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Abstract—After the success of the transformer networks on 
natural language processing (NLP), the application of 
transformers to computer vision has followed suit to deliver 
unprecedented performance gains on vision tasks including 
image recognition and object detection. The multi-head self-
attention (MSA) is the key component in transformers, allowing 
the models to learn the amount of attention paid to each input 
position. In particular, hierarchical vision transformers (HVTs) 
utilize window-based MSA to capture the benefits of the 
attention mechanism at various scales for further accuracy 
enhancements. Despite its strong modeling capability, MSA 
involves complex operations that make transformers 
prohibitively costly for hardware deployment. Existing 
hardware accelerators have mainly focused on the MSA 
workloads in NLP applications, but HVTs involve different 
parameter dimensions, input sizes, and data reuse 
opportunities. Therefore, we design the RAWAtten architecture 
to target the window-based MSA workloads in HVT models. 
Each w-core in RAWAtten contains near-memory compute 
engines for linear layers, MAC arrays for intermediate matrix 
multiplications, and a lightweight reconfigurable softmax. The 
w-cores can be combined at runtime to perform hierarchical 
processing to accommodate varying model parameters. 
Compared to the baseline GPU, RAWAtten at 40nm provides 
2.4× average speedup for running the window-MSA workloads 
in Swin transformer models while consuming only a fraction of 
GPU power. In addition, RAWAtten achieves 2× area efficiency 
compared to prior ASIC accelerator for window-MSA.  

Keywords—vision transformer, multi-head self-attention, 
domain-specific accelerator, reconfigurable architecture, near-
memory compute  

I. INTRODUCTION 

In recent years, deep learning has delivered remarkable 
breakthroughs in fields spanning from natural language 
processing (NLP) to computer vision (CV). Having witnessed 
the superior performance of transformer networks [1] over 
recurrent neural networks (RNNs) to solve sequential tasks, 
researchers are beginning to apply transformers to CV as well. 
While convolutional neural networks (CNNs) have long 
dominated CV [2], attention-based transformer is an attractive 
strategy to supply additional relationship contexts during the 
modeling process. Compared to static convolutional filters 
that are fixed for all contexts once trained, attention allows the 
dynamic computation of new set of kernels to extract the 
relational weightings among input positions.  

The endeavors to construct vision transformers have met 
with great success [3]. Out of the vision transformer variants, 
hierarchical vision transformers (HVTs) [4-7] are promising 
candidates due to their ability to model self-attention at 
various granularities. They also avoid quadratic compute 
complexity to image size by introducing window-based 
attention. Although HVTs can often surpass CNNs that 
possess similar number of parameters and operations, their 
higher computational cost hinders their usages in hardware 

inference [8]. Multi-head self-attention (MSA), which is a 
major component in HVT models, accounts for substantial 
energy consumption and latency, and its complexity calls for 
specialized accelerators to allow feasible deployment of 
HVTs.  

Existing accelerator solutions [9-13] for MSA have mostly 
focused on attention in NLP transformer models. However, 
these accelerators are not optimized to execute window-based 
MSA workloads, as the model structures of NLP and HVT 
differ in terms of parameter dimensions, input sizes, and reuse 
opportunities. Window-MSA workloads exhibit unique 
properties that challenge the acceleration efforts. 1) While 
NLP accelerators are designed for long sequences of one-
dimensional inputs, accelerators for HVT should optimize for 
two-dimensional inputs with varying small window sizes. 
Thus, directly using NLP accelerators for window-MSA 
workloads can lead to low utilization rate and performance. 2) 
Each window-MSA workload requires the nonlinear softmax 
operation, so NLP accelerators that commonly contain only 
one softmax unit will quickly become bottlenecked as the 
number of windows increases. 3) HVT models present 
different reuse opportunities across the various stages of 
window-MSA blocks. In earlier stages, weight reuse 
opportunities are abundant because multiple small windows 
share the same set of weights. For later stages, input reuse 
becomes more common as the window sizes grow yet number 
of windows decreases. 

In this work, we propose the RAWAtten architecture to 
tackle the aforementioned design challenges. RAWAtten 
contains parallel processing cores, coined w-cores, to execute 
window-MSA workloads. Each w-core is equipped with near-
memory compute (NMC) engines for linear layers, multiply-
and-accumulate (MAC) arrays for intermediate matrix 
multiplications (MatMul), and a novel softmax module. 
RAWAtten is reconfigurable to accommodate different HVT 
model parameters, while providing high data reuse and high 
utilization rate. The main contributions of this work are as 
follows: 

• We propose the RAWAtten architecture to accelerate the 
complex window-MSA workloads in HVT models. The 
compute units in each w-core are reconfigurable to 
maintain high utilization rates across model parameters.  

• We design a lightweight reconfigurable softmax (LR-
Softmax) module and assign one unit per w-core to solve 
the bottleneck problem. Through rearrangement of the 
softmax equation, we eliminate the expensive exponential 
and division operations. An estimation strategy for the 
remaining terms brings significant area savings with 
negligible model accuracy loss. 

• RAWAtten is evaluated on the popular Swin transformers 
[7]. Results show that RAWAtten achieves 2.4× speedup 
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over the baseline GPU while only consuming 0.6% of 
GPU power. Compared to prior accelerator for vision 
transformer [13], RAWAtten also improves the area 
efficiency by 2×. 

II. BACKGROUND 

A. Vision Transformer Models 
Transformer Networks for Vision. The transformer 

networks are sequence transduction models involving the 
attention mechanism [1]. They were first introduced to solve 
machine translation tasks and have since achieved success on 
various NLP tasks. A typical NLP transformer adopts the 
encoder-decoder architecture. Stacked encoders map the input 
sequence of symbol representations into continuous 
representations, which are then transformed into output 
sequence of symbols by the stacked decoders. More recently, 
transformer networks have been extended to solve computer 
vision tasks. The Vision Transformer (ViT) [3] is a pioneering 
work that proposes to interpret input images as a sequence of 
patches and process them by a standard transformer encoder. 
ViT is able to outperform ResNets [2] on image recognition 
tasks when pre-trained on larger datasets. However, the global 
attention used in ViT renders this model intractable to process 
high-resolution images, since the computational cost of global 
attention scales quadratically to image size. Hence, 
hierarchical vision transformers that employ window-based 
attention mechanism have been investigated to lower the 
computational complexity of vision transformers. As shown 
in Fig. 1 (a), HVTs break down an input feature map into 
multiple windows for window-based local attention. The 
window sizes may change across the stages of HVTs, allowing 
feature extractions at different scales. In each stage, an 
encoder processes the input feature map in each window, with 
an example encoder shown in Fig. 1 (b). 

The Pyramid Vision Transformer (PVT) [4] takes patches 
of the input image as inputs. It follows a pyramid model 
structure that progressively shrinks the attention window sizes 
through the stages, as opposed to the columnar structure of 
ViT. The Focal Transformer [5] introduces focal self-attention 
to simultaneously capture global and local relationships. Each 
window attends to its closest surrounding windows with fine-
grained local attention and far windows with coarse-grained 
global attention. The Twins-SVT [6] can similarly capture 

local attention by interleaving locally-grouped attention and 
global sub-sampled attention in every encoder. To enlarge the 
receptive field size, the Swin Transformer [7] proposes 
shifted-window operations to allow both non-overlapping 
local windows and cross-window connections. At the time of 
this writing, the Swin transformer backbones have achieved 
unprecedented accuracy for image recognition [14] and object 
detection [15] tasks. Therefore, we focus on the Swin 
transformer when evaluating the proposed RAWAtten 
architecture. Although the encoder structures may differ 
among HVT models, RAWAtten is generally compatible 
since all HVTs use window-based attention mechanism with 
similar dimensional parameters. 

Multi-Head Self-Attention. Transformers utilize the self-
attention mechanism to identify the pairwise relations within 
the input elements. Through the training process, a 
transformer network learns how much attention to pay to each 
input region, and these attention weights are stored in the Key 
(WK), Query (WQ), and Value (WV) matrices. Each head 
represents a different subspace projection to capture 
distinctive attentional dependencies.  

Fig. 1 (c) describes the operations in the window-based 
MSA of HVT models. The model parameters of window area, 
channel depth, head size, and number of heads are denoted by 
M2, C, D, and H respectively. Typically D is set to C/H. An 
input matrix of dimension M2×C is linearly projected by each 
head through dense multiplications with the WK, WQ, and WV 
matrices, each of dimension C×D. After the linear 
transformations, the attention score matrix A is calculated 
through the K×QT multiplication. The matrix A has dimension 
M2×M2, so the compute complexity of intermediate MatMul 
may be reduced when the window size is kept small. Softmax 
is used on A to obtain A′, in which the highly-weighted scores 
are further enlarged whereas other scores are suppressed. A′ is 
then multiplied with V to assign attention weightings to the 
input features. Multiple heads are finally concatenated, and 
the combined result that reverts to the original input dimension 
goes through a multi-head linear layer.  

Fig. 2 shows that window-MSA accounts for 30% to 40% 
of the total workloads in Swin transformer models, further 
motivating the need for specialized hardware accelerator. 
Note that Swin-T and Swin-S models only differ by the 
number of third stages. One crucial observation we make is 
that unlike NLP transformers whose intermediate MatMul 
often dominates the MSA computation, HVTs involve 
substantially more computations for linear layers than the 
intermediate MatMul. This observation will be used to drive 
our design decisions as discussed in Section III.C. 

LayerNorm

Window-MSA

LayerNorm

MLP

M2×C

Linear K Linear Q Linear V

K×QT MatMul

Softmax

A′×V MatMul

Concat

Linear Multi-Head

M2×D M2×D M2×D

M2×M2

M2×M2

M2×C

M2×C

M2×D

H

Hierarchical 
Vision Transformer

Transformer 
Encoder

Multi-Head 
Self-Attention

(a) (b) (c)  
Fig. 1. (a) Schematic of a hierarchical vision transformer. (b) 
An example of transformer encoder. (c) Multi-head self-
attention module with annotated model parameters. 

 
Fig. 2. Distribution of MSA operations in various stages of 
Swin-T/S and Swin-B workloads. 
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B. Hardware Accelerators for Transformers 
Prior transformer accelerators have largely targeted the 

attention block in NLP workloads. SpAtten [9] is a hardware-
software co-design effort to exploit the quantization and 
sparsity opportunities in NLP attention. Pruned tokens and 
heads are selected on the fly to reduce computation and 
memory access for the attention. DTQAtten [10] proposes to 
dynamically quantize the NLP attention heads with different 
precisions according to their importance scores, decreasing 
the computational complexity. A variable-speed systolic array 
is designed to alleviate the pipeline stall problem arising from 
the mixed-precision quantization. In iMCAT [11], SRAM 
crossbar arrays and ternary content addressable memories are 
leveraged to provide speed and energy improvements for 
processing long input sequences. ReTransformer [12] 
explores ReRAM-based processing-in-memory for NLP 
transformers to harness the high density and low power 
properties of emerging non-volatile devices. The Row-wise 
accelerator [13] is the only existing ASIC solution for vision 
transformers. It uses row-wise scheduling to decompose 
transformer operations into single dot product primitives for 
unified execution. Model weights are broadcast for data reuse. 

III. PROPOSED ARCHITECTURE 

A. Architecture Overview 
An overview of the RAWAtten architecture is shown in 

Fig. 3. The accelerator consists of N w-cores that parallelly 
execute the window-MSA workloads in HVTs. Each w-core 
is capable of processing all computation types in window-
MSA, including linear layers, intermediate MatMul, and 
softmax. They can process window workloads independently 
or combined as a group by connecting their compute modules 
with those of other neighboring w-cores. 

The global input buffer stores the transformer model 
activations fetched from DRAM. The input dispatcher routes 
these activations to each w-core, and it supports unicast, 
multicast, and broadcast to offer design reconfigurability. 
Activations from the input dispatcher serve as the inputs to the 
SRAM-based NMC engines, which both store the model 
weights and execute the linear K, Q, and V layers. MAC array 
is utilized for the intermediate MatMul steps and follows a 
weight-stationary approach. For the MatMul, the linear Q and 
V results are first computed together as they share the same 
SRAM subarray, and the results are stored to the local buffers 
of K×QT and A′×V MAC arrays respectively as weights. Then, 
linear K results arrive from NMC as inputs to the K×QT MAC 
array. Multiple cycles are necessary to complete the MatMul 
steps due to the sequential nature of NMC, so an accumulator 
is used to add the partial sums from the MAC array. This 
accumulator can be reconfigured to connect to accumulators 
of adjacent w-cores to perform hierarchical accumulation. 
Next, the accumulated partial sums enter the LR-Softmax 
module row-wise to compute the attention map A′. The LR-
Softmax can also share data with adjacent LR-Softmax 
modules to accommodate varying network parameters. The A′ 
vector multiplies with the preloaded linear V results in the 
A′×V MAC array, and another reconfigurable accumulator is 
used for the MAC partial sums. A final NMC engine computes 
the multi-head linear layer, and the results from each w-core 

are accumulated by the global accumulator. Lastly, the global 
output buffer transfers the results back to DRAM. 

B. Design for Reconfigurability 
To accommodate the varying HVT model parameters 

including M2, C, D, and H, the RAWAtten accelerator is 
likewise parameterized with m2, c, d, and N. Table I 
summarizes the hardware parameters used in RAWAtten and 
which hardware dimension each parameter relates to, along 
with the allocation of global and local buffers. Table II shows 
the progression of model parameters across the 4 stages of 
Swin-T and Swin-S for reference. Input size is in the 
dimension of height × width × channel depth (C). 

TABLE I.  HARDWARE PARAMETERS OF RAWATTEN  

RAWAtten Parameters 
Parameter Value Corresponding Hardware Dimension 

N 32 # w-cores in RAWAtten 
m2 16 # 8b multipliers in one MAC array 
c 32 # rows in one NMC subarray 
d 16 # 8b weights in one row of NMC 

Buffer Allocation 
Buffer Value Type 

Total NMC capacity for weights 64 KB SRAM 
Global input buffer 64 KB SRAM 

Global output buffer 64 KB SRAM 
Total local input buffer 1 KB Register 

Total local weight buffer 16 KB Register 
Total local psum buffer 4 KB Register 

TABLE II.  MODEL PARAMETERS OF SWIN-T/SWIN-S  

 Stage 1 Stage 2 Stage 3 Stage 4 
Input size 64×64×96 32×32×192 16×16×384 8×8×768 

H 3 6 12 24 
M2 64 64 64 64 

# windows 64 16 4 1 
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Fig. 3. The proposed RAWAtten architecture. The 
reconfigurable accumulators and LR-Softmax in each w-core 
can be connected to those of adjacent w-cores for hierarchical 
processing. 
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Because multiple w-cores can be combined to process 
larger model dimensions, the hardware parameters per w-core 
are minimized such that high compute utilization rate may be 
maintained regardless of the HVT models and stages. We 
define utilization rate as the ratio between the utilized number 
of compute units during peak inference and the total number 
of available compute units. To combine d into D and c into C, 
the model weights are split into the NMC engines of different 
w-cores. Intermediate results are accumulated by the local 
reconfigurable accumulators. Combining m2 into M2 can be 
done in the same w-core, as activations from the global input 
buffer are split into different segments and the intermediate 
results are accumulated by the global accumulator. After 
accommodating the model parameters for each head, multiple 
heads H may be processed in parallel by different w-cores. 
Since HVTs offer more weight reuse in earlier stages and 
more input reuse in later stages, we assign the same amount of 
weight, input, and output buffers to balance the reuse 
opportunities throughout the model stages. 

C. Compute Units 
Near-Memory Compute. As shown in Fig. 4 (a), the 

SRAM-based NMC engines receive activations from the input 
dispatcher as inputs, which are decoded to sequentially 
activate the SRAM wordlines (WLs) in a bit-serial fashion. 
This step acts as the multiplication between activations and 
weights. The K subarray holds h 8b weights in each row, 
whereas the Q/V subarray holds 2h 8b weights in each row as 
the Q/V cells share the same WLs for simultaneous activation. 
Each subarray has c rows, and each column is equipped with 
a sense amplifier so all multiplication results from the same 
row are read out at once. Shift-add and accumulate are used to 
complete the MAC computations in linear layers. 

Since the linear layers dominate the window-MSA 
computation, SRAM is chosen over registers due to higher 
density, and we employ NMC to avoid excessively reading 
model parameters and storing them into local buffers before 
starting the computation. Therefore, weight reuse becomes 
more favorable as the loaded weights do not require further 
data movements. In addition, the sequential nature of NMC 
helps ease the routing complexity between the input 
dispatcher and w-cores, thus allowing more parallel w-cores 
to be deployed. 

MAC Array. Each MAC array consists of m2 8b-
multipliers and an adder tree, as shown in Fig. 4 (b). As a 
weight stationary design, the weights are stored in the local 
weight buffers. Every cycle an 8b input is read from the local 
input buffers to perform MAC operation with m2 8b weights. 
The results either go through individual or hierarchical 
accumulation, depending on the hardware configuration. 

If SRAM-based NMC were chosen to also compute 
intermediate MatMul, a transposable SRAM array would be 
needed for QT, thus complicating the design. Instead, MAC 
array can naturally fulfill the transpose requirement through 
routing. Because computing the intermediate MatMul 
involves frequent buffer accesses, we use register-based local 
buffers in the MAC array to help lower access energy 
compared to SRAM buffers. The larger area of registers is 
compensated by the relatively small fractions and dimensions 
of intermediate MatMul operations in HVTs. Furthermore, 

introducing a second MAC array to each w-core for A′×V 
MatMul can prevent the intermediate A′ results from being 
first written back to global buffers, which would require 
higher access energy than local buffers. 

LR-Softmax. Softmax is a complex nonlinear function 
that contains exponential and division operations. Due to the 
typically long input sequences in NLP transformers, allocating 
one softmax unit per NLP hardware accelerator may be 
justifiable. However, HVTs gain performance benefits by 
relying on small window sizes, each of which requires 
softmax calculations. For instance, stage 1 of Swin-S consists 
of 64 windows for 256×256 input image size, and the number 
of windows grows with input size. Therefore, assigning one 
softmax unit per w-core is advantageous for window-based 
processing in RAWAtten, as parallelization and scalability of 
the w-cores can be improved. 

The cost of standard softmax implementation is 
prohibitively high for having one unit per w-core, so we 
design LR-Softmax that involves the following 
rearrangements of the softmax equation to decrease hardware 
design complexity. The first transformation we apply is the 
log-sum-exp trick [16], which removes the division operation.  

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙)𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑗𝑗)𝑗𝑗

= 𝑒𝑒𝑆𝑆𝑒𝑒(𝑆𝑆𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑆𝑆𝑒𝑒(𝑆𝑆𝑗𝑗))𝑗𝑗    (1) 

During the integer quantization of softmax, logarithmic 
quantization [17] is applied instead of linear quantization to 
remove the exponential operation at no accuracy loss. 

 𝑄𝑄𝑙𝑙𝑙𝑙[𝑒𝑒𝑆𝑆𝑒𝑒(𝑆𝑆𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑆𝑆𝑒𝑒(𝑆𝑆𝑗𝑗))𝑗𝑗 ] = 𝑆𝑆𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑆𝑆𝑒𝑒�𝑆𝑆𝑗𝑗�𝑗𝑗     (2) 

Consequently, the softmax function is reduced to the 
subtraction between an input element xi and the log-sum-exp 
(LSE) term that is dependent on x. We observe that the LSE 
term is lower-bounded by the maximum element xmax, and can 
be rewritten as the addition between xmax and an error term ε. 

 𝑙𝑙𝑙𝑙 ∑ 𝑒𝑒𝑆𝑆𝑒𝑒(𝑆𝑆𝑗𝑗)𝑗𝑗 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑒𝑒 + 𝜀𝜀 > 𝑆𝑆𝑚𝑚𝑚𝑚𝑒𝑒 (3) 

We obtain an approximate ε by estimating the individual 
contribution of each non-maximum element in x to ε. The 
contribution of each xj is estimated through the difference 
between xmax and xj. This technique works for input vectors of 
any distribution owing to the shift-invariance property of 
softmax, where a shift term δ to the input vector does not affect 
the outcome. 
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 𝑆𝑆𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑆𝑆𝑒𝑒�𝑆𝑆𝑗𝑗� = 𝑆𝑆𝑖𝑖 + 𝛿𝛿 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑆𝑆𝑒𝑒�𝑆𝑆𝑗𝑗 + 𝛿𝛿�𝑗𝑗𝑗𝑗  (4) 

Fig. 5 illustrates the hardware implementation of LR-
Softmax. The xmax in the input vector x is searched through 
shift-registers and comparator. Quantizing the difference 
between xmax and every other element in x accounts for the 
estimated contribution of each non-maximum element to the 
error ε. The quantized difference values are stored in a lookup 
table (LUT), and the number of LUT entries can be reduced 
as discussed in Section IV.B. Finally, x subtracts the xmax + ε 
for the attention map A′. To achieve reconfigurability, the 
shift-registers of LR-Softmax can connect to those of adjacent 
w-cores and find the global maximum, thus allowing the xmax 
+ ε estimation across the input vectors combined from 
multiple w-cores. 

IV. EVALUATION 

A. Evaluation Setup 
For energy and area evaluations, we implement the 

proposed RAWAtten in SystemVerilog RTL. The design is 
synthesized with TSMC 40nm ULP library using Cadence 
Genus, with a target frequency of 1 GHz. With representative 
window-MSA workloads from Swin-T and Swin-S, we 
estimate the design power consumption through Synopsys 
PrimeTime PX. Global buffers and NMC SRAM subarrays 
are evaluated using DNN+NeuroSim [18]. A LPDDR4 [19] 
with bandwidth of 34 GB/s is included in our analysis to 
consider DRAM access cost. 

The RAWAtten architecture is evaluated on the window-
MSA workloads in Swin-T and Swin-S models, targeting 
image recognition on the ImageNet-1K dataset with 256×256 
image size. Post-training quantization [17] is applied to 
quantize all model parameters to INT8, resulting in accuracy 
loss of 0.89% for Swin-T and 0.53% for Swin-S. We use the 
accuracy after quantization as the baseline for later analysis. 

 For baseline platform comparison, the investigated 
programs written in PyTorch are run on NVIDIA Titan V 
GPU with CUDA 11.3. We utilize the nivida-smi tool for 
measuring GPU power and resource utilization. Latency is 
measured through torch.cuda.Event. All workloads on GPU 
are also quantized to INT8 for fair comparison with 
RAWAtten. We assume that the HVT workloads not run on 
RAWAtten are run on the baseline GPU. 

B. Network Accuracy Analysis 
In the design of LR-Softmax, the number of LUT entries 

may be reduced because input elements that are far away from 
xmax contribute trivially to the estimation of ε in LSE. 
Therefore, we can safely ignore their contributions by setting 

them to zero. This estimate is enabled by another property of 
softmax, that large elements in the input vector are further 
amplified but smaller elements are more diminished. Fig. 6 
plots the Swin-T and Swin-S model accuracies as a function 
of percentage of smallest input elements omitted during LR-
Softmax calculation. We observe that the knee for the plots is 
located at around 80% omitted, so we set the % omitted 
elements to 70%, where Swin-T and Swin-S experience only 
0.18% and 0.35% accuracy loss respectively. This 
optimization leads to 53% area reduction for each LR-
Softmax unit, making the allocation of one unit per w-core 
more economical. 

C. Energy and Compute Efficiencies 
RAWAtten is evaluated to consume an average power of 

0.66 W with area of 1.64 mm2. Fig. 7 shows the power and 
area breakdowns of RAWAtten. With access energy of 1.3 
pJ/bit [19], the DRAM data transfer dominates power 
consumption at 62.4% and is not shown in the breakdown. The 
majority of the remaining power is consumed by the compute 
units, followed by global buffer access. Similarly, NMC 
engines (that store model weights) and MAC arrays together 
occupy 70.6% area, whereas the global input and output 
buffers take 18.5% area. The area overhead to support the 
reconfigurable compute units is 5.5% for each w-core. By 
using the calibrated transistor parameter trending in 
DNN+NeuroSim, we further scale the RAWAtten to 7nm 
process to showcase the design’s potential at an advanced 
technology node. At 7nm, RAWAtten is projected to have an 
area of 0.1 mm2 and power consumption of 73 mW at iso-
frequency, showing 16× and 9× improvements in area and 
power compared to the 40nm version. 
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Fig. 5. Hardware implementation of the LR-Softmax module. 

 
Fig. 6. Effect on model accuracy by omitting the smallest 
input vector elements during LR-Softmax computation. 
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Fig. 7. (a) Power and (b) area breakdowns of the implemented 
RAWAtten design. DRAM access is not shown in the power 
breakdown. 
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GPU can suffer from nonlinear functions, matrix 
transpose, and unoptimized memory access patterns when 
executing attention workloads [9]. Fig. 8 shows the 
comparisons in average latency, utilization rate, and power 
consumption, normalized to the baseline GPU. We measure 
that the GPU can reach average compute utilizations of 71% 
for Swin-T and 78% for Swin-S. In contrast, RAWAtten 
achieves better utilizations at 94% for Swin-T and 86% for 
Swin-S, thanks to the minimal hardware parameters. For 
latency and power, we measure that the GPU completes Swin-
T workloads in 6.94 ms and Swin-S workloads in 11.45 ms at 
110 W, whereas RAWAtten completes the same workloads in 
2.67 ms and 5.23 ms at 0.66 W. Table III presents the 
comparison of RAWAtten with other state-of-the-art MSA 
accelerators designed at the same technology node. For the 
Row-wise accelerator, the reported area excludes output 
buffers and softmax module, and the energy consumption is 
not reported. Even when normalized to the same frequency, 
RAWAtten outperforms the Row-wise accelerator in area 
efficiency partly due to the second MAC array in each w-core 
for A′×V multiplication, which eliminates the store and load 
time of intermediate data to global buffers. Note that SpAtten 
and DTQAtten target and are evaluated on NLP workloads. 
The high energy and area efficiencies of DTQAtten are 
derived from dynamic quantization of 8b input tokens into 4b 
or even 0b (pruned) precision. With 8b computations 
throughout, RAWAtten achieves competitive energy 
efficiency stemming from balanced data reuse and reduced 
on-chip data movements. 

TABLE III.  COMPARISON TABLE 

 This  
Work 

Row-wise 
[13] 

SpAtten 
[9] 

DTQAtten 
[10] 

Workload Vision Vision NLP NLP 

Node  
(nm) 40 40 40 40 

Frequency 
(GHz) 1.0 0.6 1.0 1.0 

Area 
(mm2) 1.64  1.71 * 1.55  1.41  

Throughput 
(GOPS) 768 403 360  953 

Energy Effi. 
(GOP/j) 1170 Not 

reported 382  1298  

Area Effi.  
(GOPS/mm2) 469 236 * 238 678 

* Estimated from reported area in KGE. 

V. CONCLUSION 

In this work, we demonstrate the RAWAtten architecture 
aimed to accelerate the window-based MSA workloads in 

hierarchical vision transformers. RAWAtten contains 
reconfigurable compute units to accommodate various model 
parameters with high utilization rate. With an area of 1.64 
mm2 and power consumption of 0.66 W in 40nm node, the 
implemented design can achieve 2.4× speedup over the 
baseline GPU while consuming only a fraction of GPU power. 
Our work improves upon the prior work [13] on ASIC 
implementation of vision transformer with 1.9× throughput 
and 2× area efficiency. 
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