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Abstract—This paper investigates the potential of a compute-in-
memory core based on optical Phase Change Materials (oPCMs)
to speed up and reduce the energy consumption of the Matrix-
Matrix-Multiplication operation. The paper also proposes a new
data mapping for Binary Neural Networks (BNNs) tailored for
our oPCM core. The preliminary results show a significant latency
improvement irrespective of the evaluated network structure and
size. The improvement varies from network to network and goes
up to ∼1053×.

Index Terms—Binary Neural Network, Optical PCM,
Computation-In-Memory

I. INTRODUCTION

The significant progress of Neural Network (NN) appli-
cations has, unfortunately, come with extensive demand for
system resources, e.g., memory and energy consumption. This
high demand has already slowed down the growth of active,
deployed NNs and their adoption when factoring in the costs.
A recent research direction is to use simpler (operation-wise)
and smaller NNs, such as BNNs. BNNs enjoy lower memory
requirements, simplified arithmetic operations, and near SOTA
accuracy on vision tasks [4, 14]. However, an optimized hard-
ware implementation is still necessary for BNNs to smooth
their cost-efficient adoption on our future systems.

A few works have investigated hardware realization of BNNs
by introducing different mapping and data flow techniques [13,
17] or various circuitry and memristor-based crossbar structures
(i.e., ReRAM or PCMs) to perform required operations [7].
Unfortunately, none of these methods exploit the full potential
of underlying emerging devices for BNNs due to inefficient
data mapping and the sequential nature of how they perform
the necessary operations. These works are also constrained by
the fact that the underlying computing cores are limited to a
maximum of one single vector operation (either logical vector
operation or VMM) at a given time step.

This paper presents three major contributions:
• The first hardware acceleration of BNNs utilizing oPCM

instead of conventional electronic PCM.
• An efficient data flow on VMM-enabled crossbars that

fully exploits the available readout circuitry and paral-
lelism in a crossbar and particularly suits BNN operations.

• A detailed performance comparison between the proposed
CMOS-compatible oPCM-based accelerator, an accelera-
tor using the same mapping but with electronic PCM, and
previous SOTA hardware accelerator for BNNs.

II. BACKGROUND AND MOTIVATION

This section briefly touches on the necessary background.
Please refer to [5, 6] for detailed information on these topics.

Computing Inside/Near Memory. Recent works from in-
dustry and academia [2, 3, 15] show that nanoscale emerging
memory technologies are among the strongest candidates for
the Computation-In-Memory (CIM) paradigm, where computa-
tion and memory units are co-located. This happens primarily
due to the match between their compute capability and the
computational need (i.e., VMM operation) of today’s dominant
data-intensive applications (i.e., NNs).

PCM-based Integrated Photonics. Phase Change Materials
(PCMs for short) are currently the leading alternatives for
non-volatile computation (VMM operation in particular) in
silicon photonics-based platforms. This technology, commonly-
known as integrated photonics based on PCM (oPCM), offers
two main advantages compared to previous photonics-based
platforms. First, CMOS-compatible manufacturing in contrast
to diffractive computing in free-space optics [10] that cannot
be integrated on-chip. Second, significantly higher speed and
lower power requirements compared to interferometer-based
multiplications that are CMOS-compatible but require large and
power-hungry phase-shifters [16]. A CIM-enabled design ex-
ploiting oPCM also offers two additional benefits, distinguish-
ing itself from alternative electronic emerging memories. First,
oPCM allows high parallelization through wavelength division
multiplexing (WDM), in which different vectors can be pro-
cessed simultaneously in different parts of the frequency space.
oPCM exploit WDM to effectively enable Matrix-Matrix-
Multiplication (MMM), adding an extra scalability dimension
to applications. Second, computing using oPCM avoids Joule
heating, electromagnetic crosstalk, electronic addressing chal-
lenges for CIM-enabled designs, capacitance in custom silicon
computing platforms, and resistance drift in electronic emerging
memories [1, 8, 9, 11].

III. PROPOSAL AND ARCHITECTURE

Fig. 1-(a) and Fig. 1-(b) present an overview of the concept
and realized oPCM-based CIM-enabled accelerator with the
recommended data flow. Shown in Fig. 1-(a), conceptually,
this design utilizes XNOR and Popcount ( 1 ) operations for
execution of BNNs [14]. Our oPCM-based realization performs
both XNOR and Popcount within 1 cycle using a VMM-
enabeld crossbar by (1) re-writing XNOR as two AND and one
OR operations (A ⊙ B = A.B + ĀB̄), and (2) re-distributing
the kernels and their complements vertically in the crossbar
( 2 ). This vertical mapping is compatible with all previous
VMM-enabled crossbars (e.g., PCM-based ones) and removes
the sequential, mostly digital, Popcount operation in SOTA [7].
The accelerator employs a resonator-based optical frequency
comb ( 3 ) to enable WDM. Exploiting WDM ( 4 ), the oPCM-
based accelerator provides an additional degree of computation
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to apply several inputs simultaneously, effectively enabling
MMM. That is, oPCM performs K (3 in Fig. 1-(b)) VMM
operations in one step instead of 1 VMM typically achieved
by a memristor-based crossbar ( 5 ). Current technology can
comfortably support up to K = 16 [5].
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Fig. 1: Proposed Weight Mapping and oPCM Core with WDM.

IV. EVALUATIONS

Evaluation Methodology. We build a cycle-accurate emu-
lator using PyTorch derived from our device-aware extended
circuits [18]. Due to space limitations, we only present the
preliminary latency improvements here. We implemented two
different configurations. (1) ePCM-Map that only considers
the proposed mapping on electronic PCM-based crossbar. (2)
oPCM-Core that considers the mapping but utilizes oPCMs.
Our PCM and oPCM configurations are based on our previous
results [5, 12]. We compare our designs against that of [7] as the
SOTA hardware accelerator for BNNs (Baseline-ePCM). We
evaluate all of the designs for 6 BNNs with various sizes from
M1Bench [3] for handwritten digits recognition on MNIST.

Evaluation Results. Fig. 2 presents the latency improvement
of proposals normalized to SOTA for the same underlying
network. The y-axis uses a log-scale.

Results

~79x

~395x

~5x

Fig. 2: Latency improvements over Baseline-ePCM.
We make four key observations.
• Both oPCM-Core and ePCM-Map improve the latency

irrespective of BNN. This is because, unlike the Baseline-
ePCM, these designs not only parallelize XNOR with
Popcount but also parallelize both of these operations with
many other sets via the proposed vertical data mapping.

• The latency improvement is network-dependent. This is
directly related to the available parallelism in the oper-
ations of understudy BNN. In our BNNs, the larger the
BNN is, the more parallel XNOR and Popcount operations
exist. Improvements vary from ∼5.6× to ∼1053× for the
evaluated BNNs.

• oPCM-Core brings on average ∼5× improvement in
latency with the exact data flow compared to ePCM-
Map. This happens due to the extra parallelism dimension
enabled by WDM. Note that the improvement is also
network-dependent.

• The highest improvement of our oPCM-Core over ePCM-
Map (i.e., ∼5.18×) is still less than the available paral-
lelism due to the new dimension via WDM (i.e., ∼16×).
This is simply because the evaluated networks are not
big enough to take full advantage of such an increase in
the available parallelism. We will investigate very large
networks using this design in our future work.

V. CONCLUSION

This paper proposes a CMOS-compatible oPCM-based core
and an efficient data flow for BNNs. Our evaluations on latency
and preliminary investigations on energy consumption suggest
an enormous potential for oPCM-based cores in NNs. Hence,
our work encourages further investigations of oPCM.
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