy drop from the 8-bit baseline

is always more than 4% for the compressed DNNs produced

by HAQ [4] and ANNC [15], which is expected since we

do not perform the necessary retraining to its entirety due

to its time cost. HAQ [4] achieves an average of 30% and

ANNC [15] 22.5% in energy gains. The energy gains achieved

by the proposed framework were 16.78%, 12.83% and 26.8%

for the SM, HP and PS modes respectively, with the accuracy

requirements always satisfying the strict constraints described

in Section III-A. For the MobileNetV2 and SqueezeNet DNNs,

our framework generated acceptable accuracy solutions with

significant gains in energy, despite their inherent already com-

pressed structure. Again, we want to emphasize that these strict

accuracy constraints are being satisfied without the need for

retraining and fine-tuning.

We also evaluate our framework on the BitFusion accelera-

tor [26] which can support multiplications of 2, 4 and 8 bits.

We tweak the optimization procedure and round the stochastic

optimizer selections to the nearest bit-width: 2, 4 or 8. No

other alteration in the framework is needed to adapt to different

hardware accelerators. The results of this evaluation are shown

in the last three columns of Table II. Overall, the proposed

framework achieves 12.54%, 9.77% and 20.61% in energy

gains for the SM, HP and PS modes for query ϕE1 respectively.

It can be observed that the gains on BitFusion [26] are smaller

than the ones on Eyeriss [25], since the bit-width combinations

are not as flexible. The most commonly selected bit-widths

were 4 and 8, since 2 severely deteriorates accuracy.

!

TABLE II: Comparison of the proposed framework across multiple DNNs on the ImageNet dataset.

PROPOSED FRAMEWORK

HAQ ANNC ϕE1 SM ϕE1 HP ϕE1 PS ϕE1 SM ϕE1 HP ϕE1 PS

Eyeriss Eyeriss Eyeriss Eyeriss Eyeriss BitFusion BitFusion BitFusion

ResNet-18
Acc Drop 6.45% 5.16% 0.56% 0.24% 1.97% 0.95% 0.44% 1.05%

Energy Gains 36.25% 38.5% 21.65% 13.7% 38.38% 17.85% 12.69% 28.11%

ResNet-50
Acc Drop 8.67% 6.42% 0.74% 0.37% 1.32% 0.62% 0.41% 1.18%

Energy Gains 30.76% 27.65% 15.5% 14.2% 19.73% 14.79% 9.09% 16.56%

VGG-11
Acc Drop 5.75% 4.5% 0.63% 0.39% 1.91% 0.95% 0.47% 1.3%

Energy Gains 35.86% 34.69% 10.72% 8.51% 36.23% 9% 8.1% 27.06%

VGG-16
Acc Drop 4.85% 4.48% 0.56% 0.48% 1.17% 0.78% 0.34% 1.52%

Energy Gains 35.16% 27.22% 33.03% 21.38% 34.36% 14.3% 12.36% 28.04%

AlexNet
Acc Drop 8.76% 4.2% 0.95% 0.45% 1.15% 0.85% 0.49% 1.09%

Energy Gains 33.11% 12.48% 15.51% 13.65% 22.23% 13.82% 12.84% 22.2%

MobileNetV2
Acc Drop 5.21% 4.83% 0.72% 0.36% 1.38% 0.63% 0.36% 1.6%

Energy Gains 32.45% 7.65% 11.2% 9.68% 25.15% 10.45% 7.78% 13.57%

SqueezeNet
Acc Drop 7.65% 6.81% 0.73% 0.46% 1.89% 0.63% 0.11% 1.69%

Energy Gains 11% 8.73% 9.85% 8.66% 11.47% 7.54% 5.54% 8.71%

IV. CONCLUSION

We proposed an automated framework that systematically

explores pruning and quantization compression configurations

based on fine-grain accuracy requirements through STL. At

the same time, the proposed framework avoids fine-tuning

and retraining. The end user is offered three final modes of

operation to control the quality of run-time inference at will.

Extensive evaluation on the ImageNet dataset shows very big

gains in energy consumption, even more than 30% in some

cases when compared to the baseline.

V. ACKNOWLEDGMENT

This research has been supported in part by grant NSF IIP

1361847 from the NSF I/UCRC for Embedded Systems at

SIUC.

REFERENCES

[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proceedings of the 44th annual international symposium

on computer architecture, 2017, pp. 1–12.
[2] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-

friendly package,” IEEE Spectrum, vol. 56, no. 5, pp. 16–17, 2019.
[3] H. Amrouch et al., “Npu thermal management,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3842–3855, 2020.

[4] K. Wang et al., “Haq: Hardware-aware automated quantization with
mixed precision,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2019, pp. 8612–8620.
[5] B. Jacob et al., “Quantization and training of neural networks for efficient

integer-arithmetic-only inference,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 2704–2713.
[6] J. Choi et al., “Pact: Parameterized clipping activation for quantized

neural networks,” arXiv preprint arXiv:1805.06085, 2018.
[7] S. Han et al., “Learning both weights and connections for efficient neural

network,” Advances in neural information processing systems, vol. 28,
2015.

[8] H. Li et al., “Pruning filters for efficient convnets,” arXiv preprint

arXiv:1608.08710, 2016.
[9] W. Wen et al., “Learning structured sparsity in deep neural networks,”

Advances in neural information processing systems, vol. 29, 2016.
[10] Y. He et al., “Amc: Automl for model compression and acceleration on

mobile devices,” in Proceedings of the European conference on computer

vision (ECCV), 2018, pp. 784–800.
[11] F. Tung and G. Mori, “Clip-q: Deep network compression learning by

in-parallel pruning-quantization,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 7873–7882.

[12] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint

arXiv:1510.00149, 2015.
[13] Y. He et al., “Filter pruning via geometric median for deep convolutional

neural networks acceleration,” in Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, 2019, pp. 4340–4349.
[14] P. Hu et al., “Opq: Compressing deep neural networks with one-shot

pruning-quantization,” in Proceedings of the AAAI Conference on Artifi-

cial Intelligence, vol. 35, no. 9, 2021, pp. 7780–7788.
[15] H. Yang et al., “Automatic neural network compression by sparsity-

quantization joint learning: A constrained optimization-based approach,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 2178–2188.
[16] O. Spantidi et al., “Targeting dnn inference via efficient utilization

of heterogeneous precision dnn accelerators,” IEEE Transactions on

Emerging Topics in Computing, 2022.
[17] ——, “Energy-efficient dnn inference on approximate accelerators

through formal property exploration,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp.
3838–3849, 2022.

[18] A. Dokhanchi et al., “Evaluating perception systems for autonomous
vehicles using quality temporal logic,” in International Conference on

Runtime Verification. Springer, 2018, pp. 409–416.
[19] B. Hoxha et al., “Mining parametric temporal logic properties in model

based design for cyber-physical systems,” Int. J. Softw. Tools Technol.

Transf., vol. 20, pp. 79–93, 2018.
[20] H. Abbas et al., “Robustness-guided temporal logic testing and verifi-

cation for stochastic cyber-physical systems,” in Annu. IEEE Int. Conf.

Cyber Technology in Automation, Control and Intelligent, 2014, pp. 1–6.
[21] G. Fainekos et al., “Robustness of specifications and its applications to

falsification, parameter mining, and runtime monitoring with s-taliro,” in
International Conference on Runtime Verification. Springer, 2019, pp.
27–47.

[22] J. Cralley et al., “Tltk: A toolbox for parallel robustness computation of
temporal logic specifications,” in International Conference on Runtime

Verification. Springer, 2020, pp. 404–416.
[23] J. A. Nelder and R. Mead, “A simplex method for function minimization,”

The computer journal, vol. 7, no. 4, pp. 308–313, 1965.
[24] E. Shamsa et al., “Goal-driven autonomy for efficient on-chip resource

management: Transforming objectives to goals,” in 2019 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE). IEEE, 2019,
pp. 1397–1402.

[25] T.-J. Yang et al., “Designing energy-efficient convolutional neural net-
works using energy-aware pruning,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 5687–5695.
[26] H. Sharma et al., “Bit fusion: Bit-level dynamically composable ar-

chitecture for accelerating deep neural network,” in 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 764–775.

[27] N. Zmora et al., “Neural network distiller: A python package for dnn
compression research,” arXiv preprint arXiv:1910.12232, 2019.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

