
Ditty: Directory-based Cache Coherence for
Multicore Safety-critical Systems

Zhuanhao Wu, Marat Bekmyrza, Nachiket Kapre, Hiren Patel
University of Waterloo, Waterloo, Ontario, Canada

{zhuanhao.wu, marat.bekmyrza, nachiket, hiren.patel}@uwaterloo.ca

Abstract—Ditty is a predictable directory-based cache co-
herence mechanism for multicore safety-critical systems that
guarantees a worst-case latency (WCL) on data accesses. Prior
approaches for predictable cache coherence use a shared snooping
bus to interconnect cores. This restricts the number of cores in
the multicore to typically four or eight due to scalability concerns.
Ditty takes a first step towards a scalable cache coherence
mechanism that is predictable and one that can support a larger
number of cores. In designing Ditty, we propose a coherence
protocol and micro-architecture additions to deliver a WCL bound
that is lower than a naive approach. Our WCL analysis reveals
that the resulting bounds are comparable to state-of-the-art bus-
based predictable coherence approaches. We prototype Ditty in
hardware and empirically evaluate it on an FPGA. Our evaluation
shows the observed WCL is within computed WCL bound for
both the synthetic and SPLASH-3 benchmarks. We release our
implementation to the public domain.

I. INTRODUCTION

Predictable cache coherence approaches for safety-critical
systems (SCS) promise high performance when accessing data
by enabling private caching data while ensuring worst-case
latency (WCL) bounds on accesses [1], [2]. Example domains
that can benefit from these approaches include avionics, au-
tomotive, and space [3]. Existing state-of-the-art approaches
that propose predictable cache coherence [1]–[5] offer solutions
that use a shared snooping bus. These are apt solutions for
multicores with a low core count such as the NXP T2080
that are equipped with cache coherence [6]. However, it is
well understood that a shared snooping bus makes scaling to a
large number of cores impractical [7]. Nonetheless, addressing
this drawback is imperative to meet today’s rising need for
additional functionalities, further consolidation of existing func-
tionalities, delivering higher performance, and reducing cost,
size, weight, area, and power. Consider the Kalray MPPA 3 [8]
that has an 80-core architecture, where clusters are connected
through network-on-chips and L2 caches are partitioned across
clusters. State-of-the-art approaches cannot be directly applied
to such multicore architectures. Therefore, developing a solu-
tion that enables predictable cache coherence for larger core
counts is paramount for future systems.

Ditty presents one such solution: a directory-based cache
coherence approach for SCS that scales to a larger number of
cores, guarantees a WCL, and delivers high performance via
caching. It is well-known that directory-based cache coherence
promotes scalability [9]; however, to the best of our knowledge,
there is no prior effort in developing a predictable directory-
based cache coherence mechanism. With Ditty, we take the

first step in doing so. In designing Ditty, we encountered
and addressed several important challenges. First, analyses in
prior works [1], [2], [4] do not explicitly handle the effect
of back-invalidations (a replacement in the LLC requiring
evictions of copies that are privately cached) on the WCL when
including an inclusive LLC. Ditty addresses this challenge by
explicitly accounting for this in its analysis. Second, naively
interconnecting cores using a predictable interconnect such
as HopliteRT [10] and employing a general purpose cache
coherence protocol [11] may result in a prohibitively large
WCL. For this, Ditty methodically identifies scenarios that
indeed result in a large WCL, and proposes coherence protocol
and micro-architectural additions to lower the WCL.

To summarize, our main contributions are as follows.
• We propose a predictable directory-based cache coherence

approach for safety-critical systems called Ditty. Ditty
employs HopliteRT [10] as its predictable interconnect;
however, any predictable interconnect would suffice. Ditty
includes carefully considered micro-architectural additions
to the L2 cache controller and the directory. In addition,
Ditty extends the Modified-Shared-Invalid (MSI) cache
coherence protocol to complement the micro-architectural
additions.

• We present a timing analysis for Ditty that computes the
WCL a memory request can experience. In this analysis,
we identify the critical instance, which centers on the
eviction of cache lines in the LLC.

• We prototype Ditty hardware, and deploy it on an FPGA 1.

II. BACKGROUND AND RELATED WORKS

A. Hardware cache coherence mechanisms

I Store M
Replacement

Data/0Data
/n

PutAck

InvAck

FwdGetS
FwdGetM

Inv

InvAck

InvAck

PutAck

FwdGetM

M SILoad,
Store

Store

Load

Store

Store Store

Load
Load

Core’s memory activity
Remote core’s memory activity

Load, Store

(a) (b)

Fig. 1: (a) MSI cache coherence protocol. (b) The detailed
transitions between M and I.

A hardware cache coherence protocol (CCP) dictates the
operations on data performed by agents (cores and shared

1Code available at https://github.com/caesr-uwaterloo/Ditty

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

memory) in the memory hierarchy. CCPs ensure that all cores
observe the same value at a given (logical) time. Figure 1a
shows the MSI cache coherence protocol [11]. In MSI, each
cache line is in one of the following states: Modified (M) state,
Shared (S) state, or Invalid (I) state. A cache line in M state
means that the contents have been modified by the core, and it
has read and write access permissions on that cache line. For
shared data, only one core can have a cache line in M state. S
state denotes that a core has read access permission, and the
data contents are unchanged. Multiple cores (called sharers) can
have a cache line for the same address in S to allow read-only
access to shared data. A cache line in I state is not available in
the core’s private cache or its data contents are not up-to-date.
M, S, and I states are also called stable states.

Practical implementations of a CCP use transient states to
improve performance [11]. These transient states identify that a
cache line is transitioning between two stable states. Transient
states are essential for overlapping the execution of memory
requests. As an example, Figure 1b shows the transient states
of the transitions between M and I at the core. A core caching
a cache line in M needs to invalidate it due to limited set-
associativity to serve new requests, causing replacement on the
cache line. This core transitions from M into a transient state
MI, meaning that the cache line is transitioning from M to I.
Once the core receives an acknowledgment of the replacement
being done (PutAck), it transitions into I. MI allows other cores
to access this cache line, and for the core performing the
replacement to respond.

B. Related works

Directory-based coherence mechanisms are common in gen-
eral purpose multicore platforms [12], [13]. However, there
are no prior efforts in developing a predictable directory-based
cache coherence mechanism that can be used in safety-critical
systems. Ditty, to our knowledge, is the first to do so.

Most of the recent research activity focused on cache coher-
ence mechanisms for snooping bus-based multicores for safety-
critical systems [1]–[5]. PMSI [4] utilized a shared command
and data bus for communication where an LLC was not present
resulting in a WCL that was quadratic in terms of the number
of cores. PMSI∗ [1] proposed coherence protocol changes that
lower the WCL to linear. PISCOT [2] separated the request
bus and response bus, where the request bus deploys a time-
division multiplexing arbitration and the response bus features
a first-come-first-serve arbiter to boost performance. PISCOT’s
WCL is linear to the number of cores. Authors in [5] enable
predictable coherent data sharing with LLC through the use of
a separate invalidation bus and the use of a write-back buffer
at the LLC. Authors in [14] deploy COTS coherence protocols
on a shared bus deploying predictable arbitration scheme such
as TDM, where a direct cache-to-cache interconnect is used to
ensure transmission of data within a single TDM slot, achieving
a linear WCL. Ditty does not use a shared snooping bus. Instead,
it uses a directory-based coherence protocol with a predictable
interconnect for transmitting both the command and data, and
includes an inclusive LLC.

III. SYSTEM MODEL

C1 C2 Cn…

Directory LLC

Predictable

Main Memory

L2Controller

L1I/L1D
Core c1

Interconnect
Request
Network

Forward
Network

Response
Network

Directory
to main memory

to LLC

Directory Demand
Request FIFO (DDRF)

Cache Response FIFO (CRF)

Forward Request FIFO (FRF)

Write-back Request FIFO (WRF)

Cache Demand
Request FIFO (CDRF)

Directory Response FIFO (DRF)

Fig. 2: Ditty system model.

Memory hierarchy. Our system model has N cores, a 3-level
inclusive cache hierarchy, and a directory connected to a main
memory as shown in Figure 2. Caches transfer data at 16-byte
cache line granularity. L1 and L2 caches are private to the cores
and the LLC is shared among all cores. All caches use the least-
recently-used replacement policy. A directory tracks cache lines
privately cached in L2 caches, maintaining coherent memory
accesses across all cores by being the ordering point. Existing
multicore platforms such as ARM DynamIQ DSU and AMD
Opteron platforms use a similar setup [13], [15]. We use MSI
to manage coherence between the cores [4]. Table I shows the
messages used for communication by the L2 and the directory.
Our analysis focuses on characterizing the WCL when the core
issues a request that misses in the L1 and must access L2 to
obtain the latency, that is, the worst-case miss latency of L1.

Interconnect. We require a predictable interconnect to have the
following properties: (1) point-to-point communication among
connected end-points with three networks, and (2) a worst-case
communication latency (WCCL) when sending messages or
data between two end points. General purpose multicores [12],
[16] satisfy (1) by using three networks for different types
of messages: request, forward, and response. This delivers
high performance and ensures correctness [11]. For (2), the
WCCL is essential for safety-critical systems and recent efforts
include [10], [17]. Note, for transmission of point-to-point
messages in (1), Ditty supports interconnects with point-to-
point ordering properties [11], [16] and those without by using
acknowledgment messages, making the protocol applicable to
point-to-point ordered and unordered interconnects. For our
evaluation, we use HopliteRT [10], but Ditty works with any
interconnect with the two properties.

FIFOs. Both L2 and the directory use FIFOs to buffer
incoming and outgoing messages as shown in Figure 2. The
L2 cache controller has three input FIFOs: There are three
input FIFOs at the directory as well: write-back request (WRF),
directory demand request (DDRF), and response (DRF). We
employ a predictable arbitration between CDRF and FRF. The
CDRF for L2 caches is of size 1. All other FIFOs for L2 caches
and the directory are of size N .

I Core and L2 cache operations. A core requests data from the
memory using a Load and writes data to the memory using a
Store. These requests access the L1 cache first. If these requests
hit in the L1 cache then the data is returned to the core for a

!

!

TABLE I: Coherence messages in L2 and LLC

Message Description FIFO

Read Get a shared copy of a cache line DDRF
Write Get an exclusive copy of a cache line DDRF

PutS Write back a shared copy of a cache line WRF
PutM Write back an exclusive copy of a cache line WRF

FwdGetS Forward a shared copy of a cache line to another core FRF
FwdGetM Forward an exclusive copy of a cache line to another core FRF
Inv Invalidate a shared copy of a cache line FRF

PutAck Acknowledgement of a write-back request CRF
InvAck Acknowledgement of an Inv CRF, DRF
FwdAck Acknowledgement of FwdGetS/FwdGetM CRF, DRF
Data Data response CRF, DRF

Load, and written to the L1 cache for a Store. If these requests
miss in the L1 cache then L2 receives the Load and Store
requests on the core’s behalf. As in prior works [15], [16],
[18], cache coherence operates between the L2 and the LLC.
Hence, we focus our discussion on the interaction between the
L2s, directory, and LLC. If Load or Store hits in the L2 cache,
the requested data is returned to the core via the L1 (following
inclusivity). Otherwise, the L2 cache controller issues demand
requests, a Read for a Load or a Write for a Store, to the
directory. Read requests the data to be read by the core, and
Write requests the data that the core plans to modify. Before
sending a Read or a Write, the L2 cache may not have a vacant
entry for the requested data and must evict a victim cache line.
For this, the L2 cache controller issues a PutS (clean copy of
data) or a PutM (dirty copy of data) to relinquish its private copy
of the victim cache line. We refer to PutS or PutM requests as
write-back requests. Hence, we say that a core issues a request
or receives a response means that the core’s L2 cache controller
issues a request or receives a response. Table I shows the usage
of FIFOs for each of the coherence messages. We assume a core
can only have an outstanding demand request.
I Directory operations. Upon receiving a demand request from
the L2 cache controller, the directory orchestrates the necessary
communication and sends the requested cache line to the L2
while maintaining the coherence of data between all cores.
The directory tracks the owner and a list of sharers of each
privately cached cache line. Since L2 is inclusive, only the lines
in L2 are tracked. Incoming demand requests and write-back
requests are buffered in DDRF and WRF at the directory. The
directory prioritizes write-back requests over demand requests.
On receiving a PutS (write-back of a clean cache line) request
for a cache line A from a core cua, the directory removes cua
from the sharer list of A so that the directory does not have to
invalidate the copy in cua when a later request modifies A. For a
PutM (write-back of a modified cache line), the directory marks
that A is no longer exclusively cached by cua. The PutM carries
data modified (dirty) by cua; hence, the directory updates the
LLC with the most up-to-date data.

IV. DIRECTORY-BASED CACHE COHERENCE MECHANISM

We exhaustively analyzed the MSI protocol and discovered
that the design must be done carefully to garner a low WCL.
We concentrate our discussion on two key design choices.

A. L2 cache controller design

In MSI [11], the L2 cache controller arbitrates requests
between the forward, demand, and response networks in the fol-
lowing manner: the response has the highest priority followed
by forward and finally demand. This priority order ensures that
the causal order of messages is preserved [11]. Note that this
prioritization exists in silicon-proven L2 designs [16]. However,
this specific priority order results in a prohibitively large WCL.
This occurs when cores request cache lines privately cached by
a specific core, cua. This causes the directory to generate and
send forward messages (asks cua to send data to requesting
cores) to cua’s L2, which get queued in cua’s FRF. Due to
forward messages having higher priority, cua’s demand request
cannot be processed until all forward messages are processed.
In the worst-case, a core’s demand request is processed by L2
after all cache lines receive two forward requests because of
this prioritization. This happens when all cache lines in L2 are
in M state, where the first forward request requests the data be
forwarded via a FwdGetS, and the second forward request asks
cua to invalidate its copy via a Inv. In an 8kB L2 cache with
512 cache lines where the processing of each forward request
takes 14 cycles, a core’s request is delayed 14336 cycles in the
worst-case before being processed by the L2.

Solution 1. The culprit causing the large WCL is the priority
order of messages between the three networks. We observe
that we can preserve the same properties necessary by the
prioritization [11], but significantly lower the WCL by using
a work-conserving round-robin (WCRR) between the demand
and forward networks, while the response network remains the
highest priority as illustrated in Figure 3a. With WCRR, a
demand request waits for 14 cycles in the worst-case before
it can be processed, and this delay is agnostic of the L2 size.

B. Coherence protocol: enabling predictable data sharing

MSI implementations require the directory to acknowledge
a write-back request with a PutAck message [11]. This is
necessary for correctness [11], [19]. Waiting for a PutAck
results in a large WCL latency. We explain this with the
example in Figure 3c with the contents of the DDRF on the
right. Suppose core cua initially caches A exclusively in M
state. cua issues a Store on B that requires it to evict A as a
victim. This causes the PutM on A to be sent to the LLC to
revoke its ownership at 1 . This transitions cua’s copy of A to a
transient state MI. MI indicates that requests for cua’s copy of A
perceive the cache line in M, but after receiving the PutAck, it
will be invalid. In parallel, c2 issues a Write demand request to
A at 2 , and the directory forwards this to cua with a FwdGetM.
At 3 , c3 issues a Write request to another cache line C, that
arrives later than c2’s request. The directory processes these
requests in arrival order due to the FIFOs. Hence, the directory
issues FwdGetM to cua, where cua sends Data of A as response
at 7 . Since cua is still waiting for a PutAck, but it received the
FwdGetM request, the cache line state transitions from MI to
transient state II. This indicates that any further requests to cua
for A will cause cua to respond with the copy not being valid.
Note that by receiving the FwdGetM, cua knows that another

!

!

L2
Ctrl

Pr
ed

Main
Memory

LLC

Cua C2 Dir
2 Write A1

5
PutM A

Data A

10

FwdGetM A

PutAck

7

Write B

Data B

8
9

C3

Write C
4

3

FwdAck

A:M→MI

Data C

A:MI→II

A:MI→I

A:I

Write A
Write A
Write A

Write C
Write CPutM A

Write CPutM A

Write CPutM A

PutM A
Write B

6

11

12
13

5

10

8

9

4

6

12

Cache line state DDRF content

Load A

I Store M
Replacement

Data/0Data
/n

PutAck

InvAck

FwdGetS
FwdGetM

Inv

InvAck

InvAck

MIII
FwdGetM

PutAck
Replacement

(a) (b) (d)(c)

CDRF

FRF

CRF

DDRF

WRF

DRF

Dir

Pr
i W

R
F

Fig. 3: (a) Ditty L2 cache has a controller (Ctrl) and storage and has an interface with predictable arbitration (Pred). (b) Directory
(Dir) interface eliminates PutAck; WRF takes priority over DDRF. (c) PutAck introduces long latency. (d) Ditty eliminates PutAck.

core is writing to A; hence, it no longer has a valid copy of A.
cua also sends a FwdAck to the directory at 7 . The transition
from M to I is highlighted in Figure 3d. Observe that when
the directory receives cua’s PutM request, the requests by c2
and c3 have arrived at the directory before it; thus, delaying
cua’s PutM as shown in the DDRF at 6 . Hence, the directory
must complete c2’s request for A, and c3’s request for C before
processing the PutM from cua with a response of PutAck at 10 .
This allows cua to issue its next request to B. In the worst-
case, all other cores, like c2 and c3, issue requests that arrive
at the directory before cua’s PutM, forcing the WCL to assume
(N−1) requests to be completed before completing cua’s write-
back request. This leads to a large WCL.

Solution 2. Notice that a write-back request is always a
result of a demand request. Hence, the demand request must
wait for the write-back request to complete before the L2 can
perform the demand request. The PutAck signifies the end of
the write-back request. Based on this observation, we remove
the need to wait for a PutAck on a write-back request by
combining the demand with the write-back request, and sending
them together to the directory. This combination also prevents
forward requests from intervening the process of the write-
back and demand request. This freedom of interference from
forward requests lowers the WCL. Ditty augments the coherence
protocol and micro-architecture to implement this combining
of requests. Figure 3d highlights coherence protocol changes
for M to I transition, in which a replacement on M directly
transitions the line into I without waiting for PutAck.

A naive implementation, such as using a single FIFO for
demand and write-back requests, combined with the removal of
PutAck can block requests indefinitely. Suppose the directory
encounters a demand request to a cache line A, and A is written
back by its owner with a PutM that queues after the demand
request to A in the FIFO. The demand request is stalled since
the directory cannot process the PutM request needed for the
demand request to complete.

To prevent this situation, Ditty makes micro-architectural
modifications as shown in Figure 3b. Specifically, Ditty uses
two FIFOs, directory demand request FIFO (DDRF) and write-
back request FIFO (WRF), to buffer demand and write-back
requests, respectively. Then, the directory controller prioritizes
the processing of write-back requests over demand requests.
Note that responses continue to have the highest priority over
both write-back and demand requests.

V. WCL ANALYSIS FOR MEMORY REQUESTS

We analyze the WCL a request experiences after the request
misses in L1 and accesses the L2. Figure 4 illustrates the path
the request takes in the hardware to experience the WCL. We
start with a miss in the L1 resulting in a demand request being
sent to the CDRF at the L2 (1). L2 sends this demand request
over the request network to the directory (2). This request
gets buffered in the DDRF and WRF of the directory (3).
When the directory processes this request, it may invalidate
copies of the cache line from cores by using the forward and
response networks, and fetch the data from the main memory
(4). Finally, the directory sends the data to the L2 (5).

Directory

L1/Controller

LLC

Main memory

Request Network Forward Network Response Network

Pr
ed
L2Controller

WCLarb

WCLdir

Ldata

WCLintf

L1msg

1
2
3
4
5

Pri WRF

Fig. 4: A memory request of cua undergoes the WCL.

We begin by presenting the WCL at the directory (4 in
Figure 4), WCLDir using Lemmas V.1 and V.2.

Lemma V.1. The WCL a memory request experiences at the
directory, WCLDir, is a demand request that is a miss in the
directory and causes an eviction of a cache line from the LLC.

Proof. Note that only write-back and demand requests arrive
at the directory. Write-back requests access the directory and
LLC’s data array. Demand requests that miss in the directory
require additional latency to access data from the main memory
and send it through the interconnect to the requesting L2 in
addition to having to write back a cache line. Thus, demand
requests that miss in the directory experience the WCL.

Lemma V.2. The per-request WCL at the directory is:

WCLDir = max
(
max(LNmsg + L1msg + (2N − 2)LL2, Lmem),

Lmem +max(L1msg + Ldata + (2N − 2)LL2, Lmem)
)
+ LDir,

!

!

where L1msg is the WCL to transfer a non-data message over
the predictable interconnect, LNmsg is the WCL to transfer N
messages, Lmem is the WCL to transfer a cache line between
the main memory and directory, Ldata is the WCL to transfer
a cache line between the LLC and L2, LL2 is the WCL of L2
processing one incoming message, and LDir denotes the WCL
counterpart for the directory to access the internal structures.

Proof. Lemma V.1 states that the worst-case scenario occurs
when cua’s request is a miss in the directory and causes an
eviction in the LLC. The cache line selected for eviction, the
victim, can be in one of three states: invalid (not cached in
any private cache), shared or modified. We omit the case for
an invalid victim as its eviction incurs no interconnect traffic.
Case 1. Victim is shared. A victim line that is shared, in
the worst-case, may be privately cached by all N cores. Thus,
writing back the victim requires invalidating all N copies due
to inclusive cache hierarchy. The directory sends Inv messages
to N cores and receives acknowledgments incurring a latency
of LNmsg. When an Inv arrives at a core’s L2, it may be last
in its FRF. At worst, this Inv message is queued after (N − 1)
forward requests in FRF (one less than N since there must be
space in FRF for the Inv forward request itself). Additionally,
this Inv forward request is a result of another core making
a demand request, and given that a core can only make one
outstanding demand request, we exclude the core making the
demand request. Hence, the Inv message is actually queued
after (N−2) forward requests in the worst-case. With Solution
1, WCRR ensures the Inv is processed after (N − 1) demand
requests and (N − 2) forward requests. Notice that a demand
request can hit in the L2, whose completion allows a new
demand request to appear in the next arbitration cycle. The
demand requests, forward requests, and Inv itself each take LL2,
incurring a latency of (2N − 2)LL2. Finally, it takes L1msg to
send back invalidation acknowledgement. When evicting the
victim, the directory requests the main memory to fetch the
data in parallel, incurring a latency of Lmem. This overlapping is
possible because the invalidation only occupies the bandwidth
of the interconnect and not the bandwidth of the main memory.
Hence, the WCL is max(LNmsg+L1msg+(2N−2)LL2, Lmem).
Case 2. Victim is modified. When the victim is modified by
a core, the directory sends a FwdGetM to the core caching the
data, causing a latency of L1msg. Similar to the invalidation
case, a FwdGetM is processed after (N − 1) demand requests
and after (N − 2) forward requests in the worst-case, causing
a total latency of (2N − 2)LL2. The core then sends the data
back to the directory, causing Ldata. Finally, the directory needs
to write-back the data to free an entry in the LLC, causing a
latency of Lmem. The directory fetches the data in parallel,
causing a latency of Lmem. Hence, the worst-case latency is
max(L1msg + Ldata + (2N − 2)LL2, Lmem) + Lmem.

Lemma V.3 shows the critical instance of a memory request
the core under analysis, cua, experiences.

Lemma V.3. cua’s request experiences the WCL when (1) the
request is processed after a forward request in the L2 cache;
(2) the request triggers a replacement of a dirty cache line,

incurring a write-back request in the L2; (3) the combined
demand request and write-back request undergoes WCCL to
reach the directory; (4) the request arrives at the DDRF of the
directory and is the last of N demand requests in the DDRF
and N write-back requests in the WRF; (5) before the request is
processed by the LLC, the directory processes (2N − 1) write-
back requests; (6) all N demand requests experience WCLDir,
and, (7) the response undergoes the WCCL to reach the L2.

Proof. We employ Figure 4 to guide the proof. (1) A demand
request arriving at the L2 in CDRF is assured to be the only
request since each core can only have one outstanding memory
request. Thus, in the worst-case, this request is processed after
one forward request due to the WCRR arbitration (1). (2)
When L2 processes this request, the request happens to be
a miss. This requires a victim line in L2 to be replaced.
However, consider this victim line to be modified. Then, a
write-back request (PutM) is necessary to vacate this entry.
Thus, the L2 cache controller combines the demand and write-
back request, and sends it to the directory. (3) This combined
request takes WCCL to arrive at the directory (2). (4) At
the directory, write-back requests have higher priority than
demand requests; hence, in the worst-case, the PutM of the
combined request interferes with its demand request. Further,
the directory processes incoming requests from DDRF and
WRF one at a time. In the worst-case, the demand request is
last in the DDRF. Since each core has at most one outstanding
request, all prior (N −1) demand requests in DDRF have their
corresponding write-back requests. Thus, in the worst-case,
there are N write-back requests when the combined request
arrives at the directory. (5) Before the directory processes the
combined request, (N−1) cores can finish their requests (taking
WCLDir each) that arrived earlier in the DDRF, and they
can issue new combined requests. Although the new demand
requests are queued later in DDRF, their write-back requests
interfere with demand request because the directory prioritizes
the write-back requests. At worst, the interference is caused by
2N − 1 write-back requests. (4), (5) and (6) corresponds to 3
and 4 in Figure 4. (7) Finally, the directory sends back the data
response incurring WCCL on the response network (5).

Theorem V.4 sums the WCL of a memory request.

Theorem V.4. The WCL of cua’s memory request is

WCL = 2(LL2 + Ldata) +WCLinter +WCLDir,

where WCLinter = (2N − 1)LDir + (N − 1)WCLDir is
the interference caused by demand requests and write-back
requests at the DDRF and WRF.

VI. EVALUATION

We evaluate Ditty in hardware on a setup with 2, 4, 6, 8,
and 10 cores respectively, with a cache line size of 16-byte on
the Amazon F1 FPGA using Xilinx Vitis 2022.1. We assume a
2-way set-associative L2 cache with a capacity of 512 B, and a
4-way set-associative inclusive LLC with 32 kB capacity. Our
hardware implementation operates at 100 MHz, and reveals

!

!

1 2 3 4 5 6 7 8 9
0

200

400

600

1 2 3 4 5 6 7 8 9
0

500

1000

1500

1 2 3 4 5 6 7 8 9
0

1000

2000

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9
0

2000

4000

6000 1
2
3
4
5
6
7
8
9

barnes
cholesky
fmm
ncp-ocean
raidx
cb-lu
cp-ocean
fft
ncb-lu

Ditty

GPDir(a) 2 cores (b) 4 cores (c) 6 cores (d) 8 cores (e) 10 cores

AWCL 556 AWCL 1548 AWCL 2546 AWCL 4004 AWCL 5956

Fig. 5: Observed WCL in cycles.

that LL2 = 14 cycles, LDir = 30 cycles, and Lmem = 200
cycles. The left part of Table II shows the interconnect latency
components corresponding to each of the configurations.

A. Synthetic workloads

The synthetic workloads stress our implementation of Ditty
by accessing cache lines in the same set in the LLC. We also
compare against a general purpose coherent data sharing mech-
anism (GPDir). Table II shows the observed WCL (OWCL) are
below the analytical WCL (AWCL) for all configurations.

B. SPLASH-3 benchmarks

We evaluate Ditty and GPDir with SPLASH-3 benchmarks.
Figure 5 shows the OWCL bound for Ditty and GPDir. We
observe that as the number of cores increases, the WCL
exhibited by Ditty is within the AWCL bound. Although our
experiments show that GPDir has a similar OWCL, its WCL is
not guaranteed as it is for Ditty. Our evaluation indicates that
Ditty exhibits 1.12× speedup compared to GPDir. Although we
are able to execute radiosity and raytrace, due to the
large input size, we are unable to finish the execution.

C. Resource Utilization

Table II shows the resource utilization of Ditty and GPDir
private caches. Across all configurations, we observe that each
Ditty private L2 cache consumes more flip-flops (FFs) and
lookup tables (LUTs), and similar block RAMs (BR) compared
to GPDir private L2 cache. This is because Ditty combines
the demand request and its corresponding write-back request,
hence, the vacant entry is available for tracking the demand
request.

Ditty’s LLC consumes 5795 FFs, 9997 LUTs, 116 BRAMs
and 8 URAMs. While the GPDir consumes 5876 FFs, 10153
LUTs, 116 BRAMs and 8 URAMs. Hence, Ditty consumes

TABLE II: Interconnect latencies (Intc. Lat.), observed worst-
case latency (OWL), analytical worst-case latency (AWL), and
resource utilization of Ditty and GPDir.

Intc. Lat. WCLs (cycles) Resource utilization
(cycles) Ditty GPDir Ditty GPDir

N L1msg LNmsg OWL AWL OWL FFs LUTs BR FFs LUTs BR

2 4 7 507 556 511 5503 8326 4 5710 9156 4
4 10 32 849 1548 859 10917 16588 8 11328 18248 8
6 19 74 1177 2546 1164 16393 24870 12 16992 27360 12
8 34 130 1498 4004 1510 21791 33144 16 22621 36464 16
10 51 204 1882 5956 1885 27261 41438 20 28326 45588 20

similar FFs compared to a GPDir. Hence, Ditty’s use of DDRF
and WRF to store demand requests and write-back requests
does not cause significant overhead.

VII. CONCLUSIONS

Ditty is a predictable cache coherent data sharing mechanism
that (1) predictably arbitrates between demand requests and
forward requests at the L2, (2) prioritizes WRF at the directory,
and (3) eliminates PutAck in the coherence protocol to achieve
a lower WCL bound. Our empirical evaluation shows that Ditty
imposes negligible impact on performance compared to its
general purpose counterpart.

REFERENCES

[1] A. M. Kaushik et al., “A Systematic Approach to Achieving Tight
Worst-Case Latency and High-Performance Under Predictable Cache
Coherence,” in RTAS, 2021, pp. 105–117.

[2] S. Hessien et al., “PISCOT: A Pipelined Split-Transaction COTS-
Coherent Bus for Multi-Core Real-Time Systems,” ACM TECS, July
2022.

[3] J. P. Cerrolaza et al., “Multi-Core Devices for Safety-Critical Systems:
A Survey,” ACM Comput. Surv., vol. 53, no. 4, Aug. 2020.

[4] A. M. Kaushik et al., “Designing Predictable Cache Coherence Protocols
for Multi-Core Real-Time Systems,” IEEE Transactions on Computers,
vol. 70, no. 12, pp. 2098–2111, 2020.

[5] R. Mirosanlou et al., “Parallelism-Aware High-Performance Cache Co-
herence with Tight Latency Bounds,” in ECRTS, vol. 231, Dagstuhl,
Germany, 2022, pp. 16:1–16:27.

[6] R. Pujol et al., “Empirical Evidence for MPSoCs in Critical Systems: The
Case of NXP’s T2080 Cache Coherence,” in DATE, 2021, pp. 1162–1165.

[7] R. Kumar et al., “Interconnections in multi-core architectures: Under-
standing mechanisms, overheads and scaling,” in ISCA, 2005, pp. 408–
419.

[8] B. de Dinechin, “Consolidating High-Integrity, High-Performance, and
Cyber-Security Functions on a Manycore,” in DAC, 2019, pp. 1–4.

[9] D. Chaiken et al., “Directory-based cache coherence in large-scale
multiprocessors,” Computer, vol. 23, no. 6, pp. 49–58, 1990.

[10] S. Wasly et al., “HopliteRT: An efficient FPGA NoC for real-time
applications,” in ICFPT, 2017, pp. 64–71.

[11] V. Nagarajan et al., “A Primer on Memory Consistency and Cache
Coherence, Second Edition,” vol. 15, no. 1, pp. 1–294, Feb. 2020.

[12] S. M. Tam et al., “SkyLake-SP: A 14nm 28-Core xeon® processor,” in
ISSCC, 2018, pp. 34–36.

[13] P. Conway et al., “Cache hierarchy and memory subsystem of the amd
opteron processor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[14] M. Hossam et al., “Predictably and Efficiently Integrating COTS Cache
Coherence in Real-Time Systems,” in ECRTS, 2022, pp. 17:1–17:23.

[15] F. Rehm et al., “The Road towards Predictable Automotive High -
Performance Platforms,” in DATE, 2021, pp. 1915–1924.

[16] J. Balkind et al., “OpenPiton: An open source manycore research frame-
work,” in ASPLOS, 2016, p. 217–232.

[17] Z. Shi et al., “Real-Time Communication Analysis for On-Chip Networks
with Wormhole Switching,” in NOCS, 2008, p. 161–170.

[18] J. Zuckerman et al., “Enabling Heterogeneous Multicore SoC Research
with RISC-V and ESP,” in CARRV, 2022.

[19] R. Komuravelli et al., “Revisiting the Complexity of Hardware Cache
Coherence and Some Implications,” ACM TACO, vol. 11, no. 4, dec 2014.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

