
Accelerating Gustavson-based SpMM on
Embedded FPGAs with Element-wise Parallelism

and Access Pattern-aware Caches

Shiqing Li and Weichen Liu
School of Computer Science and Engineering, Nanyang Technological University, Singapore

{shiqing.li, liu}@ntu.edu.sg

Abstract—The Gustavson’s algorithm (i.e., the row-wise prod-
uct algorithm) shows its potential as the backbone algorithm
for sparse matrix-matrix multiplication (SpMM) on hardware
accelerators. However, it still suffers from irregular memory
accesses and thus its performance is bounded by the off-chip
memory traffic. Previous works mainly focus on high bandwidth
memory-based architectures and are not suitable for embed-
ded FPGAs with traditional DDR. In this work, we propose
an efficient Gustavson-based SpMM accelerator on embedded
FPGAs with element-wise parallelism and access pattern-aware
caches. First of all, we analyze the parallelism of the Gustavson’s
algorithm and propose to perform the algorithm with element-
wise parallelism, which reduces the idle time of processing
elements caused by synchronization. Further, we show a counter-
intuitive example that the traditional cache leads to worse
performance. Then, we propose a novel access pattern-aware
cache scheme called SpCache, which provides quick responses to
reduce bank conflicts caused by irregular memory accesses and
combines streaming and caching to handle requests that access
ordered elements of unpredictable length. Finally, we conduct
experiments on the Xilinx Zynq-UltraScale ZCU106 platform
with a set of benchmarks from the SuiteSparse matrix collection.
The experimental results show that the proposed design achieves
an average 1.62x performance speedup compared to the baseline.

Index Terms—SpMM, FPGA, Gustavson, Cache

I. INTRODUCTION

Sparse matrix-matrix multiplication (SpMM) is of

paramount importance in multiple domains such as data

analytics, graph processing, and scientific computing.

Specifically, SpMM is a vital kernel in graph contraction [1],

recursive formulations of all-pairs shortest-paths algorithms

[2], colored intersection searching [3], and molecular

dynamics [4]. SpMM operates on sparse matrices which

are stored using sparse formats. Although sparse formats

reduce the memory footprint by omitting all the zeros, these

formats incur indirect and hence irregular memory accesses.

Consequently, the off-chip memory traffic becomes the main

bottleneck of SpMM especially on embedded FPGAs.

Different algorithms of SpMM have different on-chip mem-

ory requirements and off-chip memory traffic. Recently, the

Gustavson’s algorithm [5] has shown its potential to be the

backbone algorithm for SpMM on hardware accelerators [6]

[7] [8] [9] with low on-chip memory requirement and less

off-chip memory traffic. In the algorithm, each element Aik

in the ith row of A (we refer to the first input matrix as A)

is multiplied with the kth row of B (we refer to the second

input matrix as B) to generate one partial result of the ith
row of C (we refer to the output matrix as C) and all the

partial results are merged to get the final ith row of C. An

important advantage of the Gustavson’s algorithm is that A,
B, and C are in row-major order. However, the inherent row-

wise parallelism leads to uneven workloads among processing

elements (PEs) but the results of PEs shall be written back

in order. The synchronization among PEs stalls some of them

and degrades the performance. Besides, the performance is

still bounded by off-chip memory traffic.
Streaming off-chip memory accesses and caching data on-

chip are widely used to reduce off-chip memory traffic.

Streaming is the most efficient way to transfer data between

the off-chip DDR and the FPGA chip, which sequentially

accesses contiguous elements. Besides, caching data on-chip

can avoid long-delay off-chip memory accesses. Following the

Gustavson’s algorithm, rows of B can be reused for elements

of A with the same column indices. However, there are two

challenges. The first one is that irregular memory accesses lead

to bank conflicts and the long off-chip memory access latency

further aggravates the conflicts when requests miss the cache.

Secondly, a sequence of ordered elements in each row of B is

accessed. However, the length of them is unpredictable. These

elements usually fall into different cache banks and multiple

sequential requests are required. However, these standalone

requests issue multiple standalone off-chip memory accesses if

they miss the cache, which fails to utilize the streaming fashion

and increases the off-chip memory access latency instead. In

addition, they also aggravate bank conflicts.
To solve these challenges, in this work, we propose an

efficient Gustavson-based SpMM accelerator on embedded

FPGAs with element-wise parallelism and access pattern-

aware caches. The main contributions are as follows:

• We analyze the parallelism of the Gustavson’s algorithm

and propose to perform the algorithm with element-wise

parallelism. Further, we show a counter-intuitive example

that the traditional cache leads to worse performance.

• We propose an efficient accelerator for SpMM on embed-

ded FPGAs. A novel access pattern-aware cache scheme

called SpCache is proposed to reduce bank conflicts

caused by irregular memory accesses and handle requests

that access ordered elements of unpredictable length.

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Best Paper Award Candidate	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



• We conduct experiments on the Xilinx ZCU106 platform

with a set of benchmarks from the SuiteSparse matrix

collection [10]. The results show that our proposed design

achieves an average 1.62x performance speedup.

II. BACKGROUND AND RELATED WORK

A. Sparse Matrix-matrix Multiplication

Sparse matrix-matrix multiplication (SpMM) refers to the

multiplication between a sparse matrix A and a sparse matrix

B to generate a sparse matrix C. In general, sparse matrices

are stored in compressed formats to lower the memory re-

quirement. Compressed sparse row (CSR) is one of the most

widely used formats and sparse matrices are in CSR format in

this work. As shown in Fig. 1, CSR format mainly includes

three arrays rptr, val, and cid. Instead of holding all the row

indices, the CSR format only holds the index of each row’s first

element in rptr. For example, the index of the third row’s first

element (i.e., element 5) is 4 in Fig. 1 and thus rptr[2] = 4. In

CSR, elements in the ith row are fetched in two steps. rptr[i]
and rptr[i+1] are accessed first to get the index range (i.e.,

[rptr[i], rptr[i+1])) in val and cid and then the corresponding

values and column indices are accessed. Note that elements in

each row are sorted by column indices.

1 2
3 4

5
6 7

val
cid

rptr

1 2 3 4 5 6 7

0 2 0 3 1 0 2

0 2 4 5 7

0index 1 2 3 4 5 6 7

Fig. 1: CSR Format

In the following paper, we will use Ai to represent the ith
row of the matrix A and Aij to represent the nonzero element

of the matrix A whose row index and column index is i and j
separately. The same notation is also applied to B and C.

1 2
3 4

5
6 7

1 2
3 4

5
6 7

1

* 1 2

1
3

6

*

(a) Inner Product

1 2
3 4

5
6 7

1 2
3 4

5
6 7

*
1 2
3 6

6 12

1 10 2 0
27 0 34 0
15 0 0 20
6 35 12 0

(b) Outer Product

1 2
3 4

5
6 7

1 2
3 4

5
6 7

*
1 * 1 2

2 * 5

1 10 2 0

(c) Gustavson's Algorithm

A B C

Fig. 2: SpMM’s Algorithms

There are mainly three algorithms to perform SpMM as

shown in Fig. 2. First of all, the inner product algorithm mul-

tiplies one row of A and one column of B to get one element

of C. Since the sparse matrices are stored using compressed

formats, index matching is required. However, the memory

bandwidth is wasted by transferring mismatched elements. As

shown in Fig. 2(a), only one multiplication is performed and

element 2, 3, and 5 are transferred but not used. Secondly,

the outer product algorithm shown in Fig. 2(b) multiplies the

ith column of A and the ith row of B to get one partial

result matrix and merge all the partial matrices to get the

final result. Compared to the inner product algorithm, the outer

product algorithm doesn’t require index matching. However,

partial results are written to the off-chip DDR and then read

to the FPGA chip which consumes lots of memory bandwidth

and on-chip memories. Consequently, it’s not suitable for

embedded FPGAs. Besides, A and B use different formats

in both the inner product algorithm and the outer product

algorithm. For example, A is in row-major order and B is

in column-major order in the inner product algorithm. The

third algorithm is called the Gustavson’s algorithm [5] (i.e.,

the row-wise product algorithm). It multiplies each element

Aik in Ai with ordered elements of Bk to generate a partial

result of Ci and merges all the partial results to get the final

result. As shown in the figure, element A00 (i.e., the element

whose value is 1 in Fig. 2(c)) is multiplied with elements in B0

and the partial results [(1, 0), (2, 2)] and [(10, 1)] are merged

to get C0. The Gustavson’s algorithm has three advantages:

(1) index matching is not required, (2) the on-chip memory

requirement is low since it only buffers one row of C, and 3) A,

B, and C are in row-major order and use a consistent format.

With these three advantages, the Gustavson’s algorithm is a

promising backbone for SpMM on embedded FPGAs.

DDR FPGA

Channel 1

Channel 2

Channel 3

Channel 4

control info data

32 cycles 1 cycle

control info data

32 cycles 1 cycle

data

1 cycle

data

1 cycle

(a) Single memory access

(b) Streaming memory accesses

Fig. 3: ZCU106’s Off-chip Memory Access

B. Off-chip Memory Access on Embedded FPGAs
The on-chip memory is usually limited on embedded FP-

GAs and large-volume data (e.g., sparse matrices) are stored

in the off-chip DDR. For example, the Xilinx Zynq-UltraScale

ZCU106 platform only has around 4.7MB on-chip memories

and four channels between the off-chip DDR and the FPGA

chip as shown in Fig. 3. Data transactions in channels follow

the Advanced eXtensible Interface (AXI) protocol and there

are two important manners. As shown in Fig. 3(a), the first

one is single memory access. It includes a 32-cycle control

information exchange phase and a 1-cycle data (up to 128 bits)

exchange phase. However, if the target elements are contigu-

ous, only one control information exchange phase is required.

This transaction mode is called streaming memory access as

 



shown in Fig. 3(b), which is the most efficient way to transfer

data from the off-chip DDR to the FPGA chip. Besides, data

transactions in different channels are independent.

C. Related Work

SpMM gains much attention on hardware designs. [11]

conducts design space exploration for SpMM using the inner

product algorithm. It successfully finds the trade-off between

performance and energy consumption. The OuterSPACE [12]

and the SpArch [13] targets the outer product algorithm.

[13] further reduces the number of partial result matrices

by condensing matrices. However, these works suffer from

the drawbacks of the algorithms. Besides, the MapRaptor [6]

proposes an accelerator targeting the Gustavson’s algorithm.

However, it fails to explore the reuse of B’s rows. The InnerSP

[7] and the GAMMA [9] propose cache-based architectures

to explore the reuse of B’s rows. However, they target the

high bandwidth memory-based ASIC accelerators and are not

suitable for embedded FPGAs with traditional DDR.

To the best of our knowledge, this work is the first work

which accelerates Gustavson-based sparse matrix-matrix mul-

tiplication on embedded FPGAs with element-wise parallelism

and access pattern-aware caches. Although this work targets

the Xilinx ZCU106 platform, the proposed ideas can be ap-

plied to other platforms with similar memory access features.

1 2 3 4
5

6 7
8

9 10

PE0

PE1

1 2 3 4

5
sync

6 7
Row-wise

Element-wise
PE0

PE1

1

2

3

4

5

6

7

8

9

10

8

Fig. 4: Gustavson’s Parallelism Analysis

III. PARALLELISM ANALYSIS & MOTIVATION

In this section, we first analyze the parallelism of the

Gustavson’s algorithm and propose to perform it with element-

wise parallelism. Then, we show our motivational example that

traditional cache leads to worse performance.

A. Gustavson’s Parallelism

The Gustavson’s algorithm is also known as the row-wise

product algorithm. For each row i of A, it mainly consists

of multiplications between Aij’s value and Bj’s values and

merging of ordered partial results. Following the algorithm,

rows of A are assigned to available processing elements (PEs)

and each PE accepts the next row after finishing the current

row. As discussed in Section. II-A, one of the advantages of the

Gustavson’s algorithm is that A, B, and C are in a consistent

format (i.e., CSR). To ensure the correctness of C, PEs shall

return rows in order. As shown in Fig. 4, assume that there are

two PEs. At the beginning, PE0 and PE1 accept A0 and A1

separately. However, the workload of PE0 is much bigger than

PE1 and thus PE1 doesn’t accept a new row until PE0 finishes.

Although we can allocate buffers to hold results and eliminate

synchronizations among PEs, it’s hard to determine the buffer

size and big buffers waste the limited on-chip memories.

In this work, we propose to perform the Gustavson’s al-

gorithm with element-wise parallelism as shown in Fig. 4.

With element-wise parallelism, A’s elements are distributed to

available PEs. For elements in the current row, PEs merge

the partial results in their local buffer like using row-wise

parallelism. When PEs receive elements of the next row,

they push buffered partial results to a final merger. The final

merger merges partial results of PEs and its latency can

be covered by the processing of the next row. If the next

row is pretty short which is a rare case in real benchmarks,

the final merger’s latency may not be fully covered by it.

However, compared to row-wise parallelism, element-wise

parallelism can significantly reduce PEs’ idle time caused

by synchronization. Besides, since we sequentially access A’s

elements in row-major order, memory accesses to A’s three

arrays are in the streaming memory access fashion. As shown

in Fig. 4, PEs are much busier than using row-wise parallelism.

With the element-wise parallelism, PEs’ idle time caused

by synchronization is significantly reduced. However, it still

suffers from off-chip memory traffic. The Gustavson’s al-

gorithm provides reusability for rows of B and caches can

be deployed to avoid long-delay off-chip memory accesses.

However, access patterns in the algorithm shall be considered.

First of all, irregular memory accesses of rows of B lead

to bank conflicts and the long cache miss delay aggravates

the conflicts. Secondly, a sequence of ordered elements of

unpredictable length (i.e., Bj’s elements) is required to ensure

a smooth merge between ordered lists. However, it’s hard to

hold these elements in one cacheline. In addition, multiple

sequential cache requests aggravate bank conflicts and issue

multiple single off-chip accesses if they miss the cache.

Fig. 5: The Motivational Example

B. Motivational Example

We use a motivational example to show the performance

speedup of the proposed design. We use poisson3Da from

the SuiteSparse matrix collection [10] and conduct experi-

ments on the Xilinx ZCU106. poisson3Da is a 13514 ×
13514 matrix with 352762 nonzero elements. Four elements

of A are processed simultaneously and caches use the same

configuration, which is a 16-way 4-bank cache with the least-

recently-used (LRU) replacement strategy. Since the access

 



pattern of B’s val and cid is different from that of B’s rptr, we

refer to caches for rptr as rcache and caches for val and cid as

vccache. Overall, we refer to row-wise parallelism, element-

wise parallelism, traditional cache, rcache, and vccache as

rw, ew, tc, rc, vcc in short. Here, the traditional cache is

deployed for rptr. As shown in Fig. 5, our proposed design

(i.e., ew-rc-vcc) achieves 2.03x performance speedup. Mean-

while, a counter-intuitive example is that the performance

degrades if we use traditional cache (i.e., ew-tc compared to

ew). Instead, the rcache using the proposed SpCache scheme

achieves 1.12x performance speedup (i.e., ew-rc compared to

ew). Further, we achieve 1.12x more performance speedup

with the vccache. The more detailed performance analysis

is conducted in Section V-B. Besides, we also perform one

additional experiment (rw-overlap) that a buffer is deployed to

hold results for PEs using row-wise parallelism. The buffer can

hold the results of several rows in the experiment. As shown

in Fig. 5, although it achieves 1.15x speedup compared to the

pure row-wise parallelism (i.e., rw), it still takes 39.47% more

cycles compared to the ew.

IV. HARDWARE DESIGN

A. Overview

MergerMerger
Merger

Rcache Manager0Rcache Manager0Rcache Manager0Off-chip

DDR

CSR Decoder
A rptr

Task Distributor

A cids & vals

Rcache Manager

j

Rcache Manager0Rcache Manager0Rcache Manager0PE

Aij, i

Rcache B0 B3

Rcache Manager0Rcache Manager0Rcache Manager0Vccache Manager

Bj

Vccache B0 B3

Aij

Bj1 Bj2 Bj3 Bj4

Merger

Products

input

ping
pong

Merger

Merger

Final Merger

M
0 &

 M
1 

M
2 &

 M
3 

Write C

Fig. 6: Hardware Overview

Processing elements of A requires a SpCache of rptr,

a SpCache of val and cid, PEs, and mergers. Since these

components and interconnects between them consume lots

of hardware resources, this design processes four elements

simultaneously (i.e., N in Fig. 6 is 4) and each element

occupies one memory channel on the Xilinx ZCU106. As

shown in Fig. 6, thanks to element-wise parallelism, the

task distributor accesses A’s three arrays in the streaming

fashion and distributes elements to available PEs. Specifically,

it transfers Aij’s value and row index i to a PE and transfers

the column index j to the corresponding rcache manager. The

rcache manager follows the SpCache scheme mentioned in

Section IV-B and transfers [rptr[j], rptr[j+1]) of B to the corre-

sponding vccache manager. Then, the vccache manager fetches

Bj’s values and column indices and streams them to the

corresponding PE. After that, the PE performs multiplications

between Aij’s value and Bj’s values and transfers products to

the corresponding merger. For elements in Ai, mergers merge

partial results in their local buffers. PEs accept new elements

after the corresponding mergers merge partial results. When

the next row begins, mergers push buffered results to the final

merger. The final merger merges the four partial results with

two helper mergers and writes the result to the DDR.

B. SpCache

A banked cache is widely utilized to process parallel re-

quests [7] [9] [14]. However, the inherent sparsity of sparse

matrices leads to irregular memory accesses and hence incurs

bank conflicts. Further, the long off-chip memory access

latency (i.e., part of the cache miss’s latency) aggravates bank

conflicts. In this paper, we propose an access pattern-aware

cache scheme called SpCache, which enables quick responses.

As shown in Fig. 7, the SpCache consists of a banked cache

and four cache managers. When a cache manager receives a

request, the cache manager accesses the target SpCache bank.

Then, the bank only checks whether the request hits the cache

which takes only 1 cycle and sends a response to the cache

manager. If the request misses, the cache manager accesses

the off-chip DDR and writes the fetched data to the cache

and the target component. We deploy two SpCaches (i.e., one

for rptr and one for val and cid) for PEs and the proposed

SpCache can significantly reduce bank conflicts by extracting

off-chip memory accesses. For example, as shown in Fig. 7(b),

if two cache requests a1 and a2 access the Bank0 in parallel

and the a1 misses, a2 is processed in cycle 39 due to the long

miss latency following traditional cache management. Instead,

the proposed SpCache can respond to the two requests in

four cycles. The cache manager that issues a2 can get the

result earlier either a2 misses or hits. Meanwhile, the delay of

updating the SpCache can be covered by computations.

SpCache

Bank0

Bank1

Bank2

Bank3

Cache Manager0

Cache Manager1

Cache Manager2

Cache Manager3

Off-chip 

DDR

Channel 0

Channel 1

Channel 2

Channel 3

Cycle

Cache

SpCache

0 1 2 3 38 39

a1 r1 a2

a1 r1 a2 r2

a1

a2

Bank0 Memory Access Response

Cached

Access and Process

Streamed

32 unpredictable

Row of B

Process

Control Phase

Access and Process

(a) Combining Streaming and Caching

(b) Caches with Quick Response

Fig. 7: Access Pattern-aware Caches

Besides the overall irregular memory accesses, we also need

to consider the access pattern of each request. For each Aij ,

rptr[j] and rptr[j+1] of B are accessed and Bj’s values and

column indices of unpredictable length are accessed. For rptr,

since rptr[j] and rptr[j+1] may belong to different banks, each

cacheline of rcache includes an extra 32-bit data to avoid cross-

bank accesses. For val and cid, elements shall arrive at PEs in

order (i.e., the column indices are monotonically increasing)

to ensure a smooth merge but the length is unpredictable. On

the one hand, it’s hard to hold these elements in one cacheline.

On the other hand, issuing multiple cache requests incurs

additional overhead, e.g., more bank conflicts and standalone

off-chip memory accesses if some requests miss the cache.

To solve this, we propose combining streaming and caching.

 



Since the streaming memory access fetches elements in order

after the long-delay control information exchange phase, we

cache some elements to cover the control phase and then

access the remaining elements from the streaming. In this

work, we cache the first 32 elements of each Bj in a cacheline.

As shown in Fig. 7(a), the vccache manager fetches the

cached elements and issues the streaming access towards the

remaining elements. The control phase of the streaming access

is covered by the processing of the cached elements and the

remaining elements can stream into PEs in order. In addition,

if requests miss, the manager accesses all the elements in the

streaming fashion and updates the cache.

C. PEs and Mergers

PEs mainly perform multiplications between Aij’s value

and Bj’s values. Since the bitwidth of each memory channel

is 128 bits, up to four B’s values can be fed into one PE in

a cycle. Thus, we deploy four single-precision floating-point

multipliers in each PE.

With element-wise parallelism, each merger merges partial

results from the corresponding PE. When a new row begins,

mergers push the buffered partial results into the final merger.

The final merger merges the four partial results with two

helper mergers and writes the result to DDR. All the mergers

perform the merge algorithm shown in Algorithm 1. Thanks to

ordered column indices, the algorithm doesn’t require repeated

traverses of inputs. Further, we deploy a ping-pong buffer to

enable a pipelined implementation of the Algorithm 1.

Algorithm 1 Merge Algorithm

Input:
The input stream of products, Pi;

The buffered stream of partial results, Pb;

Output:
The output stream of merged partial results, Pm;

1: Epi = Pi.read(); Epb = Pb.read();

2: while Pi or Pb is not empty do
3: if Epi.cid > Epb.cid then
4: Pm.write(Epb);

5: Epb = Pb.read();

6: else if Epi.cid < Epb.cid then
7: Pm.write(Epi);

8: Epi = Pi.read();

9: else if Epi.cid == Epb.cid then
10: Merge the value of Epb and Epi; Pm.write(Epm);

11: Epi = Pi.read(); Epb = Pb.read();

12: end if
13: end while

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental results are obtained on the Xilinx Zynq

UltraScale ZCU106 platform, which integrates a quad-core

ARM Cortex-A53 application processor, a dual-core Cortex-

R5 real-time processor, and an XCZU7EV-2FFVC1156 FPGA

chip. The accelerator is written in C++, which is converted

to Verilog using the Vitis HLS. We use Vitis HLS version

2022.1 [15] as the High-level Synthesis (HLS) tool and Vivado

version 2022.1 to generate the final bitstream. We run all the

experiments under a 100 MHz clock. Table I shows the total

resource consumption of this design. Caches are 16-way 4-

bank caches and the size of rcache and vccache is 40KB and

2MB separately.

TABLE I: Resource Consumption

LUTs(%) FFs(%) BRAM(%) URAM(%) DSPs(%)
73.53 47.13 59.29 62.5 3.13

Table II shows the benchmarks used in this work. All these

matrices are available on the SuiteSparse matrix collection

[10]. We use the same configuration as [7] [6] [9] that A and

B are the same and both are square. In addition, since there

is no previous work targeting the embedded FPGA platform,

we compare the performance with the baseline implementation

using row-wise parallelism. Besides, the datatype of val is 32-

bit float and the datatype of cid and rptr is 32-bit unsigned
int. The matrices are in CSR format without extra processing.

TABLE II: Selected Benchmarks

Benchmark Cols/Rows Nonzero Nz/Col Density Cycles
poisson3Da 13514 352762 26.10 0.19% 19878983

raefsky1 3242 294276 90.77 2.80% 27458639
crystk01 4875 315891 64.80 1.33% 21885313

s3rmt3m3 5357 207695 38.77 0.72% 8628745
t2dah_a 11445 176117 15.39 0.13% 5582450

nasa2910 2910 174296 59.90 2.06% 12797230
bcsstk24 3562 159910 44.89 1.26% 7588259
cavity26 4562 138187 30.29 0.66% 6632677

ex9 3363 99471 29.58 0.88% 4011290
af23560 23560 484256 20.55 0.09% 15408694

B. Performance Analysis

Fig. 8: Performance Comparison

As shown in Fig. 8, our proposed design labelled as GSCSp
achieves an average 1.62x performance speedup compared to

the baseline rw. Specifically, the proposed element-wise paral-

lelism ew achieves an average 1.19x speedup and the GSCSp
further achieves an average 1.37x speedup using SpCaches.

 



Fig. 9: Performance Speedup of SpCaches

Compared to row-wise parallelism, the proposed element-

wise parallelism tries to reduce PEs’ idle time caused by

synchronization among PEs. However, it may fail to achieve

performance speedup. If the workload of each A’s row is

similar, the overhead of synchronization is little. For example,

raefsky1, crystk01, s3rmt3m3, and bcsstk24 have

similar performance with the two parallelisms. Overall, the

average performance speedup of the proposed element-wise

parallelism is 1.19x.

Despite the parallelism, the proposed SpCache aims to

reduce the overall memory access latency. As shown in Fig.

9, the proposed rcache and vccache achieve an average 1.15x

and 1.18x performance speedup separately. Since memory

accesses, multiplications, and merges of the four elements of

A are processed in parallel, it’s hard to accurately analyze the

performance. We remove multiplications and merges to get

the execution time that only memory accesses are performed

and the proportion of memory accesses is shown in Fig. 10.

For example, memory accesses account for 44% of the overall

execution time in raefsky1 and the SpCache achieves minor

performance speedup. Overall, the proposed SpCaches achieve

an average 1.37x performance speedup.

VI. CONCLUSION

In this work, we analyze the parallelism of the Gustavson’s

algorithm and propose to perform the algorithm with element-

wise parallelism. Further, we show a counter-intuitive ex-

ample that traditional cache leads to worse performance.

In addition, we propose a novel access pattern-aware cache

scheme called SpCache, which provides quick responses to

reduce bank conflicts caused by irregular memory accesses

and combines streaming and caching to handle requests that

access ordered elements of unpredictable length. Finally, we

conduct experiments on the Xilinx ZCU106 platform with a

set of benchmarks from the SuiteSparse matrix collection and

the experimental results show an average 1.62x performance

speedup compared to the baseline implementation.

Fig. 10: Proportion of Memory Accesses

ACKNOWLEDGMENT

This work is partially supported by the Ministry of Ed-

ucation, Singapore, under its Academic Research Fund Tier

2 (MOE2019-T2-1-071), and Nanyang Technological Univer-

sity, Singapore, under its NAP (M4082282).

REFERENCES

[1] J. R. Gilbert and et al., “A unified framework for numerical and com-
binatorial computing,” Computing in Science & Engineering, vol. 10,
no. 2, pp. 20–25, 2008.

[2] P. D’alberto and et al., “R-kleene: A high-performance divide-and-
conquer algorithm for the all-pair shortest path for densely connected
networks,” Algorithmica, vol. 47, no. 2, pp. 203–213, 2007.

[3] H. Kaplan and et al., “Colored intersection searching via sparse rectan-
gular matrix multiplication,” in Proceedings of the twenty-second annual
symposium on Computational geometry, 2006, pp. 52–60.

[4] S. Itoh and et al., “Order-n tight-binding molecular dynamics on parallel
computers,” Computer physics communications, vol. 88, no. 2-3, pp.
173–185, 1995.

[5] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[6] N. Srivastava and et al., “Matraptor: A sparse-sparse matrix multipli-
cation accelerator based on row-wise product,” in 2020 53rd Annual
IEEE/ACM MICRO. IEEE, 2020, pp. 766–780.

[7] D. Baek and et al., “Innersp: A memory efficient sparse matrix mul-
tiplication accelerator with locality-aware inner product processing,” in
2021 30th PACT. IEEE, 2021, pp. 116–128.

[8] E. B. Tavakoli and et al., “Fspgemm: An opencl-based hpc framework
for accelerating general sparse matrix-matrix multiplication on fpgas,”
arXiv preprint arXiv:2112.10037, 2021.

[9] G. Zhang and et al., “Gamma: Leveraging gustavson’s algorithm to
accelerate sparse matrix multiplication,” in Proceedings of the 26th ACM
ASPLOS, 2021, pp. 687–701.

[10] T. A. Davis and et al., “The university of florida sparse matrix collec-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 38,
no. 1, pp. 1–25, 2011.

[11] C. Y. Lin and et al., “Design space exploration for sparse matrix-matrix
multiplication on fpgas,” International Journal of Circuit Theory and
Applications, vol. 41, no. 2, pp. 205–219, 2013.

[12] S. Pal and et al., “Outerspace: An outer product based sparse matrix
multiplication accelerator,” in 2018 IEEE HPCA. IEEE, 2018, pp.
724–736.

[13] Z. Zhang and et al., “Sparch: Efficient architecture for sparse matrix
multiplication,” in 2020 IEEE HPCA. IEEE, 2020, pp. 261–274.

[14] M. Asiatici and et al., “Stop crying over your cache miss rate: Handling
efficiently thousands of outstanding misses in fpgas,” in FPGA 2019,
2019, pp. 310–319.

[15] Xilinx. Vivado design suite. [Online]. Available: https://www.xilinx.
com/products/design-tools/vitis/vitis-platform.html

 


	Select a link below
	Return to Previous View
	Return to Main Menu


