
ODLPIM: A Write-Optimized and Long-Lifetime
ReRAM-Based Accelerator for Online Deep

Learning
Heng Zhou, Bing Wu, Huan Cheng, Wei Zhao, Xueliang Wei, Jinpeng Liu, Dan Feng*, Wei Tong*

Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,
Engineering Research Center of Data Storage Systems and Technology, (School of Computer Science and Technology,

Huazhong University of Science and Technology), Ministry of Education of China, Wuhan, China
{heng zhou, wubin200, chenghuan, weiz, xueliang wei, jinpengliu98, dfeng, Tongwei}@hust.edu.cn

*Corresponding author

Abstract—ReRAM-based Processing-In-Memory (PIM) archi-
tectures have demonstrated high energy efficiency and perfor-
mance in deep neural network (DNN) acceleration. Most of the
existing PIM accelerators for DNN focus on offline batch learning
(OBL) which require the whole dataset to be available before
training. However, in the real world, data instances arrive in
sequential settings, and even the data pattern may change, which
calls concept drift. OBL requires expensive retraining to solve
concept drift, whereas online deep learning (ODL) is evidenced
to be a better solution to keep the model evolving over streaming
data. Unfortunately, when ODL optimizes models over a large-
scale data stream in the PIM system, unbalanced writes are
more severe than OBL, due to the heavier weight updates,
resulting in the amplification of unbalanced writes and lifetime
deterioration. In this work, we propose ODLPIM, an online deep
learning PIM accelerator that extends the system lifetime through
algorithm-hardware co-optimization. ODLPIM adopts a novel
write-optimized parameter update (WARP) scheme that reduces
the non-critical weight updates in hidden layers. Besides, a table-
based inter-crossbar wear-leveling (TIWL) scheme is proposed
and applied to the hardware controller to achieve wear-leveling
between crossbars for lifetime improvement. Experiments show
that WARP reduces weight updates on average to 15.25% and
up to 24% compared to that without WARP, and eventually
prolongs system lifetime on average to 9.65% and up to 26.81%,
with a negligible rise in cumulative error rate (up to 0.31%).
By combining WARP with TIWL, the lifetime of ODLPIM is
improved by an average of 12.59× and up to 17.73×.

Index Terms—online deep learning, processing-in-memory,
write reduction, wear-leveling, lifetime extension

I. INTRODUCTION

Many ReRAM-based DNN accelerators [1]–[3] have been
proposed to address the memory wall issue in recent years.
However, they focus on OBL which requires the entire dataset
to be available before training. In fact, the real-world data
instances arrive in a sequential setting and the target concepts
may be drifting or evolving over time [4]. So OBL suffers from
expensive retraining overhead to keep evolving when concept
drift occurs, causing it to become increasingly restricted and
poorly scalable. ODL has been proposed to solve this problem
effectively and optimizes models over million-scale streaming
data. However, if we directly apply PIM accelerators to ODL

situations, the lifetime of the PIM system will drop dramatically
according to our experiments:

• Massive weight updates: Optimizing DNN models over
streaming data inevitably introduces enormous weight up-
dates. The limited endurance of ReRAM makes it difficult
to support the long-term training of DNNs with millions
of iterations [5].

• Unbalanced write: Based on our observations, quantiza-
tion drops small updates leading to an unbalanced write
distribution of weight value. In addition, the different
update frequencies of the most significant bits (MSB) and
the least significant bits (LSB) of data result in unbalanced
writes within the cells representing one value.

Although unbalanced write exists in both ODL and OBL, it
is more serious in ODL. Because the scale of streaming data
is often more than one million or even larger, ODL suffers
from heavier weight updates, resulting in the amplification of
unbalanced writes and lifetime deterioration. Wear-leveling is a
straightforward solution to balance the writes of the PIM sys-
tem. However, existing works, such as Row swapping (RS) [5],
column swapping (CS) [6] and row-column swapping (RCS)
[7], focus on wear-leveling within a crossbar (or algorithm-level
matrix). Even though they prolong the lifetime of crossbars, the
lifetime of the whole system still depends on the worst crossbar.
Thus, a more desired option is to design a wear-leveling scheme
that ensures balanced writes in the whole system to further
improve the lifetime.

In this paper, we propose an online deep learning PIM
accelerator called ODLPIM and design an algorithm-hardware
co-optimization to prolong ODLPIM’s lifetime. The main con-
tributions of this paper include:

• We find that the Hedge Backpropagation algorithm of
ODL shifts training attention by controlling the distribu-
tion of contribution rates of all layers. Therefore at the
algorithm level, WARP is proposed to reduce the weight
updates of layers with a low contribution.

• We propose an orthogonal inter-crossbar wear-leveling
scheme, called TIWL, which remaps the “hot” logical
arrays to the less-worn physical crossbars and extends

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

hn

on

αn

layern

h3

o3

α3

layer3

h2

o2

α2

layer2

h1

o1

α1

layer1

···

Fi

xi

···
layer1 layer2 layer3 layern

h1

o1 o2 o3 on

h2 h3 hn···

α1 α2 α3 αn

yi

hedge hedge hedge hedge

···

(a) (b)

Fig. 1. (a) Forward stage of HBP; (b) Backward propagation of HBP.

the lifetime of ODLPIM at the hardware level with minor
overhead.

• Experimental results show that WARP reduces weight
writes on average to 15.25% and up to 24%, with a
negligible rise in cumulative error rate (up to 0.31%). After
using both WARP and TIWL, the lifetime of ODLPIM is
prolonged on average to 12.59× and up to 17.73×.

II. PRELIMINARY AND MOTIVATION

A. Online Deep Learning

Among various ODL algorithms, Hedge Backpropagation
(HBP) has proved its capability of adjusting the DNN capacity
dynamically to achieve fast convergence [8]. It has been applied
in many fields, including click-through rate prediction and
continual learning [9].

As shown in Fig. 1, a network with N layers contains three
parts: the hidden layer hi (green), the output layer oi (red) and
the classifier (yellow). The following equation demonstrates the
forward propagation of ODL using HBP:

F (x) =
∑N

k=1
αk · ok,∀k = 1, · · · , N (1)

ok = softmax(hk ·Θk), hk = σ(Wk · hk−1), h0 = x

where Wk and Θk represent the weights of the hidden layer
and output layer, and σ denotes the activation function. αk

is the contribution rate of the kth layer, which is a learnable
parameter. As shown in Eq. 2, each classifier uses the cross-
entropy function to calculate the loss and then aggregate them
to generate the total loss. ŷ refers to the ground truth.

L(F (x), ŷ) =
∑N

k=1
αk · LCE(ok, ŷ) (2)

The αk controls the training of each layer. At the begin-
ning of training, α is uniformly distributed: αk = 1/(N+1). As
shown in Eq. 3, at each iteration, αk will be decayed according
to the loss value LCE(ok, ŷ), which is controlled by the decay
factor β ∈ (0, 1). To avoid the slow learning of the deep layer
due to small α, a smoothing factor s ∈ (0, 1) is introduced:
αt = max(αt, s/N). Finally, the normalization of α will be
performed such that the sum of αk is 1.

αt+1
k = αt

k · βLCE(ok,ŷ) (3)

Θt+1
k = Θt

k − αk · η∇Θt
k
LCE(ok, ŷ) (4)

W t+1
k = W t

k − η
∑N

i=k
αi · ∇W t

i
LCE(oi, ŷ) (5)

Fig. 1(b) illustrates the backpropagation of HBP. The weight
update rules of output layer and hidden layer are shown in
Eq. 4 and Eq. 5, respectively. The error is backpropagated

from each classifier independently. In this way, knowledge
can be shared between shallow and deep layers. Therefore,
enabling the network to automatically modify its effective
neuron capacity in a dataflow-driven manner.

B. ReRAM-based analog computing

A ReRAM cell is a two-port element that indicates differ-
ent states by its conductance, with metal electrodes at two
ends and a metal-oxide layer in the middle. The resistance
of a cell can be changed by applying a voltage of specific
polarity, magnitude and duration onto two metal electrodes.
The crossbar, as the core component of the ReRAM-based
accelerator, is constructed by mutually perpendicular wordlines
(WLs) and bitlines (BLs) with ReRAM cells sandwiched at
each crosspoint. During the computation, the weights G are
mapped to the conductance of the ReRAM cells. By applying
voltage to WL, the input vector

−→
V is fed and the current is

summed at each BL according to Kirchhoff’s Current Law:
ioutk =

∑n
i=1 Vi · Gik. This analog calculation reduces the

algorithmic complexity of the VMM from O(n2) to O(1).

C. Motivation

1) Non-essential weight update for HBP: As shown in Fig.
2, the HBP algorithm automatically modifies the adequate
neuron capacity of the network by controlling the distribution
of α. However, when performing online deep learning on
PIM architecture, the weights of all hidden layers are updated
regardless of the value of α. Due to the low contribution rate,
the inactive layers gain very little knowledge and have less
impact on the final output. Therefore, we aim to reduce crossbar
writes and extend the lifetime by restraining weight updates in
inactive hidden layers while maintaining network performance.

1 2 3 4 5 6 7 8
Depth (#layers)

0.0

0.1

0.2

0.3

0.4

al
ph
a

First 0.5% of data

1 2 3 4 5 6 7 8
Depth (#layers)

0.00

0.05

0.10

0.15

0.20

0.25

al
ph
a

First 12.5% of data

1 2 3 4 5 6 7 8
Depth (#layers)

0.00

0.05

0.10

0.15

0.20

0.25
al
ph
a

First 60.0% of data

Fig. 2. Evolution of α distribution of the layers using HBP on Higgs dataset.

2) Unbalanced writes between crossbars: Table I shows
the comparison of the previous wear-leveling schemes in the
aspect of storage & algorithm overhead, application scalability,
granularity and effectiveness. Previous studies did not real-
ize that the quantization in the PIM system causes severely
unbalanced writes. As shown in the right subplots of Fig. 3
(a), quantization drops tiny weight updates due to insufficient
quantization precision, leading to unbalanced updates within
the weight matrix (1). In the right subplots of Fig. 3 (a), after
quantization, the difference between the update frequency of the
MSB and LSB leads to unbalanced writes in each weight data
(2). Comparing the max write number in Fig. 3 (a), we found
that the write imbalance is severe. Besides, CS, RS and RCS
perform wear-leveling within a crossbar, resulting in limited
effectiveness. Take CS as an example, although Fig. 3(b) shows
the effectiveness of CS, there is still a large difference between

!

!

TABLE I
COMPARISON OF WEAR-LEVELING SCHEMES.

Storage Overhead Algorithm Overhead Application Scalability Granularity Effectiveness

CS [5] Very low, require to None, shift directly High, bitline group limited, wear leveling
store the column offset algorithm-independence within a crossbar

RS [6] High, require a register High, sort by row writes low, the size of register row of matrix limited, wear leveling
in every row of matrix depends on application within a matrix

RCS [7] Very high, require the Very high, solve a linear High, subblock of limited, wear leveling
conductance bounds of cells optimization in every crossbar algorithm-independence a crossbar within a crossbar

TIWL
low, require 160b

for a crossbar
low, sort by

crossbar writes
High,

algorithm-independence crossbar
good, an orthogonal method
that achieves wear leveling

between crossbar

crossbars. Thus, it is necessary to design an inter-crossbar wear-
leveling scheme to improve the lifetime of the whole PIM
accelerator.

max:6539 max:10559

0.0

0.2

0.4

0.6

0.8

1.0
1e4

max:396

max:2066

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
1e3

value1
value2

MSB

Crossbar1 Crossbar2 Crossbar1 Crossbar2
(a): without wear-leveling (b): using column shift

1

 LSB
2

Fig. 3. Comparison of write distribution of two crossbars in the system
with/without column shift, using 8-bit quantization precision and 1-bit ReRAM.

III. RERAM-BASED ODL ACCELERATOR

A. Write-Optimized Parameter Update Scheme

We found that those layers with tiny α have small updates
and low contribution to the final result, which means that the
benefit of updating these non-critical layers is little compared
to layers with large α. Therefore, at the algorithm level, we
propose a write-optimized parameter update (WARP) scheme
to reduce unnecessary weight updates in hidden layers during
ODL on the PIM accelerator (the pseudo-code is shown in
Algorithm 1). A layer is defined as a non-critical layer when it’s
α smaller than threshold ε. We introduce ε as a hyperparameter
to adjust the reduction of weight updates. Generally, we set it
to 1/N . If it is set too large, the model convergence will be
affected. We also use an update interval γ (generally set to 2)
to avoid the network failing to converge. The output layer is
the “judge” of the hidden layer, so we cannot restrict its weight
updates (Θ). Otherwise, it will exacerbate the performance.

B. Table-Based Inter-Crossbar Wear Leveling Scheme

1) Design details: Previous works focus on intra-crossbar
wear-leveling which are difficult to address the severely unbal-
anced writes between crossbars. So, we propose a table-based
inter-crossbar wear-leveling (TIWL) scheme at the hardware
level to achieve wear-leveling by remapping “hot” logical
arrays to less worn physical arrays. There are two metadata
related to TIWL for each crossbar, interval wear count (IWC,
32-bit) and total wear count (TWC, 64-bit), indicating the
hotness and the wearing degree of the crossbar. To reduce
the storage overhead, we use the summation of cell writes
during an interval (IWC) to indicate the hotness of a crossbar.
IWC is stored in a register of the crossbar as the temporality

Algorithm 1: Write-Optimized Parameter Update
Scheme for Online Deep Learning
Input: lr: η, decay factor: β, smoothing factor: s,

number of layers: N , threshold ε, interval: γ
Output: DNN model F (X)

1 Initialize: F (X) = DNN with N layers;
2 αk = 1

N+1 ,∀k = 1, · · · , N ;
3 foreach data instance Xi ∈ dataset do
4 predict yi = F (Xi) =

∑N
k=1 αk · ok as per Eq. 1;

5 for k ← 1 to N do
6 calculate loss with label ŷi: LCE(ok(Xi), ŷi) ;
7 end
8 for k ← 1 to N do
9 gradient backpropagation of classifier ok ;

10 update Θk,∀k = 1, · · · , N as per Eq. 4 ;
11 if αk ≥ ε or i mod γ == 0 then
12 update Wk as per Eq. 5 ;
13 end
14 end
15 update, smoothing and normalize αk;
16 end

and frequent updates of it. Meanwhile, TWC is important
metadata that records the total number of cell writes during
the crossbar’s lifetime. Thus, it is stored concentratively in a
dedicated crossbar group safely.

In the following discussion, we define two array IDs. Logical
Array ID (LAID) is a virtual reference assigned by the system
to access the physical array. Physical Array ID (PAID) iden-
tifies a physical crossbar in the PIM system. TIWL consists of
two phases: running and remapping & data swapping, As shown
in Fig. 4. In the running phase, the write driver accumulates
the total number of cell writes to the IWC register at each
write operation. Compared with previous works, TIWL does
not need to record the aging status of each WL or BL, nor get
the temperature of cells. Thus, the storage and computational
overhead are reduced. In the remapping & data swapping phase,
the IWCs of all crossbars are accumulated into corresponding
TWCs. Then TIWL rebuilds the mapping table and performs
data swapping. Data swapping is hidden in the weight update,
which reduces the write amplification by overlapping the writes
of data swapping and weights update.

As shown in Table I, unlike RS limited in a specific domain,

!

!

TIWL can achieve system-level wear-leveling for any PIM
application. Compared to RS and RCS, TIWL needn’t record
the write counts of each WL or BL, nor get the temperature
of cells, resulting in the low overhead of storage and compu-
tational. By customizing the granularity of mapping such as
a processing element (multiple crossbars), TIWL can achieve
a balance between mapping overhead and mapping profits
which is architecture-friendly. In this paper, the granularity is
a crossbar. It is important that TIWL is an orthogonal scheme
that can be used together with other intra-crossbar wear-leveling
schemes, such as CS, RCS.

2) Storage overhead analysis: Suppose building a ReRAM-
based PIM system with a capacity of 4 GB using the crossbar
of size 128× 128, the storage overhead is acceptable, 24 MB
(0.59% of 4 GB) for wear metadata and 16 MB (0.15% of 4
GB) for the mapping table. When the crossbar size is increased
to 512, the storage overhead for wear metadata and mapping
tables drops to 1.14 MB (0.03% of 4 GB) and 1.5 MB (0.04%
of 4 GB). The metadata of a crossbar is fixed to 96 bits which
is much smaller than RS (N×T , where N denotes row number
and T is bits width of register).

Mapping TableMapping Table
IWC LAID
0 A1
0 A2
0 A3
0 A4
0 B1
0 B2

Running

previous interval

PAID TWC
PA11 85521
PA10 85634
PA9 85293
PA8 86486
PA1 75480
PA0 75202

IWC LAID
11558 A1
11809 A2
11774 A3
11804 A4
23992 B1
23924 B2

PAID TWC
PA11 97079
PA10 97443
PA9 97067
PA8 98290
PA1 99472
PA0 99126

PAID TWC
PA1 99472
PA10 97443
PA0 99126
PA8 98290
PA9 97067
PA11 97079

IWC LAID
0 A1
0 A2
0 A3
0 A4
0 B1
0 B2

Mapping Table

Remapping & Data swapping
next interval

Fig. 4. The basic workflow of table-based inter-crossbar wear leveling scheme
and the structure of the mapping table. The red indicates heavy updates, while
the green is the opposite.

C. Architecture Design

We first present an overview of the ODLPIM architecture
(shown in Fig. 5). The ACU (3) is used to process the
results of crossbars from different tiles, including ReLU ac-
tivation, pooling, accumulation, and vector operation for back-
propagating. Torus routing (1) [10] is used for interconnection

Xbar Xbar

Xbar Xbar

Xbar Xbar

Xbar Xbar

···

···

Tile-level Input Buffer

2

Tile-level Output Buffer

ReRAM-based ODLArchitecture

Auxiliary Compute Unit

···ReLU Pooling Vector Unit
3

Controller

Global Buffer

···

···

··· ···

···

···

Tile11 Tile12 Tile1k

Tile21 Tile22 Tile2k

Tilej1 Tilej2 Tilejk

B
an

k

1

Controll
& Timing

Wear
Counter

··· ···

···

···

···
···

···
···

WL
G11 G12

SL

BL
G1n

G21 G22 G2n

Gm1 Gm2 Gmn B
L
Sw

it
ch

M
at
ri
x

W
L
D
ec
od

er

SL Switch Matrix

S&H
MUX

Adder
ADC

Shift Reg

···

1T1R Cell

4Adder
ADC

Shift Reg
Adder
ADC

Shift Reg

Fig. 5. The ODLPIM architecture overview.

TABLE II
DATASET DESCRIPTION.

Dataset #Instances #Features #Classes Type
Higgs 5M 28 2 Stationary
Susy 5M 18 2 Stationary

Inf-MNIST 3M 784 10 Stationary
CD 4.5M 50 2 Concept Drift

between tiles. Each Tile is composed of multiple crossbars and
tile-level input/output buffer, interconnected by H-Tree (2). To
mitigate write interference and sneak currents [11], 1T1R cells
are used to construct crossbars. Within the crossbar controller,
the IWC is stored in the wear counter (4).

ODLPIM adopts a two-level (Tile/Crossbar) hierarchy de-
sign, instead of the popular three-level (Tile/PE/Crossbar) PIM
architecture [2], [12], [13]. As analyzed in Section III-B1, the
crossbars belonging to a logical array may be distributed in
multiple tiles after remapping. To reduce unnecessary commu-
nication overhead, we remove the PE hierarchy and use Torus
routing for interconnection between tiles. ODL has a smaller
bandwidth requirement (commonly batchsize = 1) than offline
batch training. Moreover, the decentralized computation can
mitigate bandwidth contention within the tile.

The computation of gradient ∇W requires the intermediate
data x as input: ∇Wl = xl−1(δl)

⊤, so x should be stored in the
forward stage. There are two drawbacks if we use the crossbar
to generate ∇W [1] in the ODL situation: (1) Rewriting the
crossbar frequently introduces energy overhead and reduces the
lifetime. (2) Storing the striped intermediate data in the crossbar
would waste space and aggravate the wear unbalance. In ODL,
intermediate data storage space is smaller than in OBL. For
training of 16-layers network (of 100 widths each) using HBP,
9KB is sufficient. Therefore, we store x in the global buffer
and use the ACU to generate ∇W , similar to [2].

IV. EVALUATION

A. Experiment Setup

1) Benchmarks: Common datasets (cifar10, cifar100, etc.)
are too small to simulate large-scale sequential data streams,
we used million-scale datasets from [8] which is widely used in
ODL situations to evaluate network performance. Specifically,
we evaluated the sensitivity of the model to concept drift in the
artificial dataset CD, which contains three concept patterns, P1,
P2, and P3. Each concept pattern accounts for 1/3 of the overall
dataset. Table II shows the details of the dataset.

2) Simulation Parameters: We developed an in-house sim-
ulator by utilizing the LibTorch interface to evaluate the per-
formance of ODLPIM. Particularly, system-level information
is recorded to evaluate TIWL scheduling of the crossbars.
The area and power metrics are retrieved from [12], [14] in
32 nm. Table III shows the energy and area of a tile. We
use our simulator to evaluate an 8-layer DNN training (each
layer has 100 units) in an online setting, with 8-bit weight
quantization precision and 12-bit array input bit width. As a
comparison, the software baseline is trained using PyTorch. For
model hyperparameters, learning rate η = 0.01, decay factor
β = 0.99, and smoothing factor s = 0.2. The threshold ε

!

!

TABLE III
ODLPIM TILE HARDWARE SPECIFICATION

Component Parameter Spec Power Area
(mW) (mm2)

ADC
resolution 8-bit

64 0.0384frequency 1.2 GHz
number 32

DAC resolution 1-bit 4 0.00017number 8× 128
S & H number 8× 128 0.01 0.00004

crossbar array
number 8

2.43 0.00069size 128× 128
bit/cell 1

buffer capacity 2Kb 0.00097 0.00326

TABLE IV
CERS OF DNNS AND WRITE REDUCTION ON DIFFERENT DATASETS

Cumulative Error Rate (CER) Write
software w/o WARP w/ WARP Reduction
baseline (vs. baseline) (vs. w/o WARP) of WARP

Higgs 0.2632 0.2625 0.2687 21%(-0.0007) (+0.0062)

Susy 0.2003 0.2004 0.2008 7%(+0.0001) (+0.0004)

Inf-MNIST 0.0186 0.0710 0.075 24%(+0.0524) (+0.004)

CD 0.4122 0.4128 0.4146 9%(+0.0006) (+0.0018)

for WARP is determined by the number of network layers:
ε = 1/N . Wear-leveling is performed every 1000 iterations.

B. Performance & Write Reduction Results

Due to the variability of streaming data, a static validation
set cannot evaluate the performance of dynamic models. Thus,
we demonstrate the performance of the model by evaluating the
cumulative error rate (CER). The CER is given by: CER =
num of incorrect predictions

total num of predictions . As shown in Table IV, compared
to the software baseline, the CERs for ODL without WARP
has a slight increase on average of 1.31% due to quantization.
Although WARP reduces the non-critical weight updates, it
achieves a resemble performance and convergence as without
WARP, with an acceptable rise in CER up to 0.4%. Besides,
we trace all crossbar cells’ writes during training through our
simulator and find that WARP achieves a write reduction by
15.25% on average compared to that without using WARP, as
shown in Table IV.

C. Wear Leveling Analysis

In the follow-up discussion, we focus on the effectiveness
of WARP and TIWL in ODLPIM, so we set the case without
using WARP and TIWL as the comparison (PIM baseline) and
set the number of data instances to 0.5M which is enough
for evaluation. We define the MaxWrt of the crossbar as
the number of writes of the worse cell in it. Fig. 7 shows
the variation of MaxWrt distribution for all crossbars during
ODL. There are nine lines, from top to bottom, indicating
the standard deviation boundaries on a normal distribution:
[maximum, µ + 1.5σ, µ + σ, µ + 0.5σ, µ, µ − 0.5σ, µ − σ,
µ − 1.5σ, minimum], and the percentile of data distribution
(defined as R) corresponding to each line is: [100%, 93%,

CS RCS TIWL TIWL+CS TIWL+RCS
wear-leveling setting

0

500

1000

1500

2000

2500

3000

3500

m
ax

im
um

 M
ax

W
rt

T=0%
T=7%
T=16%

Higgs
Susy
Inf-MNIST
CD

Higgs Susy Inf-MNIST CD
Dataset

1010

1011

#i
ns

ta
nc

es

R=100%
R=93%
R=84%

PIM baseline
WARP
WARP+TIWL

Fig. 6. (a) The maximum MaxWrt in the system with different wear-leveling
settings and tolerances T . (0.5M instances). (b) Lifetime extension of WARP
and TIWL with different R.

84%, 69%, 50%, 31%, 16%, 7%, 0%]. We define the difference
between the maximum and minimum MaxWrt as ∆MaxWrt
to evaluate the write imbalance of ODLPIM. To predict how
many data instances the ODLPIM can support during the whole
lifetime, we extend these lines using linear fitting (red part) to
the endurance of a ReRAM cell (108 according to [5]).

Although most logical arrays have different update hotspots,
TIWL makes these hotspots evenly dispersed to different cross-
bars, ultimately achieving inter-crossbar wear-leveling for the
entire PIM system. Fig. 7 demonstrates that TIWL signifi-
cantly reduces the ∆MaxWrt. Specifically, the reduction of
∆MaxWrt in four datasets averages about 6.8 × 104, up to
1.2 × 105. The violin plot in Fig. 8 directly illustrates the
probability density of MaxWrt when the training is over.
Since WARP reduces the non-essential weight updates, it slows
down the growth of MaxWrt. The mean values of MaxWrt
are reduced by 13.78% (Higgs), 12.33% (Susy), 2.57% (Inf-
MNIST), and 12.9% (CD). A slight increase of maximum
MaxWrt is shown in Inf-MNIST dataset after using WARP
which may be caused by the volatility of weight update, but
the distribution of MaxWrt concentrate on a smaller value
compared to baseline. Fortunately, after combining WARP
and TIWL, the mean values of MaxWrt reduce by 75.86%
(Higgs), 74.23% (Susy), 51.05% (Inf-MNIST), and 67.91%
(CD), even lower than the 25th percentile in some cases.

We also conducted comparison experiments with CS to
demonstrate TIWL’s excellent wear-leveling power. The tol-
erance T of a crossbar is defined as the percentage of worst
cells that can be accepted. We collect the minimum MaxWrt
amount of the T% worst cells for each crossbar, then choose the
maximum amount for them to indicate the maximum MaxWrt
of the worse crossbar in the system. As shown in Fig. 6(a),
the effect of CS is the poorest because it only performs wear-
leveling inside the crossbar. RCS achieves balanced writes
among different rows, so it is more effective than CS. What’s
more, TIWL achieves wear-leveling between crossbars, it de-
creases the maximum MaxWrt on average of 58.35% (T=0%),
68.36% (T=7%) and 66.07% (T=16%), compared to CS. As
TIWL is an orthogonal method that can reinforce the wear-
leveling performance of CS/RCS. For CS/RCS, the average
reduction of maximum MaxWrt is 81.36%/37% (T=0%),
74.26%/41.01% (T=7%) and 71.38%/40.76% (T=16%).

D. Lifetime Extension

We assume that a crossbar breaks down when it’s MaxWrt
reached the endurance. The maximum number of training

!

!

Fig. 7. Variation in the distribution of MaxWrt of the crossbar, where the green part is the real data and the red part is the predicted trend using linear fitting.
To reduce the space, only the results of the Higgs dataset are shown and others have similar characteristics.

Fig. 8. The MaxWrt distribution of crossbar when training finished, where the green triangle indicates the average and the orange circle indicates the median.

instances is chosen as the evaluation metric while R% of the
crossbars working properly. We assume that the PIM system
cannot guarantee the model accuracy when R<84%, so we
focus on the top three lines in Fig. 7 (R=100%, R=93%
and R=84% respectively) and use linear fitting to predict the
maximum number of training instances. Fig. 6(b) demonstrate
the lifetime extension of WARP and TIWL. WARP extends the
lifetime on average by 9.65% (R=100%), 16.75% (R=93%)
and 11.56% (R=84%). However, in the Inf-MNIST dataset,
WARP does not show the expected lifetime extension due
to the volatility of weight update, which can be improved
by selecting the optimal hyperparameter of WARP. Thanks
to inter-crossbar wear-leveling, WARP+TIWL achieves 3.76×
(R=100%), 5.85× (R=93%) and 12.59× (R=84%) lifetime
extension on average.

V. CONCLUSION

To the best of our knowledge, we have been the first
to present an efficient online deep learning PIM accelerator,
called ODLPIM, with an algorithm-hardware co-optimization
to prolong its lifetime. We use WARP to reduce unnecessary
weight updates and TIWL for inter-crossbar wear-leveling. The
experimental results show that WARP achieves an average of
15.25% write reduction. For lifetime extension, compared to
PIM baseline, WARP extends on average 9.65% (R=100%),
16.75% (R=93%) and 11.56% (R=84%), while WARP+TIWL
extends 12.59×, 5.85× and 3.76×, respectively.

ACKNOWLEDGMENT

This work was sponsored in part by the National Natural
Science Foundation of China under Grant 61832007, Grant
61821003 and Grant 62172178, in part by the pre-research
project No.31511090201.

REFERENCES

[1] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning,” in HPCA, 2017, pp. 541–552.

[2] K. Qiu, Z. Zhu, Y. Cai, H. Sun, Y. Wang, and H. Yang, “Mnsim-time:
Performance modeling framework for training-in-memory architectures,”
in AICAS, 2021, pp. 1–4.

[3] X. Peng, S. Huang, H. Jiang, A. Lu, and S. Yu, “Dnn+neurosim
v2.0: An end-to-end benchmarking framework for compute-in-memory
accelerators for on-chip training,” IEEE TCAD, vol. 40, no. 11, pp. 2306–
2319, 2021.

[4] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM computing surveys, vol. 46,
no. 4, pp. 1–37, 2014.

[5] Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, and H. Yang, “Long live
time: improving lifetime for training-in-memory engines by structured
gradient sparsification,” in DAC, 2018, pp. 1–6.

[6] W. Wen, Y. Zhang, and J. Yang, “Renew: Enhancing lifetime for reram
crossbar based neural network accelerators,” in ICCD, 2019, pp. 487–496.

[7] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann, “Lifetime
enhancement for rram-based computing-in-memory engine considering
aging and thermal effects,” in AICAS, 2020, pp. 11–15.

[8] D. Sahoo, Q. Pham, J. Lu, and S. C. H. Hoi, “Online deep learning:
Learning deep neural networks on the fly,” in IJCAI, 2018, p. 2660–2666.

[9] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[10] H. Matsutani, M. Koibuchi, and H. Amano, “Performance, cost, and en-
ergy evaluation of fat h-tree: A cost-efficient tree-based on-chip network,”
in IPDPS, 2007, pp. 1–10.

[11] B. Wu, D. Feng, W. Tong, J. Liu, S. Li, M. Yang, C. Wang, and Y. Zhang,
“Aliens: A novel hybrid architecture for resistive random-access memory,”
in ICCAD, 2018, pp. 1–8.

[12] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Con-
volutional Neural Network Accelerator with In-Situ Analog Arithmetic
in Crossbars,” in ISCA, 2016, pp. 14–26.

[13] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu, X. Qian,
M. N. Bojnordi, Y. Wang, and C. Ding, “Forms: Fine-grained polarized
reram-based in-situ computation for mixed-signal dnn accelerator,” in
ISCA, 2021, pp. 265–278.

[14] H. Guo, L. Peng, J. Zhang, Q. Chen, and T. D. LeCompte, “Att: A fault-
tolerant reram accelerator for attention-based neural networks,” in ICCD,
2020, pp. 213–221.

!

	Select a link below
	Return to Previous View
	Return to Main Menu

