
MANTIS: Machine Learning-Based Approximate
ModeliNg of RedacTed Integrated CircuitS

Chaitali G. Sathe, Yiorgos Makris and Benjamin Carrion Schafer
The University of Texas at Dallas

Department of Electrical and Computer Engineering
{chaitaligajanan.sathe,yiorgos.makris,schaferb}@utdallas.edu

Abstract—With most hardware (HW) design companies now
relying on third parties to fabricate their integrated circuits (ICs)
it is imperative to develop methods to protect their Intellectual
Property (IP). One popular approach is logic locking. One of the
problems with traditional locking mechanisms is that the locking
circuitry is built into the netlist that the (HW) design company
delivers to the foundry which has now access to the entire design
including the locking mechanism. This implies that they could
potentially tamper with this circuitry or reverse engineer it to
obtain the locking key. One relatively new approach that has been
coined as hardware redaction is to map a portion of the design
to an embedded FPGA (eFPGA). The bitstream of the eFPGA
now acts as the locking key. In this case the fab receives the
design without the bitstream and hence, cannot reverse engineer
the functionality of the design.

In this work we propose, to the best of our knowledge, the
first attack on eFPGA HW redacted ICs by substituting the exact
logic mapped onto the eFPGA by a synthesizable predictive model
that replicates the behavior of the exact logic. This approach is
particularly applicable in the context of approximate computing
where hardware accelerators tolerate certain degrees of error at
their outputs. One of the main issues addressed in this work is
how to generate the training data to generate the synthesizable
predictive model. For this we use SAT/SMT solvers as the
potential attacker only has access to primary IO of the IP.
Experimental results for various degrees of maximum allowable
output errors show that our proposed approach is very effective
finding suitable predictive models.

I. INTRODUCTION

The hardware (HW) design industry has been undergoing
a significant transformation over the last two decades. In
the past, companies were vertically integrated and design,
verification and manufacture were all done in-house. This
has rapidly changed due to the increase in complexity of
designing today’s multi-billion transistor integrated circuits
(ICs). Most semiconductor companies are now fabless and
rely extensively on third party IPs (3PIPs). Moreover, they
often outsource significant portions of the design efforts to
external third party companies, e.g., the physical design stage
and/or verification. This leaves these companies extremely
vulnerable to multiple security threats. Some of these include
the malicious alteration of their hardware to include Hardware
Trojans. Other threats includes the ability of third parties to
steal their IP which represent their main value added. It is
therefore extremely important to introduce efficient methods
to enable these companies to protect their IPs.

One way to protect their IP is trough functional locking.
In traditional functional locking, additional locking gates are
added to the circuit. A logic locking key is in turn stored

Encrypted
Bitstream

P
ri

m
ar

y
O

u
tp

u
ts

eFPGA

P
ri

m
ar

y
In

p
u

ts

PROM

Unlocked IC acquired in
open market

P
ri

m
ar

y
O

u
tp

u
ts

eFPGA

P
ri

m
ar

y
 In

p
u

ts

Locked IC

Bitstream ?

Synthesizable Predictive
Model Generation

ANSI-C

High-Level
Synthesis

Place and
Route

Bitstream
generator

FPGA flow

=

Proposed un-locking mechanism

ASIC ASIC

Logic Synthesis &
Tech mapping

Fig. 1: HW redaction locking mechanism and proposed attack.

in a tamper-proof memory [1]. Without the correct key the
locked circuit does not work as specified, either the output
is incorrect (logic locking) or the performance is degraded
(parametric locking). The main problem with this approach is
that the locking mechanism is embedded into the design and
hence can be tampered with at consecutive VLSI design stages
or the fab.

One relatively new way to lock hardware circuits is through
hardware redaction. In this case, a portion of the circuit is
mapped to an eFPGA. The eFPGA bitstream now acts as the
logic locking key and the un-programmed eFPGA design is
sent to the foundry for fabrication. This approach has been
shown to be more secure as the search space is much larger
than traditional locking methods considering that the bitstream
not only determines the functional logic mapped onto the
eFPGA but also the interconnect [2], [3], [4]. Thus, mapping a
smaller portion of a design to an eFPGA can serve as a strong
locking mechanism.

At the same time most of the ICs are now heterogeneous
System-on-Chips (SoCs) that are composed of embedded
processors, on-chip memory, various interfaces and a variety
of hardware accelerators. Most of these components are often
standard off-the-shelf IPs licensed from third party IP vendors
(like ARM cores). Often the only differentiating components
are the hardware accelerators. Thus, it is particularly important
to protect these hardware accelerators from being reversed
engineered.

The question that we aim to address in this work is if
this new type of IC protection mechanisms can be broken,
especially considering that most of these HW accelerators
implement DSP or image processing applications that inher-
ently tolerate some errors at their outputs. In the context

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

of approximating computing, it has been shown that these
type of accelerators can often be simplified trading-off lower
power and performance with certain output error [5]. Thus, in
this work we propose an attack mechanism for eFPGA HW
redacted ICs by generating synthesizable (High-Level Synthe-
sis) predictive models that can replicate the behavior of the
portion of the circuit mapped onto the eFPGA. Although this
will not lead to the exact output, it will generate outputs that
are within a given maximum error threshold (Emax). We call
this method MANTIS: Machine Learning-Based Approximate
ModeliNg of RedacTed.

Fig. 1 shows an overview of how functional locking through
hardware redaction works and our proposed attack mechanism,
where one part of the design is mapped to the eFPGA and the
rest to the ASIC. The proposed attack requires to acquire a
fully working IC from the open market that will be used as
an oracle (golden outputs), and a locked IC. The main ideas
is to capture the inputs and outputs of the eFPGA and train a
synthesizable predictive model that can then be synthesized on
the eFPGA as shown in the figure. One important issue that
we will address in this work is how to obtain this training data.
It is impractical to assume that the attacker has access to the
eFPGA IOs, and only the primary IOs of the locked hardware
module. We therefore propose a Boolean Satisfiability (SAT)
or Satisfiability modulo theories (SMT)-based approach to
restore the outputs of the eFPGA given the primary outputs
which are observable by the attacker. In summary, the main
contributions of this work are:

• Present a predictive model-based attack to circumvent
hardware redaction functional locking mechanisms.

• Introduce a SAT/SMT-based approach to obtain the train-
ing data for the eFPGA portion of the design.

• Present extensive experimental results to show the effec-
tiveness of our proposed approach.

II. MOTIVATIONAL EXAMPLE

Fig. 2 shows a motivational example for this work. In this
particular it shows a flow diagram of the main computational
steps involved in the JPEG encoder that takes as input an
image to be compressed (input image) and performs a DCT,
quantization, run-length encoding (RLE) and finally Huffman
coding on it. The result is the compressed image (output
image).

Fig. 2(a) shows the original unprotected ASIC implemen-
tation. Fig. 2(b) shows one possible obfuscation partitioning,
which consists of mapping the RLE stage to an eFPGA. This
design is now protected against reverse engineering when sent
to a third-party fab as the fab does have access to the bitstream
that configures the eFPGA portion of the design. The entire
design is hence, partitioned into an ASIC portion that contains
the DCT, quantization and Huffman coding and an eFPGA por-
tion which contains RLE: Design=ASIC(DCT,quant,Huffman)
∪ eFPGA(RLE). Fig. 2(d) shows the power overhead intro-
duced by this obfuscation approach, which for this example
we measured as 9.3× the ASIC-only power (targeting 40nm
GF and Quicklogic eFPGA).

(a)

(b)

(c)

C/C++

High-Level
Synthesis

Train synthesizable
Predictive Model

eFPGA
(LS, P&R + bitgen)

Verilog VHDL

biteFPGA (e)

Input
image

jpeg encoder - ASIC

DCT Quant RLE
Huff
man

ASIC

Input
image

jpeg encoder – ASIC+eFPGA

DCT Quant RLE

eFPGAASIC

Input
image

jpeg encoder – ASIC+eFPGA predictive

DCT Quant
RLE
Pred
model

Huff
man

eFPGAASIC

Huff
man

Po
w

er
 [m

W
]

Error
[PSNR]40 20

(d)

(a)

(b)

(c)

output
image

Fig. 2: Motivational example of a jpeg encoder. Original
ASIC-only implementation; (b) HW redacted RLE stage
mapped to eFPGA; (c) Unlocked implementation substituting
obfuscated RLE stage by predictive model; (d) Power vs. error
trade-offs of different implementations; (e) Proposed attack.

Fig. 2(c)+(e) show our proposed attack. The idea is to obtain
the input and output data from the eFPGAs’ IOs from the
fully working hardware obtained legally from the open market
and create a synthesizable predictive model for HLS. Because
these predictive models only approximate the output of the
eFPGA they will inevitably introduced an error in the HW
module. Based on the application, the predictive model could
be a simple linear regression (LR) model, or a more complex
ANN-based model, with the complexity of this model also
depending on the maximum allowable error (Emax) that the
circuit tolerates.

Fig. 2 (d) shows two examples, when a Peak Signal to
Noise Ratio (PSNR) of 40db is allowed vs. a PSNR of 20db.
The lower the PSNR is the larger the error is, which in turn
implies that the predictive model can be further simplified.
In this example, we substituted FIR2 with a LR model. This
model is further simplified for the Emax=10 PSNR case. These
predictive models are synthesized through HLS into Verilog
and the bitstream for the target eFPGA generated. The result
was that in both cases smaller circuits than the exact RLE
design, leading at the same time to a power reduction of 17%
and 27% as compared to the exact obfuscated solution (see
Fig. 2(d)).

The main challenges of the proposed attach methods are:
(1) How to obtain the training data for the predictive model
considering that the eFPGA is integrated into the ASIC and
hence, the attacker can most likely only probe the primary
inputs and outputs of the entire module (jpeg encoder in this
case)? (2) How to ensure that the synthesizable predictive
model will fit into the eFPGA?

It should be noted that our proposed attack flow makes the
following assumptions that we believe are reasonable and that
will not affect the generality of our approach. Assumption 1:
We can access the primary inputs and outputs of the hardware

HWoracle

Emax

.bit
eFPGA

bitstream

TV Inputs

OutputHigh-Level
Synthesis

Logic
Synthesis

Place &
Route

Technology
Mapping

fmax

De-packaging

Delayering

Imaging

Layout extraction

Netlist extraction

GDSII2netlist

Phase II:
Training data
generation

HWGDSII
P

h
as

e
 I

: R
ev

er
se

 e
n

gi
n

ee
ri

n
g

Miter circuit

SAT/SMT solver

Generate
Predictive Model

Refine model

Phase III:
Synthesizable

predictive model
generation

Phase IV: eFPGA bitstream generation

Re-arrange netlist

netlist2RTL

Fig. 3: Overview of proposed MANTIS attack flow composed
of four main phases.(a) Phase I: ASIC part reverse engineer-
ing; (b) Phase II: Data generation; (c) Phase III: Synthesizable
predictive model generation; (d) Phase IV: eFPGA bitstream
generation.

accelerator e.g., directly sending and receiving data to that
particular accelerator or through the scan-chain in the IC.
Assumption 2: We have access to the CAD flow to program
the eFPGA. This assumption is reasonable, because it is highly
unlikely that the HW design company also created their own
eFPGA fabric and tool flow. Most likely it licensed the eFPGA
from a third-party vendor like Quicklogic or Achronix. The
attacker could easily contact these third-party eFPGA vendors
and obtain their tool flow. Assumption 3: The ASIC portions
of the circuit can be reverse engineered either directly from the
GDSII [6], or by acquiring a fully working IC from the open
market and then reverse engineer it through de-packaging,
delaying, imaging and layout extraction [7].

III. RELATED WORK

Logic obfuscation can be describe as the process that
transforms a circuit into another functional equivalent version
that is significantly, ideally impossible, to reverse engineer.
This research area has recently received significant attention
due to the importance of this topic, especially considering that
most HW design companies are now fabless.

Some of this research includes active metering [8], state
obfuscation [9], logic encryption [10], split manufacturing [11]
and design camouflaging [12]. Each of these proposed solu-
tions has its strengths and weaknesses with no single solution
successfully addressing the security and trust challenges in a
cost-effective manner.

One common problem though with most of these ap-
proaches is that the fab still has access to the entire circuit
including the obfuscated logic (except for split manufacturing).
Thus, to address this, one relatively new approach has been to
selectively extract a small portion of the circuit and mapping
it to an eFPGA. This allows designers to hide a portion

of their design and make the circuit unusable without the
correct eFPGA bitstream. To the best of our knowledge, this
approach was first introduce in [2], where the authors present
a dedicated eFPGA fabric that they call TRAP to minimize the
overhead introduced by conventional eFPGAs. Although the
authors showed that this approach works well, the dedicated
fabric is only usable to hide simple combinational logic. In
this work the authors also present a partitioning flow for
RTL descriptions. More recently the authors in [4] proposed
ALICE, an automated flow that partitions the RTL modules
between one or more reconfigurable fabrics and the rest of
the circuit, automating the generation of the corresponding
redacted design.

Other work raises the level of design abstraction by par-
titioning the design at the behavioral level. In [3] Bo et
al. presented an automated partitioning flow for behavioral
descriptions for HLS, where the authors encapsulate different
portions of the behavioral description into functional operators
that they then map to the eFPGA. Zi et al. presented a similar
approach but doing a finer partition at the CDFG generated
after parsing the behavioral description in [13]. Finally, this
ASIC+eFPGA flow was also shown to be effective to hide
implementation details of two functionally equivalent designs,
e.g., ANN activation functions [14]. In [15] the authors studied
how to reduce the area overhead introduced by the eFPGA by
using runtime reconfigurable coarse grain FPGAs. Closer to
this work, the authors in [16] proposed a similar approach
buy assumed that the inputs and outputs of the eFPGA are
fully accessible, hence, significantly simplifying the problem.
This work extends this work proposing a method to obtain the
training data efficiently.

IV. PROPOSED ATTACK FLOW

Fig. 3 shows an overview of the complete attack flow,
which consists of four main phases. The inputs to the flow
are the fully working IC with a locked component obtained
legally from the market (HWoracle) or a GDSII file of the same
(HWGDSII). This IC will be used as an oracle to verify if our
predictive model works within the maximum specified output
error Emax, which must be specified as another input to our
flow. This Emax is obviously application dependent and is typi-
cally specified in Mean Absolute Percentage Error (MAPE) for
signal processing applications or PSNR for image processing
applications. MAPE calculates the error between the output of
the approximate circuit and the golden output from the exact
solution as follows: MAPE = 1

N
∑N

i=1 |
GOi–APOi

GOi
|, where GOi

is the error-free output (golden output) obtained from the fully
functioning oracle, and APOi is the approximate output when
the eFPGA is programmed with our predictive model. N is the
total number of outputs observed. Our flow also requires the
test vectors or actual workload that the IC will be subject
to under normal conditions (TV), the operating frequency
(fmax) and finally, the CAD flow to generate a bit stream for
the eFPGA. The output of the flow is the eFPGA bitstream
that replicates the behavior of the original logic mapped onto

SATout

(a)

a
b

cin

efpgain2

efpgain1

cout

sum

efpgaout2

efpgaout1

(c) (d)

a
b

cin

sum

cout

(b)

efpgaout1
sum

cout

a
b

cin

efpgain2

efpgain1

efpgaout2

ASIC

eFPGA

Fig. 4: Example of SAT solver used to obtain training data for predictive model. (a) Full adder gate netlist. (b) Full adder with
HW redaction example. (c) Gate netlist re-arrangement to prepare for SAT solver. (d) Miter circuit including fully working
design to obtain training data.

the eFPGA (efpgabit). The next subsections describe the four
phases of our proposed attack in detail:

Phase I: ASIC part reverse engineering: The first phase of
the proposed attack reverse engineers the ASIC portions of the
circuit, either by obtaining a fully working IC from the market
and then de-packaging, delayering, imaging and extracting
its layout as shown in Fig. 3 [7] or reverse engineering
the GDSII description if available [6]. This work does not
deal with this and assumes that the ASIC portion of the
circuit can be reversed engineered into a gate netlist. This
has been previously shown in other work including [7], [6].
The reversed engineered gate netlist of the ASIC portion
can be further converted into a functional equivalent RTL
description [17], [18]. One of the advantages of working at
the RT-level instead of at the gate netlist level is that more
complex sequential circuits can be analyzed faster.

Phase II: Training Data Generation: This second phase
generates the training data to generate the predictive model.
Unfortunately, under normal circumstances the attacker only
has access to the data at the primary IOs of the hardware
accelerator, but not at the inputs and outputs of the eFPGA,
which is what our flow needs to train the predictive model.

To address this we will use the reverse engineered gate
netlist or RTL obtained in phase 1. This phase starts by running
a traditional workload that uses the locked HW accelerator
and by annotating the values at the primary inputs (TV) and
primary outputs (GO Golden outputs). These TV are then
applied to the gate netlist or RTL obtained in phase 1 in order
to retrieve the inputs to the eFPGA (TVineFPGA). The main
problem is how to obtain the outputs of the eFPGA module.
For this we make use of a SAT solver in the case of having
only the gate netlist and an SMT solver in the case of the
RTL. The solvers return the outputs of the eFPGA which
are basically the inputs of the solver, knowing the primary
outputs of the module (GO). SMT solvers provide a much
richer modeling capability than SAT solvers by adding equality
reasoning, arithmetic, bit-vectors, quantifiers, arrays and other
useful first-order theories. Thus, SMT solvers are well suited
to find the eFPGA outputs for complex larger ASIC circuits.

Fig. 4 shows how this is accomplished using a full-adder
as an example. Fig. 4 (a) shows the gate netlist of a typical
full adder. Fig. 4(b) shows the HW redacted circuit with two
gates mapped to the eFPGA. Fig. 4 (c) shows how the ASIC
portion of the netlist is re-arranged in order to obtain training
data of the eFPGA (inputs and outputs of the eFPGA portions

only). As shown, the inputs of the eFPGA (efpgain) are now
primary outputs of the resultant gate netlist and the outputs of
the eFPGA (efpgaout) inputs to the netlist. By simulating this
netlist alone our method can only find the input values of the
efpga which is part of the training data required.

To obtain the eFPGA outputs, which are now primary inputs
of the newly re-arranged netlist, we make use of a SAT solver.
For this we build as shown in Fig. 4 (d) a miter circuit with the
fully working design and our re-arrange netlist. The outputs
are xor’ed and the outputs of the xor gates or’ed and inverted.
Basically, the idea is to find the inputs of the circuit that make
SATout=1. This will reveal the values of efpgain. The SAT
solver is called for different TVs, and although this process
can be time consuming, it can also be easily parallelized. SMT
solvers work similarly, but much faster as they work at the
word-level.

The data obtained serves as the training data to generate the
synthesizable predictive model datatrain = {efpgain, efpgaout}.
In order to make sure that there are no timing issues later when
our method substitutes the eFPGA portion by a predictive
model, this step also records the latency (clock cycles required
to produce a new output) of the eFPGA, such that the
predictive model can fully replicate the timing (LeFPGA).

Phase III: Synthesizable Predictive Model Generation: This
phase takes the training data extracted in phase II as input
and searches for a predictive model that can replicate the
behavioral of the original circuit. The predictive model needs
to fulfill three major conditions: Condition 1: The synthesized
model has to fit in the given eFPGA fabric. Condition 2: The
accelerator’s outputs should be within the maximum specified
error threshold (Emax). Condition 3: The approximated circuit
should operate at the same frequency and have the same
latency. As shown in Fig. 3, this phase is further sub-divided
into two steps:
Step 1: Generate Predictive Model: This step takes the train-
ing data obtained from phase 1 (datatrain) and performs a
predictive model fitting. To accomplish this, the data is passed
to a well-known predictive model toolkit (scikit-learn [19]),
which in turn returns the predictive model and the statistical
information regarding this model. Different predictive models
are considered in this work and the simplest that meets the
conditions listed previously is used. E.g., the simplest one is
a linear regression (LR) model. Other models used include
regression trees, which consists of multiple LR models, and
multi-layer perceptron (MLP). This last model is more com-

plex than the LR models but is more efficient when the outputs
are highly un-correlated as MLPs can better model those non-
linear behaviors. MLPs also scale very well when the HW
redacted portions has a larger number of inputs and outputs.

The predictive model generator starts by generating the
simples possible predictive model and then proceeds by com-
puting the predictive model’s output, and by computing its
error (MAPE) and comparing it with Emax. If the error is
smaller, then the model is valid and the process stops. If not,
the search continues by moving to the next more complex
predictive model. Once a suitable model is found, the model
is translated into synthesizable ANSI-C code for HLS. The
output of this step is a synthesizable C description of the
simplest predictive model that operates within Emax (Cpred).
Step 2: Predictive Model Refinement: The predictive model
generated in step 1 is further optimized in this step by
obtaining the smallest possible model that operates within
Emax. For this, this step starts by deleting the smallest terms
in the predictive model. E.g., in the LR model (based on the
coefficients obtained) or neurons in the MLP case that have the
smallest weights and biases. This step is done sequentially and
after each optimization the proposed flow checks if the output
error is still within Emax by running a full simulation. This
refinement step exits when Emax is reached and returns the
smallest model that does not exceed the given error threshold.
The output of this steps is a new refined behavioral description
of the synthesizable predictive model (Copt). Moreover, if the
latency of the HW redacted circuit is not one (it is not purely
combinational), then our method inserts a delay loop into the
Copt such that Lopt = LeFPGA.

Phase IV: eFPGA Bitstream generation: This last phase
takes as input the optimized predictive model that was gen-
erated in phase 2 (Copt) and generates the eFPGA bitstream
(efpgabit) to configure the eFPGA with the predictive model.
Considering that the model is generated in synthesizable C
code for HLS, the entire process, as shown in Fig. 3, consists
of HLS, logic synthesis, technology mapping, place and route
and finally eFPGA bitstream generation. In all cases the target
synthesis frequency should be set to the same frequency at
which the exact obfuscated circuit works. This will now enable
the unlocking of every manufactured chip.

TABLE I: Experimental Setup
HLS Tool NEC CyberWorkBench 6.1.1

Synthesis frequency 500MHz
RTL Simulator Synopsys VCS 2018.06

eFPGA technology Quicklogic ArticPro
SMT solver pySMT 0.9.5 Z3-Solver

Machine learning tool scikit-learn 0.24.2 [19]

V. EXPERIMENTAL RESULTS

Table I shows an overview of the experimental setup used
to test our proposed flow. Because our proposed MANTIS
flow works works at the gate netlist and RT-level, we choose
RT-level and thus, use pySMT 0.9.5 Z3-Solver SMT solver to
obtain the eFPGA training data.

Six benchmarks from the S2CBench benchmark suite [20]
from different domains and different complexities amenable to

LUT resources

so
be

l fir
int

erp

ch
ole

sk
y

de
cim

dis
pa

rit
y

AVG.
0%

50%

100%
Exact error free reference Emax=10%

Emax=20%

Power

so
be

l fir
int

erp

ch
ole

sk
y

de
cim

dis
pa

rit
y

AVG.
0%

50%

100%
Exact error free reference Emax=10%

Emax=20%

Fig. 5: Reconfigurable computing resources (LUTs) and power
consumption comparison of our proposed approximated ac-
celerators for two different error thresholds (Emax=10% and
Emax=20%) vs. the exact, error free implementation.

approximate computing are used to measure the effectiveness
of our proposed flow. We use the testbench provided with
these benchmarks to measure the output error which based on
the benchmark. We set the maximum output error (Emax) to
10% MAPE further relax it to 20% MAPE to investigate how
relaxing the output error constraint affects the results.

As baseline exact HW redacted design (ASIC+eFPGA), we
follow the instructions from [3] to partition the benchmarks
into an ASIC and an eFPGA partition. Because there are
multiple possible partitions, we choose the smallest partition
that has a time-to-break (TTB) for SAT and brute-force attacks
of at least 1 year.

Fig. 5 shows the experimental results for the two different
error thresholds compared to the exact partitioned solution.
In all cases the latencies match the latencies (input to output
clock cycles of the eFPGA portion) of the exact version. The
percentage in each bar indicate the area reduction/increase of
our proposed method considering the exact solution as 100%
(e.g., in the interp benchmark for Emax=10% the total area
is 75% of the area required by the exact solution and for

Emax=20% only 41%. Thus, the area savings are 25% and
59% for the corresponding maximum error thresholds.

Several interesting observations can be made from these
results. Observation 1: In all cases, the predictive model
substitution method was able to find a valid solution that
was equal or smaller than the exact solution. Observation 2:
Relaxing the output error threshold (Emax) leads to larger
area and power savings. On average, the area and power
savings increased by 33% and 31% when the maximum error
was relaxed from 10% to 20% MAPE. Observation 3: One
interesting side effect of our proposed approximation approach
is that it leads to designs with lower power. On average the
power (for the eFPGA portion only) was reduced by 28% and
60% for the different error thresholds.

TABLE II: Runtime summary of our proposed MANTIS flow
(Phase 2 and 3) with different Emax.

Bench Emax=10%MAPE Emax=20%MAPE Predictive
Run[min] Run [min] Model

sobel 1.92 2.72 LR
fir 2.75 4.25 LR

interp 2.15 3.15 LR
cholesky 2.41 2.84 LR

decim 5.12 7.56 PolyReg
disparity 7.65 9.43 MLP

Geomean 3.19 4.41

Table II reports the running time of our proposed flow
(Phase 2 and 3 only) for the two different Emax, and also
the predictive model finally used for each of the benchmarks,
where the geometric average is used to account for the bench-
marks size differences. The results show that the running time
is relatively low averaging an average of 3.19 min and 4.41
min for the different error thresholds, with at most taking 9.43
min in the disparity case. One of the reasons that the runtime
is relative low is because we used the SMT solver instead
of the SAT solver. We believe that this is very reasonable
especially considering that this flow only needs to be execute
once. From the results it can also be observed that relaxing
the error constraints leads to slightly larger running times
due to the larger search space when the predictive model is
fine tuned. The table also shows that there is not a unique
predictive model that works for every benchmark. Thus, it is
important to have an automated flow that will automatically
try different predictive models like in our work and choose
the best (smallest) that meets the given constraints.

These results allow us to conclude that our proposed method
is effective in finding a predictive method that can substitute
the exact circuit portion mapped onto the eFPGA to obfuscate
the design under different error thresholds.
that is in turn mapped onto the eFPGA using HLS. Our

VI. CONCLUSION

In this work, we have introduced a framework to reverse
engineer a hardware redacted circuit that has been partitioned
into an ASIC and an eFPGA part through synthesizable
predictive models. Because most of these circuits are hardware
accelerators, they often tolerate errors at their outputs in
the context of approximate computing. Thus, we present a
method based on generating a synthesizable predictive model

method uses SAT/SMT solvers to obtain the training data
as the attacker will only have access to the primary IOs of
the accelerator and not the eFPGA and automatically tries
different predictive models as we have shown that for different
benchmarks different models lead to better results. To the best
of our knowledge this is the first attack that tries to break
these type of locked circuits. We hope that the hardware design
community will react to the ideas presented in this paper to
make make HW reduction more secure.

VII. ACKNOWLEDGEMENTS

This work is partially supported by the NSF Indus-
try/University Cooperative Research Center on Hardware and
Embedded Systems Security and Trust (CHEST) through
project #P16 22.

REFERENCES

[1] M. T. Rahman et al., “Defense-in-depth: A recipe for logic locking to
prevail,” Integration, the VLSI Journal, vol. 72, pp. 37–57, Jan 2020.

[2] M. M. Shihab et al., “Design obfuscation through selective post-
fabrication transistor-level programming,” in DATE, 2019, pp. 528–533.

[3] B. Hu et al., “Functional obfuscation of hardware accelerators through
selective partial design extraction onto an embedded fpga,” in GLSVLSI,
2019, p. 171–176.

[4] C. M. Tomajoli et al., “ALICE: An Automatic Design Flow for eFPGA
Redaction,” in Design Automation Conference. ACM, jul 2022.

[5] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[6] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “Regds: A reverse
engineering framework from gdsii to gate-level netlist,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2020, pp. 154–163.

[7] U. J. Botero et al., “Hardware trust and assurance through reverse
engineering: A tutorial and outlook from image analysis and machine
learning perspectives,” J. Emerg. Technol. Comput. Syst., vol. 17, no. 4,
jun 2021.

[8] J. A. Roy et al., “Epic: Ending piracy of integrated circuits,” in DATE,
2008, pp. 1069–1074.

[9] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE TCAD,
vol. 28, no. 10, pp. 1493–1502, Oct 2009.

[10] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE
Transactions on Computers, vol. 64, no. 2, pp. 410–424, Feb 2015.

[11] ——, “Is split manufacturing secure?” in 2013 DATE, 2013, pp. 1259–
1264.

[12] ——, “Security analysis of integrated circuit camouflaging,” in SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13,
2013, pp. 709–720.

[13] Z. Wang et al., “Functional locking through omission: From hls to
obfuscated design,” in ICCD, 2021, pp. 591–598.

[14] J. Chen et al., “DECOY: DEflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual PropertY,” in DAC, 2020, pp.
1–6.

[15] J. Chen and B. Carrion Schafer, “Area efficient functional locking
through coarse grained runtime reconfigurable architectures,” in ASP-
DAC, 2021, p. 542–547.

[16] P. Chowdhury, C. Sathe, and B. Carrion Schaefer, “Predictive model
attack for embedded fpga logic locking,” in ISLPED, 2022.

[17] D. Watkins et al., “Gate netlist to register transfer level conversion tool,”
U.S. Patent US08/668,064 Jun. 1996.

[18] P. Subramanyan et al., “Reverse engineering digital circuits using
structural and functional analyses,” IEEE Transactions on Emerging
Topics in Computing, vol. 2, no. 1, pp. 63–80, 2014.

[19] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] B. Carrion Schafer and A. Mahapatra, “S2CBench:Synthesizable Sys-
temC Benchmark Suite,” IEEE Embedded Systems Letters, vol. 6, no. 3,
pp. 53–56, 2014.

	Select a link below
	Return to Previous View
	Return to Main Menu

