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Abstract—Data-intensive applications involving irregular mem-
ory streams are inefficiently handled by modern processors and
memory systems highly optimized for regular, contiguous data.
Recent work tackles these inefficiencies in hardware through
core-side stream extensions or memory-side prefetchers and ac-
celerators, but fails to provide end-to-end solutions which also
achieve high efficiency in on-chip interconnects. We propose
AXI-Pack, an extension to ARM’s AXI4 protocol introducing
bandwidth-efficient strided and indirect bursts to enable end-to-
end irregular streams. AXI-Pack adds irregular stream semantics
to memory requests and avoids inefficient narrow-bus transfers by
packing multiple narrow data elements onto a wide bus. It retains
full compatibility with AXI4 and does not require modifications
to non-burst-reshaping interconnect IPs. To demonstrate our
approach end-to-end, we extend an open-source RISC-V vector
processor to leverage AXI-Pack at its memory interface for strided
and indexed accesses. On the memory side, we design a banked
memory controller efficiently handling AXI-Pack requests. On a
system with a 256-bit-wide interconnect running FP32 workloads,
AXI-Pack achieves near-ideal peak on-chip bus utilizations of
87% and 39%, speedups of 5.4x and 2.4x, and energy efficiency
improvements of 5.3x and 2.1x over a baseline using an AXI4 bus
on strided and indirect benchmarks, respectively.

Index Terms—Computer architecture, On-chip interconnects,
Memory systems, Irregular workloads

I. INTRODUCTION

Growing performance demands and large, sparse datasets in
domains like machine learning [1], graph analytics [2], fluid
dynamics [3], and recommender systems [4] push data-driven
applications toward increasingly irregular data access patterns.
This poses a challenge to general-purpose CPUs [5], [6] and
GPUs [4], [7] optimized for highly regular compute. To keep
their functional units highly utilized and achieve satisfactory
performance and energy efficiency, single-instruction, multiple-
data (SIMD) architectures require contiguous data chunks not
naturally found in irregular workloads. Memory hierarchies are
also tuned to contiguous, high-locality data and struggle with
irregular access patterns [5], [6], resulting in long latencies,
poor bandwidth utilization, and cache thrashing.

Existing research aims to improve irregular workload per-
formance and tackle these shortcomings through core-side or
memory-side hardware extensions. Core-side extensions often
use stream abstractions [5], [6], [8]-[10] to describe entire
sequences of irregular accesses, freeing processors from ad-
dress calculation and decoupling memory accesses from exe-

1 Both authors contributed equally to this research.

cution. Most works focus on accelerating strided and indirect
streams, which are most common in practice [6]. Mapping these
streams to architectural registers [6], [8]-[10] further improves
functional unit utilization and enables significant speedups.
However, these works largely ignore downstream interconnects
and memory systems. While some authors propose high-level
cache policies to avoid thrashing [5], [6], they do not address
fundamental limitations like the high index-fetching overhead
of core-side indirection and the inherent inefficiency of narrow
bus accesses in address-based interconnects.

In contrast, memory-side extensions prefetch and accelerate
irregular accesses using pattern-aware memory controllers [11],
prefetchers [12], [13], and data layout transform (DLT) accel-
erators [14], [15]. Unlike core-side extensions, these solutions
reduce access times and prevent narrow bus accesses by packing
fetched irregular elements into bus-wide lines, which are then
mapped to virtual addresses [11], written to internal scratchpads
[12], [13], or written back to memory [14], [15]. However,
these solutions have their own drawbacks: they occupy virtual
or physical memory and lack the tight architectural integration
of core-side extensions, limiting their acceleration potential and
complicating programming.

Thus, while existing core- and memory-side extensions
tackle inefficiencies in their respective domains, they forego
each other’s benefits and do not integrate with established on-
chip interconnect protocols, failing to provide an end-to-end
solution for bandwidth-efficient irregular streams.

To address these shortcomings, we propose AXI-PACK, an
extension to Arm’s widespread Advanced eXtensible Interface
4 (AXI4) on-chip protocol enabling end-to-end, tightly-packed
strided and indirect memory streams. AXI-PACK transparently
extends AXI4’s existing contiguous bursts, leveraging their
decoupled, latency-resilient nature. It remains compatible with
all existing AXI4 features and even existing interconnect blocks
that do not reshape bursts. It encodes stream semantics (stride
or index base and size) directly into burst requests, ensuring
performance and flexibility even for short streams. Indirection
is efficiently handled at memory endpoints. In principle, AXI-
PACK supports non-core requestors (e.g., accelerators) and
systems with multiple requestors and endpoints.

To demonstrate AXI-PACK in an end-to-end full-system con-
text, we extend an open-source RISC-V vector processor for
efficient strided and indexed accesses and design a banked
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Figure 1. AXI-PACK AR/AW user extensions and strided read example

memory controller efficiently handling irregular bursts. On a
system with a 256-bit-wide AXI-PACK bus running various
irregular FP32 workloads, we achieve bus utilizations of up
to 87 % on strided and 39 % on indirect benchmarks, resulting
in peak speedups of 5.4x and 2.4x over a baseline with a
standard AXI4 bus. We implement our evaluation system in
GlobalFoundries” 22nm FD-SOI technology and find that AXI-
PACK improves energy efficiency by up to 5.3x and 2.1x in
strided and indirect benchmarks while incurring only 6.2 %
of our vector processor’s area for our controller. Finally, we
analyze the impact of element and index size as well as bank
count on AXI-PACK performance and controller complexity.
To summarize, our contributions are as follows:

1) We extend the widespread high-performance on-chip
protocol AXI4 to support end-to-end bus-packed strided
and indirect streams with full backward compatibility.

2) We extend an open-source RISC-V vector processor with
AXI-PACK to enable high bus efficiencies and significant
speedups on irregular workloads, and demonstrate a sim-
ple banked memory controller to serve irregular bursts.

3) We evaluate AXI-PACK by benchmarking irregular work-
loads on our extended vector processor, achieving bus
utilizations of up to 87 % and 39 % and speedups of up
to 5.4x and 2.4x for strided and indirect workloads.

4) We evaluate our AXI-PACK system and controller in terms
of timing, area, and energy efficiency benefits, finding
energy efficiency improvements of up to 5.3 and 2.1x.

II. ARCHITECTURE
A. AXI-Pack Protocol

AXI-PACK extends Arm’s AXI4 [16], a widely-adopted high-
performance non-coherent on-chip memory protocol. AXI4
defines five independent channels: AR and AW carry read and
write requests, R and W carry read and write data, and B
carries the write response. Without extensions, linear, fixed, and
wrapping bursts are supported. Each channel provisions a user
field of parametric width that allows extending functionality
without compromising compatibility with the baseline protocol.

AXI-PACK extends the request channels AR and AW with
user signals to support packed irregular bursts as illustrated in
Figure 1. The pack bit indicates whether our extension is used,
while the indir bit differentiates between strided and indirect
bursts. The remaining bits are shared between both burst types;
they indicate either the element stride for strided bursts or the
index size and base offset for indirect bursts.

While active, the new irregular burst types alter the semantics
of existing channel fields. Most notably, data elements of the

requested size, scattered in memory, are tightly packed onto the
R and W data buses to fully utilize them. Additionally, the start
of irregular bursts is aligned with the bus instead of the address
to simplify feeding data to and from vectorized functional units.
Finally, the AR and AW size fields, usually only changed for
narrow beats, indicate the data element size.

In addition to performance and bus utilization, these seman-
tics aim to maximize the transparency and portability of AXI-
PACK: they ensure that any existing AXI4 intellectual prop-
erty (IP) blocks handling non-modifiable transactions without
splitting, such as the routing blocks provided in [17], are
already compatible with AXI-PACK without any modifications.
IPs that require burst splitting or reshaping, such as bus width
converters, can easily be extended to support AXI-PACK by re-
packing bus-aligned data elements as for existing burst types.

B. Vector Processor Extension

To demonstrate the benefits and flexibility of AXI-PACK, we
extend the open-source Ara [18] RISC-V vector processor to
leverage it for efficient irregular memory accesses. Ara acts as
a co-processor to the CVAG6 core [19], which dispatches vector
instructions to Ara. Both access memory over AXI4.

As mandated by its instruction set, Ara supports three vector
memory access types: contiguous, strided, and indexed. Without
extensions, only contiguous accesses can leverage bursts. For
strided and indexed accesses, Ara must compute the address
and issue individual narrow accesses for each element, leaving
the data channels severely underutilized as shown in Figure 1.

Figure 2a shows our extensions to Ara. We modify its vector
load-store unit (VLSU) to use AXI-PACK for strided and in-
dexed vector accesses. For strided accesses, we simply translate
the existing v1se and vsse instructions to AXI-PACK requests
and exchange the read or written data directly with vector
registers or functional lanes for chaining. The existing indexed
access instructions v1 (o|u)xei and vs (o|u) xei in the
RISC-V vector extension presume that indices are already
loaded into vector registers, necessitating the move of indices
into the core and precluding efficient memory-side indirection.
To remedy this, we extend Ara’s decoder and introduce two
new in-memory indexed access instructions, vlimxei and
vsimxei, which use index arrays in memory for indirection.
These are directly translated into indirect AXI-PACK bursts and
allow for packed data to be exchanged with Ara’s unmodified
functional units and registers without data format changes.

C. Banked Memory Controller

To demonstrate the efficient handling of AXI-PACK at banked
memory endpoints, we design a proof-of-concept controller
translating AXI-PACK requests to sequences of parallel banked
memory accesses. Our controller is fully backward-compatible
with and efficiently handles regular AXI4 bursts.

Figure 2b shows the controller architecture. The adapter
translates both regular and irregular bursts to sequences of n
parallel word accesses, where a word is the same width W as
the used memory banks and determines the smallest efficiently-
handled element size. For D-bit-wide AXI-PACK data buses,
n = D/W, since we must read or write D /W words in parallel



lane 0

lane 1

Tane L1

decoder A

Ara coprocessor

dispatcher | v(is)imxei32 rd, rs1, rs2

idx size | base addr
vector reg idx addr

vector instructions

1eqssoI0 XY
-2
1111

108UU02I8)UI O}

strided read

converter
visu
— AW strided write]
C Hlek converter
load unit|<=R ]
:)ID. w
sloreumluIB

indir read
converter

indir write
converter

JO8UU0dJBUl WO}

xnw pod yueq
1

ITTTTTTTTITITI

ARp

index
fetcher

Ara frontend 88
S5
2 base AXI4
CVAG Core %é converter
=T
() AXI Pack to banked
. AXI Pack new instruction adapter memory
——p

(a) Vector processor extensions (b) Controller top level

beat
packer

element
stage

(d) Indirect read converter

(c¢) Strided read converter

Figure 2. AXI-PACK processor extension, multi-banked controller, and converter architecture

to saturate them. The adapter connects to an n X m crossbar
mapping the n word access ports to m interleaved banks.

Internally, the adapter forwards requests to one of five
converters which may concurrently handle bursts. The base
converter handles regular AXI4 bursts, while the remaining
converters are dedicated to strided and indirect read and write
operations, respectively. Handling reads and writes individually
leverages the inherent concurrency of the R and W channels.

Figure 2c details the strided read converter architecture. For
each beat in a burst, the request generator issues n parallel
word requests fetching the elements to be packed and pushes
metadata needed for later packing into an info queue. The words
read from the banks are stored in decoupling queues and then
passed to the beat packer, which packs the words as specified
by metadata popped from the info queue to form the R beats.
To prevent word queue overflows, a request regulator limits the
number of requests in-flight for each word lane.

Figure 2d shows the indirect read converter architecture. It
involves two stages sharing the n word request ports through
round-robin arbitration: the index stage fetches indices from
memory and the element stage uses these indices to fetch
indirect elements and pack them into R beats. The index stage
is analogous to the strided read converter, but issues only
contiguous word requests. The fetched indices are passed to
the element request generator, which shifts and adds them to
the specified base address to generate word requests for the
desired elements. Finally, the requested elements are packed
by a beat packer as specified by metadata from the element
request generator to form the desired R beats.

The corresponding strided and indirect write converters are
similar and differ only in the direction of the datapath: a beat
unpacker splits beats into individual words, which are then used
as write data for the generated write requests. The memory
responses are combined and forwarded to the B channel.

III. EVALUATION
A. Setup and Workloads

To evaluate AXI-PACK, we consider three RISC-V systems-
on-chip (SoCs) using CVA6 with Ara as a vector processor,

AXI4 interconnects, and a banked on-chip SRAM memory:

o BASE: unmodified CVA6 and Ara connecting to a regular
banked memory over a standard AXI4 bus.

e PACK: unmodified CVA6 and AXI-PACK-extended Ara
connecting to a banked memory with an AXI-PACK con-
troller over an AXI-PACK-extended bus.

o IDEAL: like BASE, but Ara connects directly to an exclu-
sive, idealized memory with one port per lane, serving
data with ideal packing, bandwidth, and latency.

IDEAL provides an upper bound for possible AXI-PACK ben-
efits by idealizing interactions between Ara’s VLSU and mem-
ory. However, it does not avoid inefficiencies arising from
Ara’s internal microarchitecture or CVA6. In all systems, Ara
is parameterized to eight vector lanes and 256-bit-wide data
buses. The banked memories provide eight 32-bit-wide word
ports backed by 17 banks, which we determine in Section III-E
to provide a good area-performance tradeoff.

On each system, we evaluate a set of vectorized benchmarks
benefiting from efficient strided and indirect memory accesses:

e ismt: in-situ matrix transpose. We transpose a square
matrix in place by swapping and rotating elements above
and below the diagonal using strided accesses.

o gemnv: general matrix-vector multiply. We investigate both
row- and column-wise dataflows, with the latter trading
vector reductions for strided accesses, and use the fastest
approach on each system for fair comparisons.

o trmv: triangular matrix-vector multiply, a gemv with
an upper-triangular matrix. Only nonzero elements are
streamed, incurring bursts of varying lengths. We again
use the fastest dataflow on each system.

e spmv: sparse matrix-vector multiply, a widespread irreg-
ular memory-bound operation using indirect accesses.

o prank: PageRank [20], which rates each node in a graph
based on the edges inbound to it. The graph is represented
as a sparse weighted adjacency matrix.

e sssp: single-source shortest path, which calculates the
shortest path from one node to all others in a weighted,
directed graph represented as a sparse matrix.
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Figure 3. AXI-PACK performance results

We run the first three benchmarks leveraging strided streams
on randomly-generated square matrices and the latter three
leveraging indirect streams on real-world sparse matrices from
the SuiteSparse collection [21] in the widespread compressed
sparse rows (CSR) format. Elements are stored as 32-bit floats
and indices as 32-bit integers. On indirect workloads, the PACK
system uses our extensions to handle indirection in-memory,
whereas BASE and IDEAL systems fetch indices into Ara.

B. Performance

We simulate our systems at the register transfer level (RTL)
to determine the performance and read bus utilization for each
benchmark. We initially assume a fixed matrix size of 256 for
strided workloads and the sparse matrix heart1 (390 average
nonzeros per row) for indirect workloads. gemv and t rmv use
a column-wise dataflow on PACK and IDEAL and a row-wise
dataflow on BASE, which we will show to be optimal for each
respective system.

Fig. 3a shows PACK speedups over BASE and read bus utiliza-
tions with and without index transfers. AXI-PACK significantly
improves bus utilization and performance for all workloads,
achieving 97% of the IDEAL performance on average. On
strided workloads, we measure peak speedups of 5.4x (ismt)
and bus utilizations of 87 % (gemv). We note that read bus
utilizations on ismt are limited to 50 % due to read-write
ordering in Ara. On indirect workloads, we achieve speedups of
up to 2.4x (spmv) and bus utilizations of up to 39 % (sssp).

PACK handles indirection directly in its AXI-PACK controller,
avoiding IDEAL’s waste of up to 20 % (spmv) of bus time on
index traffic and shifting indexed workloads further from the
memory-bound toward the compute-bound regime.

Figs. 3b and 3c compare the row- and column-wise dataflow
performance for gemv and trmv. Row-wise flows use only
long contiguous accesses, so their performance is identical for
BASE and PACK and very close to IDEAL. However, they require
costly vector reductions, limiting BASE bus utilizations to 37 %
and 23 %. Column-wise flows avoid reduction by working on
multiple results at once, providing higher IDEAL performance
and PACK utilizations of 87 % and 72 %. However for BASE, we
stick to a row-wise flow, as the performance impact of strided
accesses outweighs that of reductions without our extensions.

We also analyze the impact of input size and bus width
on AXI-PACK speedups for representative strided and indirect
workloads. Figure 3d shows ismt speedups for matrix dimen-
sions of 8 to 256 and bus widths of 64 to 256 bit, corresponding
to 2 to 8 Ara lanes and thus a growing number of functional
units. As matrix size increases, speedups converge and reach up
to 1.9, 3.2, and 5.4 x; as we widen the bus, the narrow accesses
of BASE become less efficient, increasing peak PACK speedups.
As matrix size decreases, streams and useful computation
phases shorten and become bottlenecked by the overhead of row
iteration, decreasing speedups. Figure 3e shows spmv speedups
for sparse matrices with 2 to 390 average nonzeros per row and
the same bus widths as before. Speedups again converge and
reach up to 1.4, 1.8, and 2.4 x. We see similar scaling trends as
for i smt because in spmv, the nonzeros per row determine the
computation phase and stream lengths in each row iteration. We
note that thanks to our request-bundling approach, using AXI-
PACK never results in a slowdown no matter how short streams
become.

C. Area and Timing

We synthesize our AXI-PACK adapter with Synopsys Design
Compiler for GlobalFoundries’ 22nm FD-SOI technology,
targeting the SSG corner at —40 °C with low-V; cells, 0.72V
supply voltage, and no back-biasing. Unless otherwise spec-
ified, we constrain a 1 GHz clock and 100 ps IO delays and
parameterize the decoupling queues to a depth of four.

Fig. 4a shows the minimum achieved clock period and area
for different clock constraints and bus widths of 64, 128,
and 256 bit. Our adapter shows good scalability, increasing
linearly in area with bus width and incurring 69, 130 and
257TkGE at 1 GHz. Our full 256-bit controller incurs merely
6.2% of Ara’s area, demonstrating that AXI-PACK handling
at banked endpoints is reasonably inexpensive. As we decrease
the constrained clock, we see that adapter area scales gracefully
past Ara’s 1 GHz clock target and reaches minimum periods of
787, 800, and 839 ps with only small increases in area.

Fig. 4b shows a hierarchical area breakdown of the adapter.
As expected, the read and write converters are similar in size
for both irregular burst types, since they simply reverse each
other’s datapaths. While the simpler strided converters are only
up to 42 % larger than the base AXI4 converter, the indirect
converters are nearly double this size due their two stages.
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Figure 4. AXI-PACK area, timing, and energy results

D. Energy and Power

We estimate the power consumption of PACK and BASE,
excluding the SRAM crossbar and banks, in the TT corner
of GlobalFoundries’ 22 nm FD-SOI technology at 1 GHz. We
topographically synthesize our system using Synopsys De-
sign Compiler and estimate power on the benchmarks from
Section III-B using Synopsys PrimeTime. Figure 4c shows
the average power and energy efficiency improvement of
PACK over BASE for each benchmark. Despite small power
increases in PACK by at most 31% (trmv), all workloads
see notable energy efficiency improvements, achieving peaks
of 53x (ismt) and 2.1x (sssp) on strided and indirect
benchmarks, respectively.

E. Parameter Sensitivity

To gain deeper insight into the scaling of AXI-PACK per-
formance and hardware complexity, we investigate the impact
of element and index size as well as bank count on read
bus utilization and bank crossbar area. For performance mea-
surements, we connect our controller to an ideal requestor
issuing continuous read requests of length 256 and use random
indices. Unless otherwise specified, parameters default on their
PACK system configuration, but we increase decoupling queue
depths to 32 to avoid bottlenecks unrelated to our analysis. We
consider power-of-two bank counts from 8 to 32, which result
in minimal addressing logic, as well as prime counts in this
range, which minimize bank conflicts across different strides.
We also consider an ideal memory without bank conflicts.

Indirect accesses: Figure 5a shows the bus utilization
achieved on indirect reads for different element-index size
pairs and bank counts. For all size pairs, utilization increases
monotonically with bank count as fewer bank conflicts occur.
Since indirect bursts involve one contiguous and one random
but no strided bank access sequences, prime bank counts show

100
S
c 801
0 =P
® e
o
= -
S 601 _*___*___*__-*——-*
wn La -
> / o o e = =
2 %/ gmm— %= 8-bank =%=:16-bank —— 31-bank ideal
© 404 K-
%,’ 11-bank 17-bank 32-bank
Vv © Vv & © R\ © v @ © &
SRR R C C A  C
L A R A R S
% % Vv Vv
element and index size (bits)
(a) Indirect read utilization
~ 100
2 27 M crossbar ]
< == 8-bank __ 40 modulo
2 907 T1-bank 8 M divider I
N [ SEEEEL » =~ —p—- 16tbank < |
5 80 17-bank g 20
é’ —+=+ 31-bank ©
i - 32-bank
x 70 ——— *
32 64 128 256 8 1 16 17 31 32

element size (bits)

bank count

(b) Strided read utilization (c) Bank crossbar area

Figure 5. AXI-PACK parameter sensitivity results

no inherent advantage here. Across all bank counts, utilization
improves mainly with the ratio r of element size to index size:
since we fetch indices as whole bus lines, we must fetch one
index line for every r data beats on average, limiting our ideal
bus utilization to 7/r+1. For 32-bit elements and index sizes of
32, 16, and 8 bit, this corresponds to ideal utilizations of 50,
67, and 80 %. Thus, with larger elements or smaller indices,
AXI-PACK indirection bus utilizations can further exceed those
shown in Section III-B.

Strided accesses: Figure 5b shows the bus utilization
for strided reads for different element sizes and bank counts,
averaged across element strides of 0 to 63. As expected, prime
bank counts offer significant performance benefits on strided
accesses, though more banks further improve performance for
both power-of-two and prime bank counts. With increasing
element size, conflicts become less likely for all bank counts
as there are fewer aligned elements in each bus-wide line.

Bank crossbar area: Figure 5c shows the bank crossbar’s
total area for different bank counts, highlighting the overhead
prime bank counts incur for modulo and division units to
compute bank addresses. Power-of-two-banked crossbars are
generally cheaper and prime-banked overheads decrease with
increasing bank counts. Since 17 banks provide good area-
overhead and area-performance tradeoffs (95% and 81% of
ideal performance on strided and indirect reads on average),
this is the bank count we chose for our evaluation systems.

IV. RELATED WORK

Existing hardware approaches to efficient strided and indirect
streams focus mostly on either end of the memory system.

Core-side extensions decouple accesses from execution and
eliminate redundant load-store and bookkeeping instructions.
Prodigy [5] prefetches nested indirect streams and proposes



dynamic cache bypass policies. While highly decoupled, it does
not simplify program flow, limiting its acceleration. Wang et
al. [6] propose strided and indirect streams mapped directly to
architectural registers. This eliminates load-store and address
iteration instructions, but still incurs dedicated instructions to
step streams. Stream semantic registers [8] and their indirection
extensions [9] implicitly step streams on access, enabling
near-continuous useful instruction issues even on single-issue
in-order cores. Domingos et al. [10] extend register-mapped
irregular streams to vector processors. Except for cache poli-
cies, these extensions ignore interconnect and memory system
efficiency. AXI-PACK is largely orthogonal to all of them; it
may be used with any bus width, burst length, or mapping
mechanism, providing a reusable protocol carrying irregular
streams through interconnects and to stream-aware endpoints
with high bus efficiency.

Memory-side extensions focus on bus efficiency and access
latency. The Impulse memory controller [11] maps irregular
streams to virtual pages; it provides inherent, on-the-fly bus
packing, but relies on managed virtual addressing. Hussain et
al. propose pattern-aware memory controllers [13] and sys-
tems [12] prefetching irregular stream descriptors to dedicated
scratchpads. This enables fast, packed core accesses, but incurs
notable complexity overheads. PLANAR [14] accelerates lay-
out transforms by writing packed, cacheable irregular data to
memory ahead of use, and the data rearrangement engine [15]
is integrated directly into a hybrid memory cube architecture.
While DLT accelerators are highly bandwidth-efficient, they
require physical memory buffers and explicit, ahead-of-time
invocation to be beneficial. AXI-PACK enables the benefits of all
of the above extensions. Bus packing can be done on the fly by
our controller or ahead of time by an AXI-PACK-capable direct
memory access (DMA) controller. Our lightweight irregular re-
quests provide performance without precluding the use of more
complex, memory-mapped stream descriptors. However unlike
other proposals, AXI-PACK builds on an established protocol
and extends irregular streams throughout interconnects, feeding
directly into cores in an end-to-end fashion.

V. CONCLUSION

We present AXI-PACK, an extension to the AXI4 on-chip pro-
tocol enabling highly-efficient end-to-end strided and indirect
memory streams. To demonstrate AXI-PACK in an end-to-end
system, we extend an open-source RISC-V vector processor
to use it for strided and indexed accesses and design a banked
memory controller serving irregular bursts. AXI-PACK increases
bus utilizations up to 87% in strided and 39% in indirect
benchmarks, resulting in speedups of up to 5.4x and 2.4x.
Synthesizing our AXI-PACK controller, we find that it incurs
only 6.2% of the area of Ara, but improves energy efficiency
by up to 5.3% in strided and 2.1 x in indirect workloads.
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