

RAWAtten: Reconfigurable Accelerator for Window
Attention in Hierarchical Vision Transformers

Wantong Li, Yandong Luo, and Shimeng Yu
Georgia Institute of Technology, Atlanta, GA 30332, USA

Email: shimeng.yu@ece.gatech.edu

Abstract—After the success of the transformer networks on
natural language processing (NLP), the application of
transformers to computer vision has followed suit to deliver
unprecedented performance gains on vision tasks including
image recognition and object detection. The multi-head self-
attention (MSA) is the key component in transformers, allowing
the models to learn the amount of attention paid to each input
position. In particular, hierarchical vision transformers (HVTs)
utilize window-based MSA to capture the benefits of the
attention mechanism at various scales for further accuracy
enhancements. Despite its strong modeling capability, MSA
involves complex operations that make transformers
prohibitively costly for hardware deployment. Existing
hardware accelerators have mainly focused on the MSA
workloads in NLP applications, but HVTs involve different
parameter dimensions, input sizes, and data reuse
opportunities. Therefore, we design the RAWAtten architecture
to target the window-based MSA workloads in HVT models.
Each w-core in RAWAtten contains near-memory compute
engines for linear layers, MAC arrays for intermediate matrix
multiplications, and a lightweight reconfigurable softmax. The
w-cores can be combined at runtime to perform hierarchical
processing to accommodate varying model parameters.
Compared to the baseline GPU, RAWAtten at 40nm provides
2.4× average speedup for running the window-MSA workloads
in Swin transformer models while consuming only a fraction of
GPU power. In addition, RAWAtten achieves 2× area efficiency
compared to prior ASIC accelerator for window-MSA.

Keywords—vision transformer, multi-head self-attention,
domain-specific accelerator, reconfigurable architecture, near-
memory compute

I. INTRODUCTION

In recent years, deep learning has delivered remarkable
breakthroughs in fields spanning from natural language
processing (NLP) to computer vision (CV). Having witnessed
the superior performance of transformer networks [1] over
recurrent neural networks (RNNs) to solve sequential tasks,
researchers are beginning to apply transformers to CV as well.
While convolutional neural networks (CNNs) have long
dominated CV [2], attention-based transformer is an attractive
strategy to supply additional relationship contexts during the
modeling process. Compared to static convolutional filters
that are fixed for all contexts once trained, attention allows the
dynamic computation of new set of kernels to extract the
relational weightings among input positions.

The endeavors to construct vision transformers have met
with great success [3]. Out of the vision transformer variants,
hierarchical vision transformers (HVTs) [4-7] are promising
candidates due to their ability to model self-attention at
various granularities. They also avoid quadratic compute
complexity to image size by introducing window-based
attention. Although HVTs can often surpass CNNs that
possess similar number of parameters and operations, their
higher computational cost hinders their usages in hardware

inference [8]. Multi-head self-attention (MSA), which is a
major component in HVT models, accounts for substantial
energy consumption and latency, and its complexity calls for
specialized accelerators to allow feasible deployment of
HVTs.

Existing accelerator solutions [9-13] for MSA have mostly
focused on attention in NLP transformer models. However,
these accelerators are not optimized to execute window-based
MSA workloads, as the model structures of NLP and HVT
differ in terms of parameter dimensions, input sizes, and reuse
opportunities. Window-MSA workloads exhibit unique
properties that challenge the acceleration efforts. 1) While
NLP accelerators are designed for long sequences of one-
dimensional inputs, accelerators for HVT should optimize for
two-dimensional inputs with varying small window sizes.
Thus, directly using NLP accelerators for window-MSA
workloads can lead to low utilization rate and performance. 2)
Each window-MSA workload requires the nonlinear softmax
operation, so NLP accelerators that commonly contain only
one softmax unit will quickly become bottlenecked as the
number of windows increases. 3) HVT models present
different reuse opportunities across the various stages of
window-MSA blocks. In earlier stages, weight reuse
opportunities are abundant because multiple small windows
share the same set of weights. For later stages, input reuse
becomes more common as the window sizes grow yet number
of windows decreases.

In this work, we propose the RAWAtten architecture to
tackle the aforementioned design challenges. RAWAtten
contains parallel processing cores, coined w-cores, to execute
window-MSA workloads. Each w-core is equipped with near-
memory compute (NMC) engines for linear layers, multiply-
and-accumulate (MAC) arrays for intermediate matrix
multiplications (MatMul), and a novel softmax module.
RAWAtten is reconfigurable to accommodate different HVT
model parameters, while providing high data reuse and high
utilization rate. The main contributions of this work are as
follows:

• We propose the RAWAtten architecture to accelerate the
complex window-MSA workloads in HVT models. The
compute units in each w-core are reconfigurable to
maintain high utilization rates across model parameters.

• We design a lightweight reconfigurable softmax (LR-
Softmax) module and assign one unit per w-core to solve
the bottleneck problem. Through rearrangement of the
softmax equation, we eliminate the expensive exponential
and division operations. An estimation strategy for the
remaining terms brings significant area savings with
negligible model accuracy loss.

• RAWAtten is evaluated on the popular Swin transformers
[7]. Results show that RAWAtten achieves 2.4× speedup

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

over the baseline GPU while only consuming 0.6% of
GPU power. Compared to prior accelerator for vision
transformer [13], RAWAtten also improves the area
efficiency by 2×.

II. BACKGROUND

A. Vision Transformer Models
Transformer Networks for Vision. The transformer

networks are sequence transduction models involving the
attention mechanism [1]. They were first introduced to solve
machine translation tasks and have since achieved success on
various NLP tasks. A typical NLP transformer adopts the
encoder-decoder architecture. Stacked encoders map the input
sequence of symbol representations into continuous
representations, which are then transformed into output
sequence of symbols by the stacked decoders. More recently,
transformer networks have been extended to solve computer
vision tasks. The Vision Transformer (ViT) [3] is a pioneering
work that proposes to interpret input images as a sequence of
patches and process them by a standard transformer encoder.
ViT is able to outperform ResNets [2] on image recognition
tasks when pre-trained on larger datasets. However, the global
attention used in ViT renders this model intractable to process
high-resolution images, since the computational cost of global
attention scales quadratically to image size. Hence,
hierarchical vision transformers that employ window-based
attention mechanism have been investigated to lower the
computational complexity of vision transformers. As shown
in Fig. 1 (a), HVTs break down an input feature map into
multiple windows for window-based local attention. The
window sizes may change across the stages of HVTs, allowing
feature extractions at different scales. In each stage, an
encoder processes the input feature map in each window, with
an example encoder shown in Fig. 1 (b).

The Pyramid Vision Transformer (PVT) [4] takes patches
of the input image as inputs. It follows a pyramid model
structure that progressively shrinks the attention window sizes
through the stages, as opposed to the columnar structure of
ViT. The Focal Transformer [5] introduces focal self-attention
to simultaneously capture global and local relationships. Each
window attends to its closest surrounding windows with fine-
grained local attention and far windows with coarse-grained
global attention. The Twins-SVT [6] can similarly capture

local attention by interleaving locally-grouped attention and
global sub-sampled attention in every encoder. To enlarge the
receptive field size, the Swin Transformer [7] proposes
shifted-window operations to allow both non-overlapping
local windows and cross-window connections. At the time of
this writing, the Swin transformer backbones have achieved
unprecedented accuracy for image recognition [14] and object
detection [15] tasks. Therefore, we focus on the Swin
transformer when evaluating the proposed RAWAtten
architecture. Although the encoder structures may differ
among HVT models, RAWAtten is generally compatible
since all HVTs use window-based attention mechanism with
similar dimensional parameters.

Multi-Head Self-Attention. Transformers utilize the self-
attention mechanism to identify the pairwise relations within
the input elements. Through the training process, a
transformer network learns how much attention to pay to each
input region, and these attention weights are stored in the Key
(WK), Query (WQ), and Value (WV) matrices. Each head
represents a different subspace projection to capture
distinctive attentional dependencies.

Fig. 1 (c) describes the operations in the window-based
MSA of HVT models. The model parameters of window area,
channel depth, head size, and number of heads are denoted by
M2, C, D, and H respectively. Typically D is set to C/H. An
input matrix of dimension M2×C is linearly projected by each
head through dense multiplications with the WK, WQ, and WV
matrices, each of dimension C×D. After the linear
transformations, the attention score matrix A is calculated
through the K×QT multiplication. The matrix A has dimension
M2×M2, so the compute complexity of intermediate MatMul
may be reduced when the window size is kept small. Softmax
is used on A to obtain A′, in which the highly-weighted scores
are further enlarged whereas other scores are suppressed. A′ is
then multiplied with V to assign attention weightings to the
input features. Multiple heads are finally concatenated, and
the combined result that reverts to the original input dimension
goes through a multi-head linear layer.

Fig. 2 shows that window-MSA accounts for 30% to 40%
of the total workloads in Swin transformer models, further
motivating the need for specialized hardware accelerator.
Note that Swin-T and Swin-S models only differ by the
number of third stages. One crucial observation we make is
that unlike NLP transformers whose intermediate MatMul
often dominates the MSA computation, HVTs involve
substantially more computations for linear layers than the
intermediate MatMul. This observation will be used to drive
our design decisions as discussed in Section III.C.

LayerNorm

Window-MSA

LayerNorm

MLP

M2×C

Linear K Linear Q Linear V

K×QT MatMul

Softmax

A′×V MatMul

Concat

Linear Multi-Head

M2×D M2×D M2×D

M2×M2

M2×M2

M2×C

M2×C

M2×D

H

Hierarchical
Vision Transformer

Transformer
Encoder

Multi-Head
Self-Attention

(a) (b) (c)
Fig. 1. (a) Schematic of a hierarchical vision transformer. (b)
An example of transformer encoder. (c) Multi-head self-
attention module with annotated model parameters.

Fig. 2. Distribution of MSA operations in various stages of
Swin-T/S and Swin-B workloads.

!

!

B. Hardware Accelerators for Transformers
Prior transformer accelerators have largely targeted the

attention block in NLP workloads. SpAtten [9] is a hardware-
software co-design effort to exploit the quantization and
sparsity opportunities in NLP attention. Pruned tokens and
heads are selected on the fly to reduce computation and
memory access for the attention. DTQAtten [10] proposes to
dynamically quantize the NLP attention heads with different
precisions according to their importance scores, decreasing
the computational complexity. A variable-speed systolic array
is designed to alleviate the pipeline stall problem arising from
the mixed-precision quantization. In iMCAT [11], SRAM
crossbar arrays and ternary content addressable memories are
leveraged to provide speed and energy improvements for
processing long input sequences. ReTransformer [12]
explores ReRAM-based processing-in-memory for NLP
transformers to harness the high density and low power
properties of emerging non-volatile devices. The Row-wise
accelerator [13] is the only existing ASIC solution for vision
transformers. It uses row-wise scheduling to decompose
transformer operations into single dot product primitives for
unified execution. Model weights are broadcast for data reuse.

III. PROPOSED ARCHITECTURE

A. Architecture Overview
An overview of the RAWAtten architecture is shown in

Fig. 3. The accelerator consists of N w-cores that parallelly
execute the window-MSA workloads in HVTs. Each w-core
is capable of processing all computation types in window-
MSA, including linear layers, intermediate MatMul, and
softmax. They can process window workloads independently
or combined as a group by connecting their compute modules
with those of other neighboring w-cores.

The global input buffer stores the transformer model
activations fetched from DRAM. The input dispatcher routes
these activations to each w-core, and it supports unicast,
multicast, and broadcast to offer design reconfigurability.
Activations from the input dispatcher serve as the inputs to the
SRAM-based NMC engines, which both store the model
weights and execute the linear K, Q, and V layers. MAC array
is utilized for the intermediate MatMul steps and follows a
weight-stationary approach. For the MatMul, the linear Q and
V results are first computed together as they share the same
SRAM subarray, and the results are stored to the local buffers
of K×QT and A′×V MAC arrays respectively as weights. Then,
linear K results arrive from NMC as inputs to the K×QT MAC
array. Multiple cycles are necessary to complete the MatMul
steps due to the sequential nature of NMC, so an accumulator
is used to add the partial sums from the MAC array. This
accumulator can be reconfigured to connect to accumulators
of adjacent w-cores to perform hierarchical accumulation.
Next, the accumulated partial sums enter the LR-Softmax
module row-wise to compute the attention map A′. The LR-
Softmax can also share data with adjacent LR-Softmax
modules to accommodate varying network parameters. The A′
vector multiplies with the preloaded linear V results in the
A′×V MAC array, and another reconfigurable accumulator is
used for the MAC partial sums. A final NMC engine computes
the multi-head linear layer, and the results from each w-core

are accumulated by the global accumulator. Lastly, the global
output buffer transfers the results back to DRAM.

B. Design for Reconfigurability
To accommodate the varying HVT model parameters

including M2, C, D, and H, the RAWAtten accelerator is
likewise parameterized with m2, c, d, and N. Table I
summarizes the hardware parameters used in RAWAtten and
which hardware dimension each parameter relates to, along
with the allocation of global and local buffers. Table II shows
the progression of model parameters across the 4 stages of
Swin-T and Swin-S for reference. Input size is in the
dimension of height × width × channel depth (C).

TABLE I. HARDWARE PARAMETERS OF RAWATTEN

RAWAtten Parameters
Parameter Value Corresponding Hardware Dimension

N 32 # w-cores in RAWAtten
m2 16 # 8b multipliers in one MAC array
c 32 # rows in one NMC subarray
d 16 # 8b weights in one row of NMC

Buffer Allocation
Buffer Value Type

Total NMC capacity for weights 64 KB SRAM
Global input buffer 64 KB SRAM

Global output buffer 64 KB SRAM
Total local input buffer 1 KB Register

Total local weight buffer 16 KB Register
Total local psum buffer 4 KB Register

TABLE II. MODEL PARAMETERS OF SWIN-T/SWIN-S

 Stage 1 Stage 2 Stage 3 Stage 4
Input size 64×64×96 32×32×192 16×16×384 8×8×768

H 3 6 12 24
M2 64 64 64 64

windows 64 16 4 1

SRAM NMC
Linear K

SRAM NMC
Linear Q

SRAM NMC
Linear V

MAC Array
K×QT

Reconfigurable
Accumulator

MAC Array
A′×V

LR-Softmax

Reconfigurable
Accumulator

SRAM NMC
Multi-Head

Global Accumulator

SRAM NMC
Linear K

SRAM NMC
Linear Q

SRAM NMC
Linear V

MAC Array
K×QT

Reconfigurable
Accumulator

MAC Array
A′×V

LR-Softmax

Reconfigurable
Accumulator

SRAM NMC
Multi-Head

Global Output Buffer

w-core 1 w-core N

...

D
R

A
M

H
os

t P
ro

ce
ss

or

Input Dispatcher

Global Input Buffer

Fig. 3. The proposed RAWAtten architecture. The
reconfigurable accumulators and LR-Softmax in each w-core
can be connected to those of adjacent w-cores for hierarchical
processing.

!

!

Because multiple w-cores can be combined to process
larger model dimensions, the hardware parameters per w-core
are minimized such that high compute utilization rate may be
maintained regardless of the HVT models and stages. We
define utilization rate as the ratio between the utilized number
of compute units during peak inference and the total number
of available compute units. To combine d into D and c into C,
the model weights are split into the NMC engines of different
w-cores. Intermediate results are accumulated by the local
reconfigurable accumulators. Combining m2 into M2 can be
done in the same w-core, as activations from the global input
buffer are split into different segments and the intermediate
results are accumulated by the global accumulator. After
accommodating the model parameters for each head, multiple
heads H may be processed in parallel by different w-cores.
Since HVTs offer more weight reuse in earlier stages and
more input reuse in later stages, we assign the same amount of
weight, input, and output buffers to balance the reuse
opportunities throughout the model stages.

C. Compute Units
Near-Memory Compute. As shown in Fig. 4 (a), the

SRAM-based NMC engines receive activations from the input
dispatcher as inputs, which are decoded to sequentially
activate the SRAM wordlines (WLs) in a bit-serial fashion.
This step acts as the multiplication between activations and
weights. The K subarray holds h 8b weights in each row,
whereas the Q/V subarray holds 2h 8b weights in each row as
the Q/V cells share the same WLs for simultaneous activation.
Each subarray has c rows, and each column is equipped with
a sense amplifier so all multiplication results from the same
row are read out at once. Shift-add and accumulate are used to
complete the MAC computations in linear layers.

Since the linear layers dominate the window-MSA
computation, SRAM is chosen over registers due to higher
density, and we employ NMC to avoid excessively reading
model parameters and storing them into local buffers before
starting the computation. Therefore, weight reuse becomes
more favorable as the loaded weights do not require further
data movements. In addition, the sequential nature of NMC
helps ease the routing complexity between the input
dispatcher and w-cores, thus allowing more parallel w-cores
to be deployed.

MAC Array. Each MAC array consists of m2 8b-
multipliers and an adder tree, as shown in Fig. 4 (b). As a
weight stationary design, the weights are stored in the local
weight buffers. Every cycle an 8b input is read from the local
input buffers to perform MAC operation with m2 8b weights.
The results either go through individual or hierarchical
accumulation, depending on the hardware configuration.

If SRAM-based NMC were chosen to also compute
intermediate MatMul, a transposable SRAM array would be
needed for QT, thus complicating the design. Instead, MAC
array can naturally fulfill the transpose requirement through
routing. Because computing the intermediate MatMul
involves frequent buffer accesses, we use register-based local
buffers in the MAC array to help lower access energy
compared to SRAM buffers. The larger area of registers is
compensated by the relatively small fractions and dimensions
of intermediate MatMul operations in HVTs. Furthermore,

introducing a second MAC array to each w-core for A′×V
MatMul can prevent the intermediate A′ results from being
first written back to global buffers, which would require
higher access energy than local buffers.

LR-Softmax. Softmax is a complex nonlinear function
that contains exponential and division operations. Due to the
typically long input sequences in NLP transformers, allocating
one softmax unit per NLP hardware accelerator may be
justifiable. However, HVTs gain performance benefits by
relying on small window sizes, each of which requires
softmax calculations. For instance, stage 1 of Swin-S consists
of 64 windows for 256×256 input image size, and the number
of windows grows with input size. Therefore, assigning one
softmax unit per w-core is advantageous for window-based
processing in RAWAtten, as parallelization and scalability of
the w-cores can be improved.

The cost of standard softmax implementation is
prohibitively high for having one unit per w-core, so we
design LR-Softmax that involves the following
rearrangements of the softmax equation to decrease hardware
design complexity. The first transformation we apply is the
log-sum-exp trick [16], which removes the division operation.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝒙𝒙)𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑗𝑗)𝑗𝑗

= 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑗𝑗))𝑗𝑗 (1)

During the integer quantization of softmax, logarithmic
quantization [17] is applied instead of linear quantization to
remove the exponential operation at no accuracy loss.

 𝑄𝑄𝑙𝑙𝑙𝑙[𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑗𝑗))𝑗𝑗] = 𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑥𝑥𝑗𝑗�𝑗𝑗 (2)

Consequently, the softmax function is reduced to the
subtraction between an input element xi and the log-sum-exp
(LSE) term that is dependent on x. We observe that the LSE
term is lower-bounded by the maximum element xmax, and can
be rewritten as the addition between xmax and an error term ε.

 𝑙𝑙𝑙𝑙 ∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑗𝑗)𝑗𝑗 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜀𝜀 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 (3)

We obtain an approximate ε by estimating the individual
contribution of each non-maximum element in x to ε. The
contribution of each xj is estimated through the difference
between xmax and xj. This technique works for input vectors of
any distribution owing to the shift-invariance property of
softmax, where a shift term δ to the input vector does not affect
the outcome.

D
ec

od
er

Sense Amplifier

Shift-add &
Accumulate

...
SRAM Array

(Weight)

A
ct

iv
at

io
n Input Buffer

W
ei

gh
t B

uf
fe

r

×

×

×

×

A
cc

um
ul

at
or+

+

+

(a) (b)
Fig. 4. (a) SRAM-based near-memory compute unit. (b) MAC
array for intermediate MatMul operation.

!

!

 𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑥𝑥𝑗𝑗� = 𝑥𝑥𝑖𝑖 + 𝛿𝛿 − 𝑙𝑙𝑙𝑙∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑥𝑥𝑗𝑗 + 𝛿𝛿�𝑗𝑗𝑗𝑗 (4)

Fig. 5 illustrates the hardware implementation of LR-
Softmax. The xmax in the input vector x is searched through
shift-registers and comparator. Quantizing the difference
between xmax and every other element in x accounts for the
estimated contribution of each non-maximum element to the
error ε. The quantized difference values are stored in a lookup
table (LUT), and the number of LUT entries can be reduced
as discussed in Section IV.B. Finally, x subtracts the xmax + ε
for the attention map A′. To achieve reconfigurability, the
shift-registers of LR-Softmax can connect to those of adjacent
w-cores and find the global maximum, thus allowing the xmax
+ ε estimation across the input vectors combined from
multiple w-cores.

IV. EVALUATION

A. Evaluation Setup
For energy and area evaluations, we implement the

proposed RAWAtten in SystemVerilog RTL. The design is
synthesized with TSMC 40nm ULP library using Cadence
Genus, with a target frequency of 1 GHz. With representative
window-MSA workloads from Swin-T and Swin-S, we
estimate the design power consumption through Synopsys
PrimeTime PX. Global buffers and NMC SRAM subarrays
are evaluated using DNN+NeuroSim [18]. A LPDDR4 [19]
with bandwidth of 34 GB/s is included in our analysis to
consider DRAM access cost.

The RAWAtten architecture is evaluated on the window-
MSA workloads in Swin-T and Swin-S models, targeting
image recognition on the ImageNet-1K dataset with 256×256
image size. Post-training quantization [17] is applied to
quantize all model parameters to INT8, resulting in accuracy
loss of 0.89% for Swin-T and 0.53% for Swin-S. We use the
accuracy after quantization as the baseline for later analysis.

 For baseline platform comparison, the investigated
programs written in PyTorch are run on NVIDIA Titan V
GPU with CUDA 11.3. We utilize the nivida-smi tool for
measuring GPU power and resource utilization. Latency is
measured through torch.cuda.Event. All workloads on GPU
are also quantized to INT8 for fair comparison with
RAWAtten. We assume that the HVT workloads not run on
RAWAtten are run on the baseline GPU.

B. Network Accuracy Analysis
In the design of LR-Softmax, the number of LUT entries

may be reduced because input elements that are far away from
xmax contribute trivially to the estimation of ε in LSE.
Therefore, we can safely ignore their contributions by setting

them to zero. This estimate is enabled by another property of
softmax, that large elements in the input vector are further
amplified but smaller elements are more diminished. Fig. 6
plots the Swin-T and Swin-S model accuracies as a function
of percentage of smallest input elements omitted during LR-
Softmax calculation. We observe that the knee for the plots is
located at around 80% omitted, so we set the % omitted
elements to 70%, where Swin-T and Swin-S experience only
0.18% and 0.35% accuracy loss respectively. This
optimization leads to 53% area reduction for each LR-
Softmax unit, making the allocation of one unit per w-core
more economical.

C. Energy and Compute Efficiencies
RAWAtten is evaluated to consume an average power of

0.66 W with area of 1.64 mm2. Fig. 7 shows the power and
area breakdowns of RAWAtten. With access energy of 1.3
pJ/bit [19], the DRAM data transfer dominates power
consumption at 62.4% and is not shown in the breakdown. The
majority of the remaining power is consumed by the compute
units, followed by global buffer access. Similarly, NMC
engines (that store model weights) and MAC arrays together
occupy 70.6% area, whereas the global input and output
buffers take 18.5% area. The area overhead to support the
reconfigurable compute units is 5.5% for each w-core. By
using the calibrated transistor parameter trending in
DNN+NeuroSim, we further scale the RAWAtten to 7nm
process to showcase the design’s potential at an advanced
technology node. At 7nm, RAWAtten is projected to have an
area of 0.1 mm2 and power consumption of 73 mW at iso-
frequency, showing 16× and 9× improvements in area and
power compared to the 40nm version.

Input
Vector

Compute
Xmax

Compute
ε

LUT

subtract

LR-Softmax

To adjacent
w-core

Output
Vector

Fig. 5. Hardware implementation of the LR-Softmax module.

Fig. 6. Effect on model accuracy by omitting the smallest
input vector elements during LR-Softmax computation.

(a) (b)
Fig. 7. (a) Power and (b) area breakdowns of the implemented
RAWAtten design. DRAM access is not shown in the power
breakdown.

!

!

GPU can suffer from nonlinear functions, matrix
transpose, and unoptimized memory access patterns when
executing attention workloads [9]. Fig. 8 shows the
comparisons in average latency, utilization rate, and power
consumption, normalized to the baseline GPU. We measure
that the GPU can reach average compute utilizations of 71%
for Swin-T and 78% for Swin-S. In contrast, RAWAtten
achieves better utilizations at 94% for Swin-T and 86% for
Swin-S, thanks to the minimal hardware parameters. For
latency and power, we measure that the GPU completes Swin-
T workloads in 6.94 ms and Swin-S workloads in 11.45 ms at
110 W, whereas RAWAtten completes the same workloads in
2.67 ms and 5.23 ms at 0.66 W. Table III presents the
comparison of RAWAtten with other state-of-the-art MSA
accelerators designed at the same technology node. For the
Row-wise accelerator, the reported area excludes output
buffers and softmax module, and the energy consumption is
not reported. Even when normalized to the same frequency,
RAWAtten outperforms the Row-wise accelerator in area
efficiency partly due to the second MAC array in each w-core
for A′×V multiplication, which eliminates the store and load
time of intermediate data to global buffers. Note that SpAtten
and DTQAtten target and are evaluated on NLP workloads.
The high energy and area efficiencies of DTQAtten are
derived from dynamic quantization of 8b input tokens into 4b
or even 0b (pruned) precision. With 8b computations
throughout, RAWAtten achieves competitive energy
efficiency stemming from balanced data reuse and reduced
on-chip data movements.

TABLE III. COMPARISON TABLE

 This
Work

Row-wise
[13]

SpAtten
[9]

DTQAtten
[10]

Workload Vision Vision NLP NLP

Node
(nm) 40 40 40 40

Frequency
(GHz) 1.0 0.6 1.0 1.0

Area
(mm2) 1.64 1.71 * 1.55 1.41

Throughput
(GOPS) 768 403 360 953

Energy Effi.
(GOP/j) 1170 Not

reported 382 1298

Area Effi.
(GOPS/mm2) 469 236 * 238 678

* Estimated from reported area in KGE.

V. CONCLUSION

In this work, we demonstrate the RAWAtten architecture
aimed to accelerate the window-based MSA workloads in

hierarchical vision transformers. RAWAtten contains
reconfigurable compute units to accommodate various model
parameters with high utilization rate. With an area of 1.64
mm2 and power consumption of 0.66 W in 40nm node, the
implemented design can achieve 2.4× speedup over the
baseline GPU while consuming only a fraction of GPU power.
Our work improves upon the prior work [13] on ASIC
implementation of vision transformer with 1.9× throughput
and 2× area efficiency.

ACKNOWLEDGMENT

This work is supported in part by PRISM, one of the
DARPA / JUMP 2.0 centers.

REFERENCES
[1] A. Vaswani et al., “Attention is all you need,” Advances in Neural

Information Processing Systems (NeurIPS), 2017.
[2] K. He et al., “Deep residual learning for image recognition,” IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[3] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv, 2020.

[4] W. Wang et al., “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” IEEE/CVF International
Conference on Computer Vision (ICCV), 2021.

[5] J. Yang et al., “Focal self-attention for local-global interactions in
vision transformers,” arXiv, 2021.

[6] X. Chu et al., “Twins: Revisiting the design of spatial attention in
vision transformers,” Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[7] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

[8] X. Wang et al., “Towards efficient vision transformer inference: A first
study of transformers on mobile devices,” ACM International
Workshop on Mobile Computing Systems and Applications
(HotMobile), 2022.

[9] H. Wang et al., “SpAtten: Efficient sparse attention architecture with
cascade token and head pruning,” IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021.

[10] T. Yang et al., “DTQAtten: Leveraging dynamic token-based
quantization for efficient attention architecture,” IEEE Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2022.

[11] A. F. Laguna et al., “In-memory computing based accelerator for
transformer networks for long sequences,” IEEE Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2021.

[12] X. Yang et al., “ReTransformer: ReRAM-based processing-in-memory
architecture for transformer acceleration,” ACM International
Conference on Computer-Aided Design (ICCAD), 2020.

[13] H.-Y. Wang and T.-S. Chang, “Row-wise accelerator for vision
transformer,” IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS), 2022.

[14] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” International Journal of Computer Vision (IJCV), 2015.

[15] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,”
European Conference on Computer Vision (ECCV), 2014.

[16] B. Yuan, “Efficient hardware architecture of softmax layer in deep
neural network,” IEEE International System-on-Chip Conference
(SOCC), 2016.

[17] Y. Lin et al., “FQ-ViT: Post-training quantization for fully quantized
vision transformer,” International Joint Conference on Artificial
Intelligence (IJCAI), 2022.

[18] X. Peng et al., “DNN+NeuroSim: An end-to-end benchmarking
framework for compute-in-memory accelerators with versatile device
technologies,” IEEE International Electron Devices Meeting (IEDM),
2019.

[19] D. Skinner, “LPDDR4 moves mobile,” JEDEC Mobile Forum
Conference, 2013.

Fig. 8. Comparisons between GPU and RAWAtten.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

