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Abstract—The rise of machine learning (ML) has necessitated
the development of innovative processing engines. However, devel-
opment of specialized hardware accelerators can incur enormous
one-time engineering expenses that should be avoided in low-
cost embedded ML systems. In addition, embedded systems have
tight resource constraints that prevent them from affording the
“full-blown” machine learning (ML) accelerators seen in many
cloud environments. In embedded situations, a custom function
unit (CFU) that is more lightweight is preferable. We offer CFU
Playground, an open-source toolchain for accelerating embedded
machine learning (ML) on FPGAs through the use of CFUs.

I. INTRODUCTION

The Internet of Things (IoT) has transformed our lives by
embedding computing into everyday objects at the edge. Ma-
chine learning (ML) is set to revolutionize the next generation
of IoT devices as recent advancements have made it possi-
ble to deploy these powerful ML algorithms on commercial
embedded systems [1]. Yet in many cases the computational
burden of ML is still too large to run efficiently on commodity
hardware, and specialized hardware is needed in order to meet
an application’s performance requirements.

However, building custom ASICs incurs large non-recurring
engineering (NRE) costs that are generally not suitable for
low-cost embedded ML systems that support a wide range of
use cases. Moreover, the diversity in ML models and fast-
changing nature of the field has made the reconfigurable
nature of FPGA hardware an attractive alternative for ML
acceleration and deployment [2]. The resource constraints
of embedded systems also make “full-blown,” discrete ML
accelerators seen in cloud settings impractical for IoT devices.

II. CFU PLAYGROUND

CFU Playground is an open-source toolchain to accelerate
embedded ML on FPGAs using custom function units. “CFU”
in CFU Playground stands for Custom Function Unit [3]:
lightweight accelerator hardware that is tightly coupled into
the pipeline of a CPU core, to add new custom function
instructions that complement the CPU’s standard functions
(such as arithmetic or logic operations). The need for a CFU
emerges in settings where (1) faster processing is desirable
under (2) tight resource constraints. ML acceleration on
microcontroller-class hardware [4] is a new area that combines
both of these demands. CFU Playground is a collection of
software, gateware, and hardware configured to make it easy

Fig. 1: CFU Playground is an open-source collection of
software, gateware, and hardware that makes it easy to de-
sign custom function units and accelerate embedded machine
learning on FPGAs via hardware and software.

to: make improvements in software by modifying source code,
design custom function units, run embedded ML models, and
benchmark and profile performance. An important aspect of
CFU Playground is that it enables rapid iteration on processor
improvements— multiple iterations per day!

The complete full-stack of CFU Playground presented in
Figure 1 builds upon fully open sourced projects. VexRiscv [5]
is the RISC-V soft CPU used that is configured with a CFU
plugin. The CPU and CFU are placed inside a complete
System On-Chip (SoC) built using the Litex framework [6]. In
order to synthesize and generate the bitstream for the complete
SoC, we use Symbiflow/F4PGA [7]. CFU Playground supports
a variety of FPGAs boards such as Arty A7-35T/100T, iCE-
Breaker, Fomu, OrangeCrab, and more. Simulation support is
provided using Renode [8] and Verilator [9]. Finally, Tensor-
flow Lite for Microcontrollers [10] is the main software used
for running ML on the soft CPU + CFU.

CFU Playground comes ready out-of-the-box, so you can
start designing your own ML processor in minutes. Source
code is available at www.github.com/google/CFU-Playground.
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Fig. 2: Custom Function Unit (CFU) Architecture in CFU
Playground. CFU instructions follow the RISC-V R-format
pictured above. The register operands, function id, and result
are exchanged via the interface. Handshaking between CPU
and CFU is performed using valid and ready signals.

III. CFU USE CASES

The CFU architecture is flexible and allows for it to be used
in many different ways. In this section, we outline a few of the
common cases. Figure 2 depicts the the CFU interface which
is referred to in the examples.

Combinational CFU: In the simplest CFU, there are no
registers on the path from the operands (rs1 and rs2) to
the result (rd). The result is computed based on the desired
function specified by funct3 and the operands.

CFU with Latency: When the CFU computation critical
path is longer than one clock cycle, the computation can be
broken into stages. After one or more clock cycles the result
will be ready, at which point the CFU asserts its valid signal.
The latency from start to finish can be fixed or variable. The
CPU will stall as needed until the result is produced and
valid is asserted by the CFU. Of course, this means that
a bug in your CFU may hang the system.

Split Phase: If the CFU operation runs for a long time, it
might be useful to let the CPU carry on doing other work.
You can do this with one instruction providing operands to
start the operation (ignoring the immediately-returned result)
and another instruction for retrieving the results later. If the
CFU is not ready when the second instruction executes, the
CPU stalls until it finishes. The first instruction can be thought
of as a “fork” and the second instruction as a “join” of control
flow.

Additional Cases: Some operations naturally have more
than two operands or more than one result. In this case,
multiple CFU instructions can be used to move operands and
fetch results. For complex CFUs, it might make sense to have
addressable storage or configuration registers. You can also
have an instruction for polling the CFU to check if it is still
working, and if it is not, have the CPU continue working on
other stuff. Lastly, another common case is when you want to

shove an indefinite amount of data into the CFU, and the CFU
keeps a running accumulation or reduction (e.g., dot product).
This is implemented as three cooperating instructions: one to
initialize the state (i.e., zero out the accumulator), one to send
the next set of data, and a final one to retrieve the result.

IV. BUILD YOUR OWN ML ACCELERATOR

In this section we briefly describe the process of designing
your own ML accelerator in CFU Playground.

After cloning the CFU Playground repository and following
the instructions to set up the environment, the user must
make a project and select an ML model to accelerate. For
the purposes of this example, we used MobileNet [11].

The first step after selecting a model is profiling portions of
the source code to identify what to accelerate. From this, we
found that about 75% of the time is spent inside Tensorflow
Lite Micro’s CONV_2D operation for this model.

We begin looking at software optimizations now. Perform-
ing some simple, model-specific optimizations for constant
parameters and loop unrolling decreased the total number of
cycles spent in inference by 36%.

Now we direct our attention to hardware. In the innermost
loop of the CONV_2D operation we multiply and accumulate
8 bit quantified integers sequentially. This is wasteful since
our registers are 32 bits wide. Thus, with a bespoke CFU
we created an instruction that performs a SIMD multiply-and-
accumulate operation in one or two cycles.

With just these simple software improvements and a tiny
CFU, we decreased the total number of cycles taken by the
innermost loop from 113 million down to just 22 million!
Users can continue this iterative development process to make
many more improvements.
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