2023 Design, Automation & Test in Europe Conference (DATE 2023)

Mixed-Signal Memristor-based Iterative Montgomery
Modular Multiplication

Mehdi Kamal and Massoud Pedram
Department of Electrical and Computer Engineering, University of Southern California
{mehdi.kamal, pedram} @usc.edu

Abstract—In this paper, we present a mixed-signal implemen-
tation of iterative Montgomery multiplication algorithm (called
X-IMM) for using in large arithmetic word size (LAWS) compu-
tations. LAWS is mainly utilized in security applications such
as lattice-based cryptography where the width of the input
operands may be equal to or larger than 1,024 bits. The pro-
posed architecture is based on the iterative implementation of
Montgomery multiplication (MM) algorithm where some critical
parts of the multiplication are computed in the analog domain by
mapping them on the memristor crossbar. Using a memristor
crossbar reduces the area usage and latency of the modular
multiplication unit compared to its fully digital implementation.
The devised mixed-signal MM implementation is scalable by
cascading the smaller X-IMMs to support dynamically adjustable
larger operand sizes at runtime. The effectiveness of the proposed
MM structure is assessed in the 45nm technology and the
comparative studies show that the proposed 1,024-bit Radix-
4 (Radix-16) Montgomery multiplication architecture provides
about 13% (22%) higher GOPS/me compared to the state-
of-the-art digital implementations of the iterative MM.

Index Terms—Mixed-Signal Computing, Montgomery Multi-
plier, Memristor, Security, Latency

I. INTRODUCTION

We are living in a data explosion era where there are
billions of the devices that are connected to the internet.
These devices generate huge amount of data every second that
should be analyzed and interpreted by the computing systems.
Thus, different data-driven computing technologies have been
extended to reach higher capability for a variety of applica-
tions. However, along with high computational capability, data
privacy is the another key consideration that has been raised in
many application scenarios [1].

To preserve the users’ data and models, several cryptosys-
tems have been introduced such as elliptic-curve cryptog-
raphy (ECC) [2] and fully homomorphic encryption (FHE)
[1]. FHE schemes are specially attractive because they enable
computations to be performed on ciphertexts directly, thereby,
keeping the user data in encrypted form even when it is
undergoing an operation by an untrusted third-party. High time
complexity is a common serious issue in these systems and
thus custom integrated circuit implementation is a promising
solution for improving the throughput of these systems. In
most of these systems, the cryptograhic algorithms are based
on the computations on very long integer numbers, and thus,
long word modular multiplication is the most important basic
arithmetic operation for these systems [3], [4]. Hence, the
speed and area complexity of the hardware structure used for

modular multiplication is critical to efficient realization of cus-
tom hardware targeting cryprosystems. Montgomery modular
multiplication is a well-known algorithm for doing modular
multiplication [5]. Since cryprographic algorithms deal with
long word computations, iterative Montgomery multiplication
provides a balance between the latency and area usage. In this
case, the area usage and the required cycle count for completing
the modular multiplication operation depends on the chosen
radix for the computation [6].

Generally, optimizations at different design abstraction levels
(from devices to algorithms) are needed to improve the effi-
ciency of the hardware designs. Moreover, computing paradigm
shift to in-memory computing is the other promising solution
[7]. Recently, using emerging non-volatile memories (NVMs)
such as PCM, ReRAM, MRAM to compose analog computa-
tional units has received a lot of attention by the academia and
industry. One of these emerging devices is the memristor device
[8]. Multiplication is an operation that memristors can perform
very efficiently, and due to this fact alone, memristors (in
the form of memristor crossbar structures) are widely utilized
in machine learning applications as an analog matrix-vector
multiplication (MVM) engine. Using memristors leads to lower
energy consumption and area usage as well as higher compu-
tational speed [9]. The memristor crossbar is fabricated as part
of the back end of line (BEOL) processing, and thus, they are
typically placed on the top of the CMOS devices, and therefore,
their additional area footprint can be quite small. Note however
that although a memristor does not occupy any space among
the transistors, its access transistor (e.g., a MOSFET, in 1T1R
scheme) requires a small area footprint. The memristor device
may also be used as multi-level cell and in this case more than
one bit of data could be stored in it resulting in higher density
in mixed-signal designs. However, the memristor device suffers
from the non-ideality of its parameters that can limit its ability
to provide higher speed and energy efficiency [10].

In this paper, we present a memristor-based iterative Mont-
gomery multiplication architecture to be used in modern (post-
quantum) security cryptosystems such as FHE. This archi-
tecture relies on a mixed-signal approach to compute the
intermediate and final results of the modular multiplication.
The memristor crossbar is utilized to perform the dot-product
operation in analog domain and generates the intermediate
results in redundant representation. A column circuitry is used
to convert the analog intermediate results to digital values so
that the remaining steps of the Montgomery multiplication

978-3-9819263-7-8/DATE23/© 2023 EDAA

algorithm can be done in the digital domain. The X-IMMs
could be chained to support wider operands in the runtime. The
scalability feature gives flexibility to support different security
levels by the fabricated chip. As the knowledge of the authors
goes, this work is the first attempt for developing a memristor-
based mixed-signal structure for accelerating the computations
in the cryptosystems.

The remainder of the paper is organized as follows. In Sec-
tion II, a brief background of the Montgomery multiplication
will be provided. Also, relevant prior work is reviewed. The
details of the X-IMM structure is explained in Section III. In
Section IV, the effectiveness of the proposed MM structure is
assessed. Finally, the paper is concluded in Section V.

II. BACKGROUND
A. Montgomery Modular Multiplication

The Montgomery multiplication efficiently obtains the result
(i.e., Z in the range of [0, M)) of the modular multiplication
(with modulus M) of two long operands (i.e., 7 = XY
mod M, where X and Y are in the range of [0,M)). In
this algorithm, first the input operands should be transformed
to the Montgomery domain (e.g., X = XR mod M, where
R is a power of two number and R < M) and then the
multiplication operation is performed and the result (Z) in the
Montgomery domain is calculated by applying the Montgomery
reduction. The result in the Montgomery domain is converted to
the ordinary integer domain by applying Z=ZR ' mod M,
where R~! is the modular inverse of the R i.e., |[RR™ |5 = 1.

Note that in typical applications (e.g., when doing modular
exponentiation required in many cryptosystems), the digital
data is transferred to the Montgomery domain only one time
and many modular operations are done on this data before
final output result is transformed back to the ordinary integer
domain. Thus, in the Montgomery multiplication algorithm,
the cost of data conversion between domains is not high.
Thus, the steps for computing output Z are as follows: 1)
W=XxY;2)q=|Wx Mg 3 Z=(W+qM)/R;
and4) Z=(Z>M)?Z-M:Z.

B. Prior Work

There are several prior work references in the area of
designing Montgomery modular multipliers. In this subsection,
the latest ones are reviewed briefly. Note that all of these works
use digital circuits and have been implemented on the FPGA
or ASIC by using CMOS devices.

In [5], a fast Montgomery multiplier based on the redun-
dant number representation (RBR) has been proposed. In this
structure, small adders have been used instead of the multiplier.
Also, by using RBR, the add operations was performed carry-
free which led to high parallel computation. Using RBR also
has been used in [6] for parallel computation. Moreover, a
modified booth coding technique has been introduced that by
combining with the RBR more speed has been gained. A
Montgomery multiplier based on the Residue Number Sys-
tem (RNS) which could support up 8K-bit input operands
has been suggested in [3]. A low memory usage scalable

Montgomery multiplier structure has been described in [11].
To reach lower memory consumption, the intermediate results
representation was converted from redundant number to the
binary one and FIFOs have been used to manage the data access
flow. A high-radix scalable Montgomery multiplier structure
has been introduced in [4]. In this structure by using carry
save compressors and decomposing the multiplicand, the delay
of the modular multiplication has been reduced. In [12] a
ReRAM-based multiplier unit has been suggested for fully
homomorphic computation. Nevertheless, the suggested struc-
ture computed the multiplication in digital domain with add-
and-shift technique (requires O(N?) cycles). Also, the modulo
operation was performed separately after the multiplication
(Barrett and Montgomery reductions) while the implemented
modulo operation only supported a set of three small moduli.

III. PROPOSED MIXED-SIGNAL MONTGOMERY
MULTIPLICATION STRUCTURE

The pseudocode of iterative Montgomery multiplication is
provided in Algorithm 1 where its details could be found in [4].
The term r determines the radix of the computation, and Y; is
the i*" part of the input operand Y (i.e., Y; = Y[(i +1)m —1:
im]). Notice that since r is in the form of 2, multiplication
and division by it require a simple shift operation that can be
implemented by hard wiring. Computing ¢(*) is not complex.
|Z(=D|, is the m lower bits of Z(~1 and |Z0—1) x M|, is
implemented by a m x m multiplier where only its m lower
bits are required. Thus, the hardware complexity of obtaining
¢ is low. On the other hand, computing Z~Y requires
long-width multiplication and addition, and it is the main part
of the IMM hardware implementation. This structure performs
modular multiplication in d cycles. Note that as shown in [4],
the last stage for checking the Z value (step 4 for computing
output Z as described in subsection II-A) is not required.

ALGORITHM 1: Pseudo-code of the iterative MM
input : X,Y €[0,2M), odd M < 2V, r = 2™,

d=[MEmt2] R = pd=1 pp=l - MM =1

output: Z € [0,2M)

1 2D 0

2 for i< 0tod—1do

3 | ¢® = (20D mod)M’ mod r

4 | 2O =z0D 4 ¢OM + XY;r)r

5

6

7

end
A AC)
return (2)

A. Analog Domain

A column of a memristor crossbar can perform the dot-
product operation where each memristor models the multipli-
cation operation. Figure 1 shows the general structure of a
3 x 3 memristor crossbar where the input voltage of each row
is indicated by V; and the conductance of the memristors is
denoted by G. At the end of each column, a Trans-Impedance
Amplifier (TTIA) is placed to convert the column current to
the voltage. Thus, input operands of the dot-product operation
are voltages of the rows (i.e., V;) and the conductance of the

memristors (i.e., G; ;). We calculate Z (i=1) by employing the
memristor crossbar. The general structure of the proposed X-
IMM is illustrated in Figure 2.

Each memristor crossbar col-
umn performs a dot product op- v,

eration, and in theory a col- gﬁk & é?}
umn of the memristor crossbar -2 LA R Y
is enough for computing Z(". G G} 63
Howeyer, since in cqrrent tegh— G?ﬁ(& G)%
nologies, the data width which

Vo, Vo, Vos
4

can be stored on each memristor
cell is limited to a few bits (e.g.,
< 8 bits) and the required volt-
age resolution is very low (even i

lower than the noise level), we Fig. 1. General structure of a 33

. memristor crossbar.

partition the computation of Z(?) on a set of memristor cross-
bar columns (i.e., bit-slicing method). In this structure, the
memristors are used to store m bit data. In each column
(except for the first column), 8 memristors are placed where
two of these memristors are used to store the M and X input
operands. However, the stored values in the two other ones
is 1, and the rest of them store 0. In the jth column, values
of X(j41) and M; (X; = X[(j +1)m —1: jm] and M; =
M]I(j 4+ 1)m — 1 : jm]) are programmed onto two memristors
in a column. Compared to M, the input X is shifted to the
left by m. This is because the structure should compute Y Xr
(r = 2™). Thus, value X is stored from the second column,
while its corresponding memristor in the first column is dummy
and stores a value 0 (as will be explained later, this memristor
will be used in the case of cascading X-IMMs). Therefore, the
memristor crossbar contains [log(2M)/r] columns.

To store a value on the memristor, first its equivalent con-
ductance value should be determined. In this work, to reduce
the impact of the telegraph noise, which is the most dominant
noise in the high resistance state (HRS) [13], we propose
the following mapping function to obtain the corresponding
conductance (i.e., G) of an input value (i.e., K):

Gmin)/(Qm - 1)

’Rfrl(lel,l +V,Gy1 + V3Gs)

G= Gmar — K x (Gmax -

1
:Gmam*KXAG“ ()

where G,,;n and G4, denote the minimum and maximum
conductance of the employed memristors. Input voltages of the
first and second columns are the equivalent voltages of Y; and
q‘D, respectively. Similar to (1), the equivalent voltage of a
value K is

V:KX(VDD—Vss)/(Qm—l):KXAv. 2)

In this structure, to reduce the memristance drift, we set Vgg to
—Vpp (instead of 0) leading to lower read voltages in order to
have a large margin between the read voltage and the threshold
voltage of the employed memristor.

As will be explained later, in the proposed structure, Z(*)
is represented in the redundant number system (Z1() and
Z2(i)). Thus, in each column, we consider two memristors
(with conductance of G4z - Ag which is denoted by G')
for ZU~1. The input voltages of these memristors are the

corresponding voltages of the Z1() and Z2(). If each column
only consists of these four memristors, the output voltage of
the j'* column TIA (i.e., Vous ;) is

Vout,j
Ry

= VYLGXJ._1 + quGMj + VZlgz‘Jr_ll)Gl + szi_ir_ll)Gl.

3)
In computing Z(®), in the last stage, the result should be
divided by r (i.e., shifting to right by m bits). Thus, in (3),
for computing Zj(.l) in j** column, instead of 212171) and
Z 25-1_1), Z 15.:__11) and Z 25-:11) are used. Now, by substituting
the voltages and conductances in (3) by their corresponding
values (based on (1) and (2)), the corresponding TIA output

value of the j* column (i.e., Opys, ;) is

Oout jAv _
R,
YiAv(Gmaz — Xj-14q) + q(i)AV(Gmam - M;Ag)
+ 217 Ay (Gnar — A) + 2277 Av (Gnas — Ac)
= AvGras (Y + ¢ + 21571 + 2207 0) -

AvA(YiXj +qDM; + 21000 + z20).

)

In (4), there is an extra term of Ay G, (.) that should

be removed. For removing this, we consider four additional

memristors with the conductance of G,,,, (equal to storing

value 0), with the negative corresponding input voltages of the

Y;, q(i), 7101 and Z20G=1) 1In this case, the output value of
the j*" column TIA is

Oout,j = AR (YiX; +qVM; + 21870 + 22077). (5)

These four memristors (with corresponding values of 0) as
well as the two ones used for Z1¢=1 and Z20-1) (with
corresponding values of 1) are programmed at one time and
since their resistances are low (i.e., they are close to the
LRS value), impact of the telegraph noise on currents passing
through them is negligible. Based on (5), the resistance of Ry
will be equal to 1 / Ag.

As mentioned above, the bit width of the computation in each
column is 2m + 2. This is due to the fact that the bit widths
of ViX;_1, ¢V M;, 197" and 227" are 2m, 2m, m and
m bits, respectively. Hence, we use a (2m + 2)-bit analog-
to-digital converter (ADC) for converting the analog output of
the memristor crossbar to the digital value. For this converter,
we use a low triangle neural network (LTNN) ADC, which
was presented in [9]. The structure of this ADC is based on
the Hopfield network, where its weights are implemented using
memristors. Details of designing this type of ADC are provided
in [9], [14], [15]. Note that in this work, similar to [9] we use
an inverter as the network neuron leading to considerably lower
delay and power consumption.

B. Digital Domain

The output of each memristor column ADC is (2m + 2)
bits which compose the Z(*~1). However, the outputs of each
three adjacent columns have overlap with each other. In this

% Used in cascading mode
Y; \ X \

{5} o o
DD R
3

71", 41 721" 41

o 0 o >—e pP—e

22", L, zz“\.1

Yi 0

"¢ e

0 0

C ‘ \w ‘

21", 1o " 1o

22", Lo 2" Lo

> ® b—O

]

. [oxd) 5
op-amp op-amp
e
\) 2m+2-bit ADC

|-\ 2m+2-bit ADC

Analog 4-bit ADC/%':r%'——F Caleq
Input RDNS Adder

RDNS Adder L
b 2 m-bit 2 m-bit w
q = Registers 5~ Registers
Digital output
Fig. 2. Structure of the proposed mixed-signal iterative Montgomery multiplier.

Inputs of the RDNS adder

A Used in
cascadmg

ADC; ADGC,
L m [m] [2[m [m
"\ZI m [m]
Zl ADC,
ADCZ
ADG,[m-1] ADG,[0]
-ADC;[m]

ADC;[2m- 1] ABCm]

ADG,[1]
ADC;[m+1]
DCU[2m+1

m-bit RONS Adder

.
vee 71",
22",

Output Carry of the previous RDNS Adder

Fig. 3. Input operands and the internal structure of the RDNS adder.

situation, the output Z(*~1) may be considered as a redundant
number such that in each bit position it has three bits. Since
only in some positions, there are three bits, we use an m-bit
redundant number system (RDNS) adder for each column to
reduce the number of bits to two in each bit position. This
adder is comprised of two Full adders (in the LSB) and m — 2
Half adders (in the MSB). The output of the adder (denoted
as Z1 and Z2) is stored in two m-bit registers. The overlap
between the outputs of the ADCs and the structure of the RDNS
adder are illustrated in Figure 3.

In the digital domain, ¢~ (line 3 of Algorithm 1) is
computed by Calcg unit. This unit is an add-and-multiply unit,
which first adds two m-bit numbers and then its summation
result is multiplied by the M’. The input operands of its adder
are the outputs of the ADCs of the the first and second columns.
Thus, the adder of this unit acts as a RDNS-to-binary converter.
Next, the adder output is multiplied by M. Note that only the
m lower bits of the multiplier output are considered as ¢(*~1.

After d cycles (line 2 of Algorithm 1), the final result is
stored in the registers of the RDNS adder in the format of
RDNS. Thus, at the final step, an IN-bit binary adder (named
Conyv Adder) is employed (although it is not shown in Figure 2)
to convert the result in the RDNS format to the binary number
system (BNS). The adder structure (Kogge-Stone adder, Carry
Save Adder, etc.) should be explored and an structure which
does not change the latency of the X-IMM (but also has a
low area usage) should be chosen. The said binary adder may
convert the number system in a single cycle or multiple cycles.
By enlarging the bit width of the input operands or decreasing
the radix of the computation, the probability of using multi-

cycle adder is increased.

In the X-IMM architecture, the m lower output bits of the
first ADC are not used. However, the proposed structure is
scalable and by cascading C identical X-IMM units, one can
compute larger input operands. In this case, ¢(*) is computed by
the first X-IMM unit, while the other X-IMM modules bypass
their computed ¢ and use the result of the first X-IMM unit.
The bypassing is performed by the ByP multiplexer as shown
in Figure 2. Moreover, in case of cascading X-IMM units, the
m lower output bits of the first ADC of the ¢! X-IMM unit is
passed to the (¢ — 1)** X-IMM unit for computing the Z1(—1)
and Z20~Y in the last memristor column of the (¢ — 1)
X-IMM module. Moreover, the dummy memristor of the first
column of the X-IMM units (except the first X-IMM module)
is used for storing input operand X . Note that in this case, the
number of iterations for computing the final result (i.e., d) will
be [CNEmE27 (where C' denotes the number of the cascaded
X-IMMs). Finally, to convert the final results from RDNS to
BNS format, the Conv Adders are chained and a block-based
adder is composed.

C. Reliability

While using the memristors can lead to higher speed and
energy efficiency, the design suffers from various reliability
issues, including the telegraph noise, memristance drift, write
variability, and low endurance [16]. As mentioned before, the
proposed integer to conductance mapping (i.e., (1)) leads to
lowering of the telegraph noise on most of the memristors on
each column. However, to reduce the impact of the telegraph
noise on the other memristors, one may consider a higher min-
imum conductance value compared to the actual G,,;,. Note
that this approach leads to lower R,s;/R,, which generally
results in to more sensitivity to the other nonideality sources
of the design parameters, especially in the case of multi-level
cell. Thus, this approach is effective in the case of memristors
with large Royr/Ron.

The memristance drift depends on the read voltage. On the
other hand, in the FHE applications, the input operands tend to
have uniform distribution. Thus, on average, all memristors in a
column experience almost similar current density. Nevertheless,
their stored values are different. Thus, the amount of drift can
be different. Therefore, as mentioned before, in the proposed
architecture, we use Vgg = —Vpp to reduce the absolute
value of the read voltage, and reduce the resistance drift of
the memristors. The other nonidealities are the write variability
and asymmetric write, which may be alleviated by choosing
the proper writing method. Different precise writing techniques
have been proposed in the literature (e.g., [17], [18]). Note
that in the X-IMM architecture, only a small subset of the
memristors (the ones for storing the X and M) should be
programmed for each new input operand pair. In this case,
considering that the accuracy of the ADC is £0.5 LSB and
that there are no voltage variations, the maximum tolerable
variation of the conductance (§G) of these memristors in ;"
column can be formulated as:

*AV > — (Vy 5GX .+ Vq(i)(SGMj) (6)

AG

By assuming the maximum input values for the Y; and ¢(*), (6)
could be written as:
1A‘/ > L‘/DD(5G'X,71 + 5G]\/[) =
2 AG ! ! 7)

AG

— > (0Gx,_, +0G)

2r ’ ’
Thus, for precise computing, the maximum tolerable conduc-
tance variation of these two memristors is AG/4r. Based
on this, memristors with larger R,y /Ron are preferable.
Moreover, the conductance variation around HRS is higher
[19]. Hence, when R,fs/R,, is large, one may consider a
lower maximum resistance, which is lower than the actual
HRS. In addition, as a general circuit level technique, one may
improve the reliability of the memristor crossbar computation
by considering identical redundant memristor crossbars (which
may be placed on different metal layers) (see [20]).

IV. RESULTS AND DISCUSSION

The efficacy of the proposed Montgomery multiplier was
assessed by implementing its digital parts in Verilog HDL and
its analog parts in SPICE. The Synopsys design Compiler and
Synopsys HSPICE were employed for extracting the design
parameters of the digital and analog parts. Moreover, a high-
level model of the multiplier was developed in the Python
language to verify the functionality of the proposed solution.
The 45nm NanGate technology [21] was used for digital
part implementation, while the 45nm PDK has been used for
implementing the analog parts. Moreover, the memristor model
of [22] with conductance range of [0.12 pU, 8 ©U] and an area
of 50nm x 50nm was utilized for the X-IMM implementation.
The operating voltage level of the analog (digital) part was
between —0.5V to +0.5V (0OV to +1V).

Table I reports the design parameters of the proposed 1,024-
and 2,048-bit mixed-signal solutions and compares them with
those of [5], [6], [11]. In case of the X-IMM, we have not
considered the memristor cells in the area usage. Since, as
mentioned before, they are implemented in the wiring layers.
Also, we have considered four NAND2 (2n INV) cells as the
cell counts of the TTA (n-bit ADC) circuit. Note that in the case
of the ADC structure, the INV cells with different sizes were
employed. As the reported figures in the table show, the period
(i.e., delay) of the X-IMM is increased a factor of nearly 1.7x
by increasing m (i.e., radix-2"") from 2 to 4 . Nevertheless, the
area usage is decreased by about 11%. This originates from the
fact that in the case of m = 4, the memrsitor crossbar columns
are two times lower than that of the X-IMM with m = 2 (ak.a.,
the memristor crossbar computes wider intermediate results in
case of m = 4). Thus, although the ADCs occupy more area in
case of m = 4, the number of ADCs (as well as TIAs) is halved.
Thus, the area usage was decreased by considering higher radix.
Also, by increasing the radix, the latency is improved. As the
results show by increasing the value of m from 2 to 4, the
latency, on average, improved by about 13%.

The area and delay breakdowns of the proposed 1,024-bit
X-IMM are illustrated in Figure 4. Notice that, while the area
usage of memristors due to their placement, was not considered

TABLE I
COMPARING THE DESIGN PARAMETERS OF THE PROPOSED MM WITH
THOSE OF THE SOME PRIOR WORKS.

Architecture N m Time Complexity
Cycle Period (ps) Latency (ns) Cell Count Area (um2)
X-IMM (45nm) 1024 2 515 610 314.15 27.1 62940
4 259 1063 27532 24.6 55690
2048 2 1028 618 635.30 52.88 124852
4 515 1070 551.05 47.7 111099
[6] (45nm) 1024 2 520 620 3224 21.2 69252
4 264 780 205.92 33.6 90949
2048 2 1032 625 645 41.8 138459
4 520 790 410.8 61.1 180505
[6] (14nm) 1024 2 520 280 145.6 355 13754
4 264 348 91.87 49.2 18569
2048 2 1032 293 302.38 685 27147
4 520 357 185.64 95.4 36487
[5] (65nm) 1024 2 514 1060 545 85.1 N.A.
4 258 1460 377 121.8
2048 2 1026 1070 1098 162
4 514 1529 786 224.8
[11] (90nm) 1024 2 595 1100 655 97 N.A.
1% 2%
Area o Delay =

64%

TIA mADC Calcq WRDNSAdder @ ConvAdder @Memristor Crossbar TIA ADC Calcg WDAC

Fig. 4. Area and delay breakdowns of the proposed 1024-bit X-IMM.

in the area usage of the X-IMM, its area usage in the wiring
layers was considerably lower than that of the transistors (by
about 3x). Most of the X-IMM area is occupied by the RDNS
adder units (containing a RDNS adder alongside of the registers
for storing the intermediate results), ADCs and Final Adder
units (totally about 90%). By increasing the width of the X-
IMM (e.g., 2048 bits), the area usage of the final adder module
is increased more than the others. On the other hand, the delay
of the X-IMM depends strongly on the delay of the ADCs. In
addition, the delay of the unit for computing ¢(*) is notable,
while the delay of the others is low. The delay of the RDNS
Adder unit is lower than the Calcg unit, and hence, it is not in
the critical path.

Owing to the different technology nodes being used, com-
paring the design parameters of the considered prior work with
those of the X-IMM is not simple. However, as reported in
[6], design parameters of [6] are considerably better than those
of the two considered other works in similar FPGA platforms.
Also, as shown in [6], the delay and area usages of the scalable
MM proposed in [4] are higher than those of the solution
proposed in [6] on an FPGA platform. On the other hand,
compared to the 45nm technology implementation of [6], the
latency of the proposed Radix-4 X-IMM is about 2.5% lower
than that of Radix-4 [6]. However, the latency of Radix-16 [6]
is about 33% lower than that of Radix-16 X-IMM. Thus, the
latency of [6] is lower than that of the X-IMM, mainly due
to large ADC delay of in X-IMM architecture. Nevertheless,
by employing memristor cells, the area usage of the proposed
X-IMM is lower than that of [6] (on average, 24%). Moreover,
in X-IMM, by increasing the radix, more area saving could be
gained. Figure 5 gives the throughput per area usage of the
proposed X-IMM and [6] over different operand widths. As
the results show, X-IMM leads to higher throughput per area

~
)

@
S

BXAMM m([22]

(GOPS/mm?2)
g & 8

Throughput per Area
8

=
5

0 II II

Radix-2 1024b Radix-4 1024b

Radix-2 2048b Radix-4 2048b

Fig. 5. Throughput per area of the proposed X-IMM and [6] over different
operand widths.

and by increasing the computation radix, the superiority of the
X-IMM is increased.

We performed Monte Carlo simulations to determine the sen-
sitivity of the multiplication output on the memristor crossbar
variation (i.e., (4)). For this study we used the developed python
X-IMM model and assumed 1% variation on the input voltage
of the memristor cells or their conductance. As the results show
the sensitivity on the voltage and conductance variations of the
memristors computing Y; X;_; and ¢ M ; 1s much more than
the others. While the lowest sensitivity is on the memristors
which computes Ay Gz (Vi +q(i)+Z1§:11)—|—Z2§Z+_11)) (about
10~*x lower).

Finally, we evaluated the reliability of the proposed solution
by considering the redundant crossbar under three scenarios by
applying the variations on the voltage and conductance of the
memristors. The scenarios consisted of 1) considering voltage
and conductance variations on all memristors of the crossbar
(denoted by V+C scenario), 2) considering voltage variation
on all memristors while considering conductance variations on
memristors of X and M (denoted by V+pC scenario), and 3)
considering only the conductance variation on the memristors
of X and M (denoted by pC scenario). Note that considering
the conductance variation only on the memristors of X and M
was due to the fact that the others had constant values. Also,
in this study, we have applied the same amount of variations
on voltage and conductance. The maximum amount of variation
that the X-IMM could tolerate (i.e., exact computing) under dif-
ferent amount of memristor crossbar redundancy is illustrated
in Figure 6. As the results show, in all scenarios, by increasing
the redundancy the reliability of the design is improved. By
increasing the number of the memristor crossbars from 1 to
4, the maximum tolerable variation is improved about 70%.
Also, as we have expected, the tolerable variations under the
two scenarios of V+C and V+pC are almost similar due to the
low sensitivity of the X-IMM output to the memristor crossbar
variation with constant values to the voltage and conductance
variations. On the other hand, by omitting the voltage variation,
about 1.5x more variation is tolerable by the X-IMM.

V. CONCLUSION

In this paper, a mixed-signal iteration Montgomery multiplier
structure has been introduced. In this structure, in each iteration,
the multiplication operations have been done on the memristor
crossbar in analog domain. By employing column circuitry
including TIA and ADC, the analog output of the memristor
crossbar has been converted to the digital domain and in
the form of the redundant number system. In the runtime,

HV+C WV+pC 1 pC

2.5%
2.0%
=
1.0%
1 2 3

0

Maximum Tolerable Variation

of Redundant Crossbars

Fig. 6. Maximum amount of variation that the X-IMM could tolerate under
different amount of memristor crossbar redundancy.

the proposed X-IMMs had the ability to cascade and make
mixed-signal iteration Montgomery multiplier with longer input
operands. The studies showed that the latency-area metric of
the proposed 1024-bit Radix-4 X-IMM was about 13% more
than that of the latest prior work.

REFERENCES

[1] A. Acar et al., “A survey on homomorphic encryption schemes: Theory
and implementation,” ACM Comput. Surv., vol. 51, no. 4, July 2018.

[2] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation,
vol. 48, no. 177, pp. 203-209, 1987.

[3] Z. Ahmadpour and G. Jaberipur, “Up to 8k8k-bit modular montgomery
multiplication in residue number systems with fast 16-bit residue chan-
nels,” IEEE Trans. on Computers, vol. 71, no. 6, pp. 1399-1410, 2022.

[4] B. Zhang et al., “High-radix design of a scalable montgomery modular
multiplier with low latency,” IEEE Trans. on Comp., vol. 71, no. 2, 2022.

[5] B. Li, J. Wang, G. Ding, H. Fu, B. Lei, H. Yang, J. Bi, and S. Lei,
“A high-performance and low-cost montgomery modular multiplication
based on redundant binary representation,” IEEE Trans. on Circuits and
Systems II: Express Briefs, vol. 68, no. 7, pp. 2660-2664, 2021.

[6] B. Zhang et al., “An iterative montgomery modular multiplication algo-
rithm with low area-time product,” IEEE Trans. on Comp., 2022.

[7] A. Sebastian et al., “Memory devices and applications for in-memory
computing,” Nature nanotechnology, vol. 15, no. 7, pp. 529-544, 2020.

[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80-83, 2008.

[9] A. Fayyazi et al., “An ultra low-power memristive neuromorphic circuit
for internet of things smart sensors,” IEEE IoT Jnl., vol. 5, no. 2, 2018.

[10] A. BanaGozar et al., “Robust neuromorphic computing in the presence
of process variation,” in DATE Conf., 2017, 2017, pp. 440-445.

[11] T. Wu, “Reducing memory requirements in csa-based scalable mont-
gomery modular multipliers,” in ICSICT), 2014, pp. 1-3.

[12] H. Nejatollahi et al., “Cryptopim: In-memory acceleration for lattice-

based cryptographic hardware,” in 2020 DAC, 2020, pp. 1-6.

S. Choi et al., “Random telegraph noise and resistance switching analysis

of oxide based resistive memory,” Nanoscale, vol. 6, pp. 400404, 2014.

[14] X. Guo et al., “Modeling and experimental demonstration of a hopfield
network analog-to-digital converter with hybrid cmos/memristor circuits,”
Frontiers in Neuroscience, vol. 9, 2015.

[15] L. Gao et al., “Digital-to-analog and analog-to-digital conversion with
metal oxide memristors for ultra-low power computing,” in Int’l Sympo-
sium on Nanoscale Architectures, 2013, pp. 19-22.

[16] V. Yon et al., “Exploiting non-idealities of resistive switching memories
for efficient machine learning,” Frontiers in Electronics, vol. 3, 2022.

[17] W.-Q. Pan et al., “Strategies to improve the accuracy of memristor-based
convolutional neural networks,” IEEE Trans. on Electron Devices, vol. 67,
no. 3, pp. 895-901, 2020.

[18] L-T. W. et al., “3d ta/TaOisubx/sub/i/TiOsub2/sub/ti synaptic array and
linearity tuning of weight update for hardware neural network applica-
tions,” Nanotechnology, vol. 27, no. 36, 2016.

[19] X. Guan, S. Yu, and H.-S. P. Wong, “A spice compact model of metal
oxide resistive switching memory with variations,” IEEE Electron Device
Letters, vol. 33, no. 10, pp. 1405-1407, 2012.

[20] D. Joksas et al., “Committee machines—a universal method to deal with
non-idealities in memristor-based neural networks,” Nature communica-
tions, vol. 11, no. 1, pp. 1-10, 2020.

[21] NanGate, “Nangate freepdk45 open cell library,” 2016.

[22] W. Lu et al., “Two-terminal resistive switches (memristors) for memory
and logic applications,” in ASP-DAC, 2011, pp. 217-223.

[13]

	Select a link below
	Return to Previous View
	Return to Main Menu

