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Abstract—In the advanced technology, the accuracy of cell 

and wire delay modeling are the key metrics for timing analysis. 

However, when the supply voltage decreases to the near-

threshold regime, the complicated process variation effect 

causes the cell delay and the wire delay hard to model. Most 

researchers study cell or wire delay separately, ignoring the 

coefficients between them. In this paper, we propose an N-sigma 

delay model by characterizing different sigma levels (-3σ to +3σ) 

of the cell and wire delay distribution. The N-sigma cell delay 

model is represented by the first four moments and calibrated 

by the operating conditions (input slew, output load). 

Meanwhile, based on the Elmore model, the wire delay 

variability is calculated by considering the effect of drive and 

load cells. The delay models are verified through the ISCAS85 

benchmarks and the functional units of PULPino processor with 

TSMC 28 nm technology. Compared to the SPICE results, the 

average errors for estimating the +⁄- 3σ cell delay are 2.1% and 

2.7% and those of the wire delay are 2.4% and 1.6%, 

respectively. The errors of path delay analysis keep below 6.6% 

and the speed is 103X over SPICE MC simulations. 

Keywords—process variations, cell delay, wire delay, timing 

analysis  

I. INTRODUCTION 

Static timing analysis is one of the main procedures in the 
circuit design flow [1]. It provides both the basis for physical 
design optimizations and the metric for the timing sign-off [2]. 
During chip fabrication, manufacturing restrictions cause 
various variations which lead to unpredictable electrical 
characteristic deterioration of transistors and interconnects in 
an advanced technology [3]. Although device-level simulators 
can capture golden results through Monte Carlo (MC) 
sampling, the simulation is always impractically slow. 
Differently, the statistical timing analysis is widely studied to 
quantify the impact of process variations, by introducing the 
probability density function (PDF) of the delay distribution. In 
statistical analysis, the industry explored several methods for 
handling process variation effects, such as Liberty Variation 
Format (LVF) [4]. It calculates delay variation by indexing the 
input slew and the output load to determine both the mean and 
variation of cells and wires. The effective capacitance is added 
to the output load of cells, representing the effect of connected 
wires. For the wire delay, Elmore is the most popular metric 
[14], using the first moment of interconnect delay. A 
drawback of Elmore is neglecting the wire delay variability 
caused by connected cells and process variations. 

As revealed in [6], the interconnect delay is affected by 
several parameters (e.g., input slew, wire length). Moon et al. 
[5] adjust the endpoint slacks by additive calibration factors 
referring to PrimeTime [7] reports. Since this mechanism 
requires frequent calibrations to keep the average errors low, 
a simpler correction factor is proposed for every RC tree using 
the correction factors [8]. However, it is also not 
straightforward to compute the corresponding correction 
factors. Recently, Cheng et al. use a machine-learning-based 

method to ensure the accuracy, but it is overcomplicated [9]. 
Above all, the existing calibrating methods are purely 
dependent on the accuracy of the referenced timing tool 
without circuit-level design insights on the origin of the 
dominant interconnect variability contributions.  

In this paper, the proposed N-sigma model is built using 
skewness and kurtosis to quantify the 𝑛𝜎 quantiles of the cell 
delay, considering the effect of operating conditions. 
Meanwhile, the 𝑛𝜎 quantiles of the wire delay are accurately 
modeled under the influence of drive/load cells. With the 
interaction between cells and wires, the parameters of cell and 
wire models are calibrated considering the effect of each other. 
Finally, the 𝑛𝜎 quantiles of the model estimate the +/-3σ delay 
precisely. Illustrated in Fig. 1, the path delay is calculated 
through timing propagating based on the cell delay (in blue) 
and the wire delay (in purple).  

The main contributions can be summarized as follows: 

1) To describe the cell delay distribution, we propose an 
N-sigma model using skewness and kurtosis. The coefficients 
of 𝑛𝜎 quantiles are calculated through linear regression with 
the cell delay moments, which are calibrated considering the 
operating condition effects. For example, the operating 
condition of 𝐶𝑒𝑙𝑙𝐹𝐼  in Fig. 1 is the input slew of pin A1 and 
the output load 𝐶𝐹𝐼. 

2) Considering the process variations effect, the proposed 
N-sigma wire delay model is derived using the wire variability 
and Elmore model. The wire variability is calibrated by cell-
specific coefficients denoted by drive/load cells. For instance, 
the wire delay of RC tree in Fig. 1 is calibrated by the drive 
cell 𝐶𝑒𝑙𝑙𝐹𝐼  and the load cell 𝐶𝑒𝑙𝑙𝐹𝑂. 

3) The correlation between cells and wires is revealed in 
this work. Based on the input slew and the output load, the 

moments of cell delay are calibrated through the interpolation 
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Fig. 1.  A brief overview diagram of the path delay calcualtion flow. 
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method. For the wire delay model, its variability can be 
accounted for by the driver/load cell strengths and the number 
of stacked transistors. 

The rest of this paper is structured as follows: Section 2 
introduces the related works. Section 3 describes the cell delay 
modeling process. Section 4 gives the details of the wire delay 
model. The accuracy of models is discussed in Section 5. 
Finally, Section 6 concludes this paper. 

II. RELATED WORKS 

A. Cell Delay Models 

Cell delay models can be divided into two categories: 
using analytical expressions and using empirical models. 
Analytical approaches provide relationships between cell 
delays and drain currents. The detailed drain current model is 
studied by considering process variations and the load 
capacitance of the cell [10]. However, in near-threshold 
voltages, it's hard to build an accurate delay expression 
because of the intricated effect of process variations. 
Therefore, recent proposed analytical expressions are studied 
based on simplified scenarios, for example, only taking the 
threshold voltage variation into consideration [10]. On the 
other hand, empirical models directly estimate the PDF of 
delay distribution by introducing a Gaussian random variable. 
As delay distribution becomes asymmetrical in near-threshold 
voltages, the log-skew-normal based models are proposed that 
take the logarithm of the delay and then fit it to a skew-normal 
density function [11] [12]. Data for building the model is from 
Monte Carlo simulations. These empirical models treat the 
cell as a black box and construct the relationship between 
inputs and outputs through fittings or regressions. Unlike the 
analytical methods which construct the relationship between 
cell delay and process variations with complicated 
expressions [13], the empirical models directly fit the shape of 
its PDF and show higher accuracies [12].  

B. Wire Delay Models 

With increasing interconnect resistances and aggressive 
metal pitch scaling, the soaring RC delay overshadows the 
benefit of advanced device architectures and results in severe 
design issues [2]. For interconnect delay analysis, many 
metrics are widely used, from the explicit Elmore delay (delay 
with the first moment) expression to the D2M (delay with two 
moments) [14][9]. Existing metrics characterize the wire 
delay dependence on the parasitic files regardless of the 
connected cells’ topology, leading to large errors compared to 
SPICE simulations. In addition, reduced-order modeling 
(MOR) approaches are recently researched extensively [15]. 
However, all established MOR methodologies result in dense 
system matrices that render their simulation impractical, since 
the simulation cost can easily overshadow the benefits 
obtained from dimension reduction. By referring to the results 
of the sign-off timers, additive calibration factors are used to 
adjust the endpoint slacks [5]. Some machine learning-based 
methods are also proposed with a sophisticated process for 
wire delay analysis [9]. Accordingly, a leaf-specific delay 
correction method is proposed to calibrate the Elmore results 
to improve their accuracy [8]. Nevertheless, the mechanism of 
building the delay correction factor is very ambiguous and 
open to various physical interpretations. As revealed in [16], 
wire delay is not only dominated by the interconnect structure, 
which quadratically increases with the wire length, but also 
dominated by the driver/load cells. Thus, a detailed wire delay 

modeling is needed to reveal the origin of the dominant 
interconnect variability contributions. 

III. STATISTICAL CELL DELAY MODELING 

A. Cell Delay Modeling  

Actually, estimating the full shape of the delay distribution 
is non-trivial. To ensure the timing yield during the chip 
signoff, the most important information for the designer is the 
99.86% quantile as the worst-case delay [1]. The 99.86% 
quantile is equal to 𝜇 +3𝜎 (mean 𝜇 and standard deviation 𝜎) 
based on the traditional assumption of a Gaussian distribution. 
Inspired by it, this paper denotes the 0.14%, 2.28%, 15.87%, 
50%, 84.13%, 97.72%, 99.86% quantiles of a Gaussian-like 
delay distribution as several sigma levels (-3σ, -2σ, -σ, 0σ, +σ, 
+2σ, +3σ). Fig. 2 shows the probability distribution functions 
(PDFs) of an inverter delay with the supply voltage from 0.5V 
to 0.8V. 𝑇𝑐 represents the cell delay in this paper. If shaded 
samples account for 15.87% of total samples through MC 
simulation, the delay value, 𝑇c(-2𝜎) = 12.15𝑝𝑠, is considered 
as the -2𝜎 sigma level or 15.87% quantile.  

The delay distribution at the near-threshold regime 
becomes asymmetric and with a longer tail. Under the 
circumstance, the ±3𝜎 quantiles are unequal to 𝜇 ±3𝜎 based 
on the traditional assumption of a Gaussian distribution. The 
third moment, skewness 𝛾, can be used to describe asymmetry 
in a non-Gaussian distribution [12]. Furthermore, kurtosis 𝜅 
as the fourth moment is introduced to describe the thickness 
of a distribution’s tail [17]. Fig. 3 shows the PDFs with 
different values of skewness and kurtosis. Different from a 
Gaussian distribution with skewness=0 and kurtosis=3, 
positive skewness in Fig. 3(a) makes the delay distribution 
left-skewed, skewing the 𝑛𝜎 quantiles to the left. Kurtosis (>0) 
in Fig. 3(b) results in a higher distribution, swinging the 𝑛𝜎 
quantiles off their original position. 

Based on the first four moments [𝜇, 𝜎, 𝛾, 𝜅], we proposed 
an N-sigma cell delay model to estimate those quantiles. The 
input sets for regressions are moments [𝜇, 𝜎, 𝛾, 𝜅] of the cell 
delay, obtained through MC simulations. The output set for 
regressions is the quantiles representing sigma levels (-3𝜎 to 
+3𝜎) also captured by MC. As can be seen in Fig. 3(a), the 
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Fig. 2. The delay distribution of a inventer under different voltages (25°C). 
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skewness affects sigma points between -2𝜎 to +2𝜎 larger than 
the ±3𝜎 sigma points. So, the 𝑇−𝜎 , 𝑇+𝜎 , 𝑇−2𝜎 , 𝑇+2𝜎 , and 𝑇0𝜎  
are built considering the skewness effect with the term 𝜎𝛾. 

Considering the kurtosis effect in Fig. 3(b), the ±3𝜎 and ±2𝜎 
represent more divergences. Hence, the 𝑇−2𝜎 , 𝑇+2𝜎, 𝑇−3𝜎, and 
𝑇+3𝜎 in Table I are built with the term 𝜎𝜅 correspondingly. In 
addition, the 𝑛𝜎 quantiles are affected by the skewness and 
the kurtosis at the same time, so the cross term 𝛾𝜅 must also 
be considered. 𝐴𝑛𝑖  and 𝐵𝑛𝑗  (0≤ 𝑖, 𝑗 ≤ 2) in Table I are the 

regression coefficients between moments and quantiles 
through MATLAB. Ultimately, the cell delay in a logic circuit 
can be expressed using the N-sigma quantiles model. In the 
rigorous situation, the sigma level can be extended to ±6𝜎 to 
keep the stability and avoid timing failure. 

For a single cell, the moments are constant under certain 
operating conditions (input slew and output load). When put 
the cell into a path, the impact of output load capacitance is 
closely related to the fanout interconnects (i.e., wires) [16]. 
The cell delay is also affected by the driven current of the 
previous cell, which can be quantified by the input slew [21]. 
Hence, the effect of topological connections (driver/load cells 
or wires) on the current cell is reflected by the input slew 𝑆 
and the output load 𝐶, causing variability of the moments [21]. 
To ensure the universality of the N-sigma cell delay model, 
the moments need to be calibrated to reflect the delay 
distribution of a cell in a path accurately. 

B. Cell Moments Calibration 

Given a standard cell library, the propagation delays of the 
cells are analyzed for different operating conditions. For each 
cell type and input pin, the moments of cell delay are 
calculated based on the samples extracted from 10k MC 
analysis. Fig. 4 shows the operating condition effect on the 
moments of an INV delay distribution. Purple curves reflect 
the moment changes with the input slew increasing at equal 
steps (10𝑝𝑠, 20 𝑝𝑠, …, 300 𝑝𝑠) with a constant output load 
(0.4𝑓𝐹). Similarly, blue curves reflect the moment changes 
with the output load increasing at equal steps (0.1 𝑓𝐹 , 
0.2𝑓𝐹, …, 6.0𝑓𝐹) with a constant input slew (10𝑝𝑠). In Fig. 
4, the mean and standard deviation of the cell delay is in direct 
proportion to the input slew and the output load obviously. 
Differently, the values of skewness and kurtosis have a 
complicated change with the increase of the input slew and the 
output load. They need a higher-order regression, more like a 
cubic function.  

The N-sigma cell delay calculation process is given in Fig. 
5. Hence, considering operating condition effects, a calibrated 
model of cell delay moments is constructed. The change of the 
moments can be modeled through the interpolation method 
based on SPICE MC simulations. Firstly, the standard cell 
with a referenced operating condition ( 𝑆𝑟𝑒𝑓  = 10𝑝𝑠, 𝐶𝑟𝑒𝑓= 

0.4𝑓𝐹 ) can be marked as the reference moments,  𝑴𝒓𝒆𝒇 =

[𝜇0, 𝜎0, 𝛾0, 𝜅0] . The calculation of 𝑴𝒓𝒆𝒇  is helpful for 

characterizing each effect of the operating conditions. In this 
paper, the reference moments are confirmed under the 
reference operating conditions of the input slew 𝑆 being 10𝑝𝑠, 
and the output load 𝐶 being 0.4𝑓𝐹. ∆𝑆 represents the margin 
in the input slew 𝑆  and the reference slew 𝑆𝑟𝑒𝑓  which is 

similar to ∆𝐶: 

 ∆𝑆 = 𝑆 − 𝑆𝑟𝑒𝑓;  ∆𝐶 = 𝐶 − 𝐶𝑟𝑒𝑓  () 

Considering the approximate linearization between the 𝜇 
and 𝜎 with the operating conditions, the calibrated 𝜇′and 𝜎′ 
are calculated by a bilinear interpolation in (2). In addition, a 
cubic interpolation is adopted to calculate 𝛾′ and 𝜅′ 
accounting for the complicated variations caused by ∆𝑆 and 
∆𝐶. The cross term ∆𝑆 ∙ ∆𝐶 is considered both in (2) and (3) 
to ensure the accuracy of the interpolation method. Hence, the 
moments 𝑴𝒄𝒆𝒍𝒍 = [𝜇′, 𝜎′, 𝛾′, 𝜅′]  under operating condition 
deviations {∆𝑆, ∆𝐶} can be calculated through interpolation, 
where 𝑷 ,  𝑸 ,  𝑹 , and  𝐾  are the coefficient vectors of the 
operating condition deviations. 

 
[𝜇′, 𝜎′] = [𝜇0, 𝜎0] + 𝑷 ∙ [∆𝑆, ∆𝐶]

+ 𝐾 ∙ ∆𝑆 ∙ ∆𝐶
 () 

 
[𝛾′, 𝜅′] = [𝛾0, 𝜅0] + 𝑷 ∙ [∆𝑆, ∆𝐶]

+𝑸 ∙ [∆𝑆2, ∆𝐶2] + 𝑹 ∙ [∆𝑆3, ∆𝐶3] +  𝐾 ∙ ∆𝑆 ∙ ∆𝐶
 () 

TABLE I: N-SIGMA CELL DELAY MODEL EXPRESSION.  

Sigma 

level 

Percent 

defective 

Expression of quantiles of cell delay with 

the first four moments 

𝑇𝑐(-3σ) 0.14% 𝜇 − 3 ∗ 𝜎 + 𝐵30 ∗ 𝜎𝜅 + 𝐵31 ∗ 𝛾𝜅  

𝑇𝑐(-2σ) 2.28% 𝜇 − 2 ∗ 𝜎 + 𝐵20 ∗ 𝜎𝛾 + 𝐵21 ∗ 𝜎𝜅 + 𝐵22 ∗ 𝛾𝜅  

𝑇𝑐(-σ) 15.87% 𝜇 −  𝜎 + 𝐵10 ∗ 𝜎𝛾 + 𝐵11 ∗ 𝛾𝜅  

𝑇𝑐(0σ) 50.00% 𝜇 + 𝐴00 ∗ 𝜎𝛾 + 𝐴01 ∗ 𝛾𝜅  

𝑇𝑐(+σ) 84.13% 𝜇 +  𝜎 + 𝐴10 ∗ 𝜎𝛾 + 𝐴11 ∗ 𝛾𝜅  

𝑇𝑐(+2σ) 97.72% 𝜇 + 2 ∗ 𝜎 + 𝐴20 ∗ 𝜎𝛾 + 𝐴21 ∗ 𝜎𝜅 + 𝐴22 ∗ 𝛾𝜅  

𝑇𝑐(+3σ) 99.86% 𝜇 + 3 ∗ 𝜎 + 𝐴30 ∗ 𝜎𝜅 + 𝐴31 ∗ 𝛾𝜅  
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Fig. 4. The first four moments of the INVx1 delay distribution under 

different operating conditions. 
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The 𝑛𝜎 quantiles shown in Table I will be calibrated with 
the modified moments [𝜇′, 𝜎′, 𝛾′, 𝜅′] instead of the referenced 
moments [𝜇0, 𝜎0, 𝛾0, 𝜅0] .  The coefficients 𝐴𝑛𝑖  and 𝐵𝑛𝑗  are 

fixed and still apply when the operating condition changes. All 
the coefficients 𝑷, 𝑸, 𝑹, 𝐾 , 𝐴𝑛𝑖 , and 𝐵𝑛𝑗  mentioned above 

are calculated and stored as the coefficients file in the look-up 
table form shown in Fig. 5. By applying the proposed model, 
each cell’s quantiles can be quantified for arbitrary circuit 
netlist under any input slew and output load.  

IV. STATISTICAL WIRE DELAY MODELING 

A. Wire Delay Modeling  

Due to the simplicity of its computation, Elmore is the 
most popular metric as the first moment of wire delay [9]. The 
Elmore delay from node 𝑝0 to node 𝑝𝑁 in Fig. 6 is given by 
(4). When process uncertainties increase and serious metal 
resistance shielding effects emerge as technology keeps 
shrinking, Elmore and other metrics diverge from SPICE 
simulation results [6]. The wire delay distribution becomes 
asymmetric as shown in Fig. 7. In this paper, 𝑇𝑤 represents the 
wire delay and its mean and standard variance is 𝜇𝑤 and 𝜎𝑤, 
respectively. For the RC network in Fig. 7, the 99.86% 
quantile of 𝑇𝑤  is 31.65 𝑝𝑠 , demonstrating a nonnegligible 
error of Elmore which is equal to 22.19 𝑝𝑠. 

 𝑇𝐸𝑙𝑚𝑜𝑟𝑒 = 𝜇𝑤 = ∑ 𝑅𝑝𝑘 × 𝐶𝑝𝑘
𝑁
𝑘=1  () 

In general, the delay variability of an RC tree at a given 
technology and supply voltage depends on several factors, i.e. 
wire length, input slew, driver/load cell strength, and cell 
topology [16]. The delay correction method in [8] expresses 
the delay variability of logical cells and paths with the cell 
strength and the number of stacked transistors, without 
physical wires. Inspired by [8], we propose a novel calibration 
method to calculate the wire delay variability ( 𝜎𝑤 / 𝜇𝑤 ), 
represented by 𝑋𝑤. Experiment results from place-and-route 
netlists show that 𝑋𝑤 is in proportion to the delay variability 
of drive/load cells. A more detailed process of modeling 𝑋𝑤 is 
explored in the next subsection. 

B. Wire Coefficients Calibration 

Fig. 8 shows an example of the delay distribution of the 
same RC tree with different driver/load inverters for strengths 
of 1, 2, and 4. Based on the observation of Fig. 8, the mean of 
the wire delay is proportional to the load/driver cell strengths. 
The standard variation is proportional to the load cell strengths 
and inversely with the driver cell strengths. Additionally, the 
wire delay variability (𝜎𝑤/𝜇𝑤) is proportional to the load cell 
strengths and inversely with the drive cell strengths.  

To reflect the effect of drive/load cells, we propose a novel 
calibration method using the wire delay variability (𝜎𝑤/𝜇𝑤) 
inspired by [8]. Refer to Pelgrom’s law [18], the wire delay 
variability is determined by the driver/load cell strengths 

( √𝐹𝐼𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ,  √𝐹𝑂𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ)  and the number of stacked 

transistors (𝑛) [19]. As a result of the averaging effect of 
variations across the transistor channel, 𝜎𝑤 /𝜇𝑤  decreases as 
the square root of the number of stacked transistors, and the 
cell strength under specific drive/load cells is given in (5). 
𝜎𝐹𝐼/𝜇𝐹𝐼 is a ratio of the standard deviation and the mean of the 
cell delay (𝐶𝑒𝑙𝑙𝐹𝐼 ) which is similar to 𝜎𝐹𝑂 /𝜇𝐹𝑂 . Since the 
number of stacked transistors (𝑛) of the driver/load cell (e.g., 
NAND) is integer multiples of transistors in an inverter, the 
FO4 cell (INVx4) shown in Fig. 7 can be taken as a baseline. 
The ratio 𝜎𝐹𝐼/𝜇𝐹𝐼 (𝜎𝐹𝑂/𝜇𝐹𝑂) of an arbitrary driver (load) cell is 
in proportion to the ratio 𝜎𝐹𝑂4/𝜇𝐹𝑂4 of an INVx4. As a result, 
the expression (5) can be converted to the (6) and the cell-
specific coefficients 𝑋𝐹𝐼  and 𝑋𝐹𝑂 can be used to represent the 
wire delay variability caused by the driver cell and the load 
cell, respectively. Eventually, the wire delay variability can be 
precisely modeled as a linear combination of driver/load cell-
specific coefficients in (7). 
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The variation 𝜎𝑤 of the wire delay is shown in (8) with 𝑋𝑤 

represented the calibrated coefficients. Covering the 

asymmetry of the distribution with the wire delay variability 

𝜎𝑤/𝜇𝑤, the 𝑛𝜎 quantiles can be characterized in (9).  

 𝜎𝑤 = 𝜇𝑤 ∙ 𝑋𝑤 = 𝑇𝐸𝑙𝑚𝑜𝑟𝑒 ∙ 𝑋𝑤 () 
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Fig. 6.   The RC network with driver/load cells of INVx4. 
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Fig. 7.   Comparison of Elmore delay and the SPICE simulation results. 
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Fig. 8.  Comparison of the wire delay distribution with driver/load INV 

cells for different strengths of 1, 2, and 4. 

 

!

!



 𝑇𝑤(𝑛𝜎) = (1 + 𝑛 ∙ 𝑋𝑤) ∙ 𝑇𝐸𝑙𝑚𝑜𝑟𝑒  () 

In a specific circuit, a path can be represented by a set of 

primary inputs, a set of primary outputs, a set 𝐺 of standard 

cells, and a set 𝑁 of nets representing the interconnections 

between these elements. As shown in (10), the 𝑛𝜎 quantiles 

of the path delay arrival time 𝑇𝑝𝑎𝑡ℎ  are composed of cell 

delay and wire delay, denoted as 𝑇𝑐  and 𝑇𝑤, ultimately. 

 𝑇𝑝𝑎𝑡ℎ(𝑛𝜎) =  ∑ 𝑇𝑐𝑐𝑒𝑙𝑙𝑠 (𝑛𝜎) + ∑ 𝑇𝑤𝑤𝑖𝑟𝑒𝑠 (𝑛𝜎) (0) 

V. EVALUATION  

A. Experimental Setup 

The supply voltage is set to 0.6V in the near-threshold 
region and the temperature is 25ºC. Based on TSMC 28 nm 
PDK, the accuracy of delay models is verified by comparing 
the data obtained through SPICE simulations with 10k MC 
samples under global and local variations. The accuracy of 
path delay analysis is verified using the ISCAS85 benchmark 
suite and the functional units of PULPino [20], an open-source 
RISC-V microprocessor. All experiments are run on a 4.2 
GHz Intel i9-12900k processor. 

B. Accuracy of Cell Delay Model 

The parameters in the N-sigma cell delay distribution are 
modeled as shown in Table I and are verified under the FO4 
constraint. Table II shows the errors of estimated +/-3𝜎 delay 
using LSN [12], Burr [13], and the proposed N-sigma models 
compared to SPICE simulation results. Obviously, the Burr-
based model cannot be used for estimating the +3𝜎 delay in 
the near-threshold voltage region. On the contrary, the average 
error of the LSN-based delay model is less than 5% and the N-
sigma model is always less than 3% for each cell at 0.6V. The 
N-sigma model shows a remaining stable prediction accuracy 
no matter for the complex logic cell AOI or the simple logic 
cells like NOR.  

C. Accuracy of Wire Delay Model 

To illustrate the accuracy and efficiency of the proposed 
method, five examples of RC interconnect circuits are 
provided for comparison studies. Each resistor and capacitor 
are randomly chosen from the parasitic files. The schematic 
diagram of an RC network with a driver cell and a load cell at 
both ends of the wire. The cell strength constraints of the 
driver/load cells are set to be FO1, FO2, FO4, and FO8. The 

errors in estimating 𝑋𝐹𝐼  and 𝑋𝐹𝑂 are shown in Fig. 9 by fitting 
MC simulations which are about 1.92% and 3.31%, 
respectively. Based on 𝑋𝐹𝐼  and 𝑋𝐹𝑂, the average errors for the 
-3𝜎 and +3𝜎 wire delay estimations are 1.61% and 2.39% as 
shown in Fig. 10. In addition, a comparison of +3𝜎 delay of 
each wire on the critical path of C432 is exhibited in Fig. 11. 
The Elmore model produces larger differences from MC 
simulation results compared to the proposed N-sigma wire 
model. Hence, the proposed N-sigma model is significantly 
effective to estimate the wire delay.  

D. Accuracy of Path Delay Analysis  

The netlists of benchmark circuits are generated through 
Design Compiler. The parasitic information defined by the 
SPEF files is obtained through IC Compiler. To verify the 
validity of the path delay analysis, Table III depicts the 
precision of the MC simulation results, the PrimeTime-based 
results [7], the ML-based method [9], the correction-based 
method [8], and our method. The path delay in the ML-based 
method is consist of the LUT-based cell delay and the ML-
based wire delay. The network to calculate the wire delay is 
trained using the first and second moments and many other 
features. The correction-based method calibrates the Elmore 
delay with the help of the PrimeTime report. Compared with 
the results from 5000 MC simulations, the +3𝜎 error is about 
3.67% while the -3 𝜎  of our method is about 5.62%, 
respectively. Besides, the ML-based method and the 
correction-based method show errors of 18.27% and 11.73% 
compared to the +3𝜎 of MC simulation results, respectively. 
In addition, the analysis result based on our method is more 

TABLE II: ACCURACY OF ESTIMATING THE +/-3𝜎 CELL DELAY 

COMPARED TO SPICE SIMULATION RESULTS.  

Std cell Errors of cell model (%) 

LSN[12] Burr[13] Ours 

-3𝝈 +3𝝈 -3𝝈 +3𝝈 -3𝝈 +3𝝈 

NOR2x1 5.04 7.89 11.66 10.67 3.57 4.81 

NOR2x2 4.78 6.31 14.56 9.45 3.17 2.56 

NOR2x4 5.23 7.82 16.79 12.56 3.09 3.67 

NOR2x8 6.48 8.97 10.20 10.45 2.67 3.78 

NAND2x1 3.44 4.78 11.25 6.98 2.31 1.79 

NAND2x2 5.87 5.98 15.68 6.76 2.71 2.97 

NAND2x4 5.67 7.34 10.65 12.57 1.01 1.95 

NAND2x8 4.18 8.45 11.77 10.67 1.04 1.67 

AOI2x1 5.72 6.79 8.46 13.78 3.31 3.97 

AOI2x2 9.97 11.89 11.78 9.76 2.78 3.75 

AOI2x4 7.83 10.46 12.56 10.35 2.67 2.89 

AOI2x8 10.26 13.31 13.68 12.56 2.66 2.67 

Avg. 5.50 7.67 12.42 10.55 2.03 2.73 
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Fig. 9.   Errors of estimating 𝑋𝐹𝐼 and 𝑋𝐹𝑂. 
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Fig. 10.  Errors of estimating the ±3𝜎 wire delay with the 𝑋𝑤. 
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accurate than the correction-based method depending on 
PrimeTime.  

Since 𝑋𝐹𝐼  and 𝑋𝐹𝑂  need to be calculated for quantifying 
each driver/load cell effect, and is the main process of the 
whole timing analysis, the runtime of our proposed method is 
in direct proportion to the number of cells. The ratios of 
runtime to the cell numbers are 1.1/655=0.0016 and 
78.9/51654=0.0015 for c432 and DIV, respectively. For huge 
designs, the proposed path analysis flow is slightly longer but 
still acceptable compared to MC simulation method. It is 
worth noting the ML-based method needs long-time training 
time which is quite time-consuming and requires high 
memory storage. In summary, through modeling the wire 
variability factors, the ±3𝜎 of path delay can be calculated 
with sufficient precision even though the runtime is slightly 
longer than the three other methods.  

VI. CONCLUSION 

To minimize divergence between chip timing results and 
a signoff tool, an accurate method to model the cell and wire 
delay is necessary. In this paper, the N-sigma model is built 
for quantifying the cell delay and wire delay under near-
threshold voltage. The cell delay model is calibrated 
considering the operating condition effects. The wire delay is 
accurately modeled with the cell-specific coefficients 
representing the influence of driver/load cells. The cell and 
wire delay through calibration demonstrate a higher precision 
compared to other models. In future work, the runtime of the 
proposed model can be reduced with methods like GPU 
acceleration to make it close other models. 
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TABLE III: THE PATH ANALYSIS RESULTS BASED ON ISCAS85 BENCHMARKS AND THE FUNCTIONAL UNITS OF PULPINO PROFESSOR  

Path #Nets #Cells 

Critical path Delay (ns) Errors of path delay (%) Runtime (s) 

MC PT 
[7] 

ML 
[9] 

Correction 
[8] 

Ours PT 
[7] 

ML 
[9] 

Correction 
[8] 

Ours 
MC 

PT 
[7] 

ML 
[9] 

Correction 
[8] 

Ours 
-3𝝈 +3𝝈 -3𝝈 +3𝝈 -3𝝈 +3𝝈 

C432 734 655 584 1015 1359 1267 1156 635 1075 33.9 24.9 13.9 8.7 5.9 1196.5 2.0 0.5 3.4 1.1 

C1355 1091 977 523 921 1297 1190 1036 559 943 40.8 29.2 12.4 6.9 2.4 1211.5 1.9 0.9 2.7 1.5 

C1908 1184 1093 727 1272 1698 1467 1396 758 1296 33.5 15.4 9.7 4.3 1.8 1173.2 2.3 1.1 2.9 1.7 

C2670 2415 1810 686 1177 1589 1274 1287 717 1225 34.9 8.2 9.3 4.5 4.1 1351.5 2.4 2 3.5 2.8 

C3540 2290 2168 252 462 605 589 530 267 470 30.9 27.4 14.6 5.9 1.7 1651.1 2.2 2.1 4.1 3.1 

C6288 3725 3246 520 890 1221 1017 990 541 910 37.2 14.3 11.2 4.1 2.3 1303.4 3.1 2.8 5.3 5.1 

C5315 5371 5275 879 1581 1972 1774 1690 905 1599 24.7 12.2 6.8 2.9 1.1 1656.2 2.5 2.7 3.9 8.1 

C7552 4536 4041 766 1368 1697 1597 1516 796 1377 24.1 16.8 10.8 3.8 0.7 2001.3 2.9 2.4 3.7 6.6 

ADD of 
PULPino 

2531 4088 784 1867 2670 2677 2356 834 1999 42.9 30.2 15.4 6.3 7.1 1841.5 2.3 2.1 4.5 6.3 

SUB of 
PULPino 

2576 3066 856 1903 2549 2699 2245 902 1970 33.9 15.5 17.9 5.3 3.5 1996.2 2.6 1.9 4.1 6.47 

MUL of 
PULPino 

62967 49570 4908 6856 8492 8566 7436 5238 7315 23.9 17.6 11.3 6.7 6.7 2438.2 3.7 3.3 5.2 73.6 

DIV of 
PULPino 

91932 51654 5178 7099 7692 7730 7590 5578 7568 16.8 7.5 6.9 7.7 6.6 2346.3 3.9 3.1 5.6 78.9 

Avg. - - - - - - - - - 31.4 18.3 11.7 5.6 3.6 1807.3 2.7 2.1 4.1 16.3 
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