2023 Design, Automation & Test in Europe Conference (DATE 2023) — Late Breaking Results

Improving Design Understanding of Processors
leveraging Datapath Clustering

Katharina Ruep

Daniel Grofle

Institute for Complex Systems, Johannes Kepler University Linz, Austria
{katharina.ruep, daniel.grosse}@jku.at

Abstract—In this paper, we present a novel approach for
design understanding of processors. Our approach uses clustering
techniques to identify datapath similarities based on control
signal vectors. The resulting dendrogram captures the closeness
of instructions wrt. their datapath and control in visual form. We
demonstrate how our approach helps in design understanding of
a RISC-V processor without reading the HDL code.

I. INTRODUCTION

Becoming familiar with a processor design is a non-trivial
task. While the programmer only looks from the perspective
of the Instruction Set Architecture (ISA), the hardware de-
signer/verification engineer has to understand the microachi-
tecture and the HDL implementation. This can be done by
simulating the processor and viewing the resulting waveforms,
or using automated tools for Design Understanding. The
challenges for such tools arise at different levels of the design
hierarchy targeting specific problems [1]. Examples include
feature localization in RTL descriptions [2], assertion mining
at RTL [3], identification of instruction pipelines using static
analysis on the netlist [4], or template-based understanding of
circuit components [5]. However, all these approaches do not
provide means for an abstract view on a processor. In general,
a processor is divided into datapath and control where the latter
tells the former what needs to be done. For gaining insight into
the microarchitecure of a processor it is extremely helpful to
understand which datapath is activated by the control unit for a
given instruction, which instructions share datapath elements,
and where the main differences between two instructions are.
This is not only the case when one is unfamiliar with the
processor design, but also when optimizations or processor
extensions, such as the integration of a custom instruction, are
scheduled.

In this paper, we present a novel automated approach for
design understanding of processors. First, our approach per-
forms coverage-guided fuzzing to generate a representative set
of instructions for the processor at hand. These instructions are
then simulated to extract the vector of activated control signals
for each instruction. Next, we apply clustering techniques
on the vectors to identify datapath similarities. The result
is presented in form of a dendrogram, a hierarchical binary
cluster tree which visualizes the closeness of the instructions:
the closer instructions are to each other, the more datapath
elements are shared (and activated by the control). In the
experiments, we demonstrate the benefits of our approach for
design understanding of a RISC-V processor.

Algorithm 1 Processor Design Understanding Algorithm

1: TestCases <+ generate representative test cases with CGF

2: Traces < get_traces(TestCases) > list of VCD-traces
3: Instructions, ControlVectors < extract_from_traces(Traces)

4: Clusters «+ & > empty list of clusters
5: for each (cv, instr) € ControlVectors, Instructions do

6: if cv & Clusters then
7:
8
9

> new cluster
Clusters.append(cv)
end if

: Clusters[cv].append(Set(cv, instr))
10: end for
11: Clusters < unify_clusters_per_instr(Clusters)
12: Cluster Reps < extract_cv_per_cluster(Clusters) > map of each cluster with

a representative control vector

13: for each cr € ClusterReps do
14: cr.cv 4 normalize(cr.cv, MazBitWidthPerControlSig)
15: cr.cv <— order_hierarchical(cr.cv, HierarchyPerControlSig)
16: end for
17: ClusterRelations < linkage(ClusterReps, average’, "euclidean_dist’)
18: create_dendrogram(ClusterRelations)

> add to existing cluster

II. DESIGN UNDERSTANDING OF PROCESSORS

Algorithm 1 shows the pseudo-code of our approach which
consists of the following steps:

Input Generation (Line 1-2): Representative test cases
for the processor are generated via Coverage-Guided Fuzzing
(CGF). We utilize the fuzzer AFL++ [6] on top of the yosys-
backend CXXRTL [7], and create traces for each test case.

Information Extraction (Line 3): From each trace the
instruction and all control signals (based on the interface be-
tween datapath and control unit) are extracted using WAL [8].

Datapath Clustering (Line 4-11): The initial clusters are
created based on the control vectors, with each unique set
of control signals creating a cluster. If multiple instructions
end up in one cluster, these clusters are split, so that each
cluster contains only elements with the same control vector
and instruction.

Hierarchical Clustering (Line 12-17): Hierarchical clus-
tering is performed to relate the clusters to each other. For
this, representative sets of instructions and control vectors are
extracted for each cluster. If several clusters represent the same
instruction, a suffix (e.g.:_A, B) is added to distinguish them.
Each control signal then is normalized, i.e. it is divided by the
largest representable value based on its bit width. In addition,
the individual signals can be weighted in relation to each other
according to their order in the design.

The agglomerative hierarchical clustering itself is done with
SciPy [9] and based on distance calculation with euclidean
metric for each control signal and average method to get a
single distance over all signals between two clusters.

Visualization: (Line 18): To obtain a visual representation
of the hierarchical clustering, a dendrogram is created.

978-3-9819263-7-8/DATE23/© 2023 EDAA

2
o G e
a8 & 0% b
EfoET 22248
2En83ECLES
typel g oS 2h<
S 10200
S 1 0
S 1 0
B 2 7
B 2 7
B 2 1
B 2 1
B 2 1
B 2 1
B 2 7
B 2 7
R 0
R 2
R 5
R 7
R 8
R 10
R 12
R 14
14
12
8
7
5
0
5 2
5 10
5 11
0
0
[¢]
0
[¢]
2 [¢]
2 3 0
ul 3 14 0
. 3 142 0

Fig. 1: Clusters with instructions, types and control vectors.
III. EXPERIMENTS

We evaluated our design understanding approach on a
RISC-V processor which has been implemented in VHDL
and supports RV32I [10]. For this processor, coverage-guided
fuzzing generated in total 7,215 unique testcases in 1 hour
on an Intel Core i7-10700 with 64 GB of main memory. The
subsequent steps of our approach took 83 seconds.

The dendrogram finally generated by our approach is de-
picted in Fig. 1. Each leaf of the tree in Fig. 1 is anno-
tated as follows: instruction | RISC-V type | control
signal vector. The vertical dashed line shows the current
coloring threshold and gives the data set a meaningful cluster-
ing. On the right side of this line, each cluster has a different
color. If we now move this line to the left or to the right,
we essentially choose the granularity level of how we look
at the datapath similarities of the processor. The further to
the right a split occurs, the fewer differences are found in the
underlying control vectors of the instructions, which means
more datapath elements are shared. This is most evident with
branch-instruction pairs. As a concrete example, consider the
pair beq_B (branch equal) and bne_B (branch not equal) and
ignore the suffix ’_B’ for a moment. Both instructions share
the same control vector and are therefore grouped together. On
the other hand, our approach also grouped together beq_A
and bne_A as they also share the same control vector,
but a different one as the pair before. The reason for this
grouping is that in case of a conditional instruction, the branch
is either taken or not, depending to the evaluation of the
branch condition. Consequently, different datapaths have to
be activated which leads to varying control vectors and finally
to two different datapaths. Our approach eases understanding
by identifying both of them (and therfore appends suffix _A
and suffix _B, respectively).

Moreover, it can be seen in Fig. 1 that the clustering
determined by our design understanding approach matches to

®

o

=

et

<

>
WWWWWWEDNWF
coooooo oo o|PcTargetSrc

cooooooooo|Resultsrc
coocooooor—|lenirite
cooorrrroo|Prc
coococoooorH|AluSrc
cooooooooo|Regirite
NN NN NN N 1= = ImmS re
cooooooon)|MemSel
OO0 ®|SignExtEn
NN U oolAluContrl

—
o
CCUHHOHHHMH
WWNNR R R
cooooooo0e
corroooo®
COORRRRRRE
PRRRRRRR R
PRWoCOCOOOO®
NOOHOOOOO
COOOORRNFO
cooorrROO®
coocooooooe

0.8 0.6 0.4 0.2 0.0

Fig. 2: Dendrogram with bug in sh instruction.

the RISC-V type specification! without using this information
up-front/in the clustering algorithm. At this point, we want to
discuss three insights: (1) For the S-type instructions sw, sh,
and sb at the top of the Fig. 1 it can be seen that the underlying
control vectors differ only at MemSel and therefore they are
close to each other. (2) Less obvious is the grouping of the
load counterpart (1w, 1h, 1b), as 1w is closer to the S-type
instructions than to the 1h/1b pair. However, looking at their
control vectors shows that the latter are the only instructions
that set SignExtEn (to enable the sign-extension unit) and
thus have a larger distance to 1w. (3) The matching of the
dendrogram/clustering to the RISC-V type specification can be
interpreted as a lightweight validation of the implementation
of the processor. If the clustering does not match, it potentially
reveals a bug in the implementation. The dendrogram in Fig. 2
shows such a case. As can be seen, the S-type instruction sh
(store half) has been grouped together with 1h (load half),
which obviously does not make sense. The reason was an
incorrect setting of control signals due to a copy&paste error.

In summary, the generated dendrogram supports the user in
design understanding of processors. The user gets an abstract
view on the microarchitecture of the processor and can explore
important behavior without reading HDL code.

REFERENCES

[1] S. Ray, I. G. Harris, G. Fey, and M. Soeken, “Multilevel design understanding:
from specification to logic,” in ICCAD, 2016.

[2] J. Malburg, A. Finder, and G. Fey, “A simulation-based approach for automated
feature localization,” TCAD, vol. 33, no. 12, pp. 1886-1899, 2014.

[3] S. Vasudevan et al., “Goldmine: Automatic assertion generation using data mining
and static analysis,” in DATE, 2010, pp. 626—629.

[4] L. Schammer, J. Runge, P. Klimach, and G. Fey, “Design understanding: Identi-
fying instruction pipelines in hardware designs,” in MOCAST, 2022.

[5] A. Gascon, P. Subramanyan, B. Dutertre, A. Tiwari, D. Jovanovi¢, and S. Malik,
“Template-based circuit understanding,” in FMCAD, 2014, pp. 83-90.

[6] “AFL++ - American Fuzzy Lop++,” https://github.com/AFLplusplus/AFLplusplus.

[7]1 “yosys - Yosys Open SYnthesis Suite,” https://github.com/YosysHQ/yosys.

[8] L. Klemmer and D. GroBle, “WAL: a novel waveform analysis language for
advanced design understanding and debugging,” in ASP-DAC, 2022, pp. 358-364.

[9] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python,” Nature Methods, vol. 17, pp. 261-272, 2020.

[10] A. Waterman and K. Asanovié, The RISC-V Instruction Set Manual; Volume I:

Unprivileged ISA, SiFive Inc. and CS Division, EECS Department, University of
California, Berkeley, 2019.

1S: stores, B: conditional branches, R: register-register, I: short immediates
and loads, J: unconditional jumps, U: long immediates

	Select a link below
	Return to Previous View
	Return to Main Menu

