
Lossless Sparse Temporal Coding for SNN-based
Classification of Time-Continuous Signals

Johnson Loh and Tobias Gemmeke
Chair of Integrated Digital Systems and Circuit Design, RWTH Aachen University

Aachen, Germany
Email: {loh,gemmeke}@ids.rwth-aachen.de

Abstract—Ultra-low power classification systems using spiking
neural networks (SNN) promise efficient processing for mobile
devices. Temporal coding represents activations in an artificial
neural network (ANN) as binary signaling events in time, thereby
minimizing circuit activity. Discrepancies in numeric results are
inherent to common conversion schemes, as the atomic computing
unit, i.e. the neuron, performs algorithmically different opera-
tions and, thus, potentially degrading SNN’s quality of service
(QoS). In this work, a lossless conversion method is derived in
a top-down design approach for continuous time signals using
electrocardiogram (ECG) classification as an example. As a
result, the converted SNN achieves identical results compared
to its fixed-point ANN reference. The computations, implied by
proposed method, result in a novel hybrid neuron model located
in between the integrate-and-fire (IF) and conventional ANN
neuron, which numerical result is equivalent to the latter. Addi-
tionally, a dedicated SNN accelerator is implemented in 22 nm
FDSOI CMOS suitable for continuous real-time classification.
The direct comparison with an equivalent ANN counterpart
shows that power reductions of 2.32× and area reductions of
7.22× are achievable without loss in QoS.

Index Terms—ANN-SNN mapping, lossless coding, sparse tem-
poral coding, application-specific integrated circuit (ASIC)

I. INTRODUCTION

The early identification of anomalies in time-continuous sig-
nals is the backbone of multiple growing application domains
such as predictive maintenance and health monitoring. For in-
stance, atrial fibrillation (AF) is one of the most common heart
diseases affecting about 3 % of the general population with a
rising tendency [1]. The automated classification of anomalies
in indicative data streams, here ECG signals, requires solutions
that achieve high QoS and low power at the same time.
Although several benchmarks [2], [3] are solvable by ANNs,
model complexity increases enormously for increasing data
noise and irregularity of less distinctive features as in AF.

To accommodate inference performance, SNNs encode ac-
tivations in e.g. rates, timing or spatio-temporal features [4].
The sparse dynamic activity of spikes promises less energy
while transmitting the same information. Within the diverse
landscape of SNN training methods [5], ANN-SNN conversion
techniques focus on the direct mapping of pre-trained ANNs
to SNNs. They achieve competitive QoS in machine-learning
(ML) benchmarks due to the SNN’s close numerical relation
to their reference [6]. Nevertheless, QoS degradation is still
observed resulting from small cumulative deviations in the

basic computation unit [7]. The impact is expected to be more
dominant for less robust tasks, such as ECG classification [8].

Fig. 1. Simplified overview of SNN design concepts ranging from training to
circuit implementations in state-of-the-art. Complexity in all abstraction levels
differ greatly dependent on application target and bio-plausibility.

From the perspective of neuromorphic accelerators [9],
which support such SNNs, the spectrum of ASIC implementa-
tions and design concepts is huge (see Fig. 1). Even the subset,
which implements ECG classification, incorporates a wide
range of design architectures, i.e. large-scale multi-core [10],
[11], mixed-signal single-core [12], [13] and digital single-
core solutions [14], [15]. Mostly, SNN classifiers are designed
using a bottom-up approach presuming a fixed processing
unit behaviour, i.e. IF neurons with optional terms for further
biological detail [12]–[15], or reutilizing existing accelerators
[10], [11].

In contrast, this work approaches the problem of continuous
time-series classification using a top-down design principle
[16]. First, application constraints are specified to determine
upper limits for time-to-solution or throughput. Based on
given constraints, we develop a temporal coding scheme for
lossless ANN-SNN conversion. Contrary to previous works,
the basic processing element (PE) of the SNN is adapted
in order to guarantee numerical equivalence with ANNs. In
addition to identical SNN QoS, we also show that our proposed
temporal coding scheme reduces the number of operations
compared to equivalent fixed-point arithmetic for certain reso-
lutions. As a proof-of-concept, multiple hardware designs with
identical IO functionality are implemented, whereas the PE
and corresponding control logic is interexchanged to quantify
component-level impact on system-level performance.

The main contributions are summarized as follows:
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• Lossless ANN-SNN mapping method for temporal en-
coding of a fixed-point quantized reference (Section II-C)

• Corresponding neuron model implemented in a dedicated
PE for SNN inference (Section III-C)

• System-level evaluation of SNN accelerator performance
compared to an equivalent ANN accelerator implemented
in a 22 nm FDSOI technology node (Section IV-A)

II. SNN CLASSIFIER

This section presents the systematic top-down approach for
SNN design. Taking continuous ECG classification as an ex-
ample, the general principles of the proposed methodology are
introduced. Note that the baseline ANN, conversion scheme,
and corresponding neuron model are transferable to other time-
continuous signals without loss of generality.

A. Application Background

In the light of increasing model complexity, we chose a
scalable ANN [17], which can process both the de-facto ECG
benchmark (MIT-BIH dataset [2]) in hardware domain and a
real-world AF classification scenario such as CinC’17 [3]. It
comprises discrete wavelet transform (DWT) pre-processing
(db2-wavelets) of depth 4, where only low rate coefficients
are used for the ANN input. This relates to four subsequent
stages of low-pass filters and subsampling components of
factor 2, while the last stage contains an additional high-pass
filter. The subsequent ANN is composed of 4 blocks with
convolution of kernel size 5 and pooling of stride 3 followed
by a final fully connected (FC) layer with kernel size 11.
Training utilizes batch normalization (BN) layers adjacent to
convolution layers. Before conversion, these are integrated into
the weights of the convolutional operators by linear scaling
[18].

TABLE I
SUMMARY OF BASELINE ANN

Layer L1 L2 L3 L4 FC
Kernel 5 5 5 5 11

Output Channel 10 13 20 63 4
Subsampl. Factor 3 3 3 3 -

Table I summarizes the baseline ANN architecture. It
achieves a competitive F1 score of 79 % (5-fold crossvalida-
tion) in the CinC’17 benchmark similar to [17]. To validate
ANN scalability and applicability in MIT-BIH, we trained
its reduced version (L1 + FC only) on the corresponding
benchmark discriminating abnormal from normal heart beats.
Without hyperparameter tuning the reduced model achieves
∼94 % accuracy after 60 epochs using <2 % of its original’s
operations. In the following, however, we apply the proposed
conversion method on the larger architecture to showcase its
applicability in deeper ANN models.

Considering the application context of continuous classi-
fication, data is provided in a streaming fashion. Therefore,
the ANN needs to process one input sample and resulting
intermediate activations before the next sample arrives. Due
to preceding DWT, the data rate from initially 300 Hz (ECG

sampling rate in [3]) is reduced 4 times by 2× to 18.75 Hz.
Hence, T = 53.3 ms are available for the processing of each
input sample. Subsampling in the ANN itself, i.e. resulting
from pooling, creates sparser computations in deeper layers.
This means that L1 is computed for each input, L2 is com-
puted for every third, etc. A prediction is generated after the
computation of the FC layer. Hence, the design’s critical path
τcrit =

∑
i τi is determined by the computation of all layers.

Here, τi denotes the time to compute layer i.

B. Conversion Preparation

Weights and biases are normalized according to [18]. Due
to model sensitivity for ECG [8], we use the max-norm to
capture the full range of activations. Contrary to [18], ANN
input samples after DWT contain negative values. Therefore,
the scaling parameters in the first layer are modified1 such that
the additional offset of the number range is compensated.
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Fig. 2. Impact of normalization and fixed-point quantization on ANN
reference. Network modifications are applied consecutively from left to right,
while n = 12 bits are used for quantization.

An ablation study is performed to evaluate ANN QoS
before mapping. Fig. 2 shows that the integration of BN as
well as normalization of activations have no impact on QoS,
while post-training quantization with n = 12 results in a minor
degradation of less than 1 %. Here, n is chosen the same as
in [17].

C. Coding Scheme

Fig. 3 shows a simplified overview of neuron models.
Conventional ANN neurons calculate the dot-product of input
vector x and weight vector w followed by an activation
function. On the other hand, IF neurons integrate weighted
input spikes in an internal state, i.e. the membrane voltage
u. A spike is generated, once u exceeds a threshold θ. In
sparse temporal coding methods such as time-to-first-spike
(TTFS) the timing information of the first spike represents
the neuron’s activation [7]. In consequence, all further input
spikes are inhibited through a refractory period to guarantee
single spikes, but also resulting in a loss in input information.

In our approach, we omit the threshold-based nature of spike
generation and split spike integration (decoding) and spike
generation (encoding) into separate phases (similar to [19]).
In the encoding phase, the vector of quantized activations x̂ is

1Linear transformation from arbitrary range [cmin, cmax] ⊂ R to [0, 1]

 



Fig. 3. Conceptual sketch of neuron models used in ANNs (left), proposed model (middle) and IF model (right).

linearly encoded into spike latencies t̂ with t̂ = 1− x̂, where
1 is a vector of ones. The inverse linear property in addition
to the discrete number representation of x̂ is crucial for the
decoding phase. Note that elements in x̂ are representable
purely by fractional bits, whereas t̂ is the inversion of x̂.

Considering one output neuron with 0 ≤ t < 1, the mem-
brane potential is modeled, such that

uli(t) =

∫ t

τ1=0

∫ τ1

τ2=0

∑
j

wlij,inc(τ2) dτ2 dτ1, (1)

where

wlij,inc(τ) =

{
wlij τ = tlj
0 otherwise

. (2)

Here, wlij,inc(τ) denotes the weighted spikes in layer l and
output neuron i induced by input neuron j. Eq. (1) and (2) are
limited to one decoding phase only, after which the neuron is
reset for a following iteration. Hereby, the membrane potential
is a piecewise-linear function over time analogous to [7], with
the exception of linear encoded inputs. The value at the end
of the normalized computation time is corresponding to the
convolved value with activation

al+1
i = max(uli(t = 1) + b, 0) (3)

after added bias and rectified linear unit (ReLU).
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Fig. 4. Minimal example for proposed encoding scheme.

In principle, Eq. (1) and (2) can be interpreted as a decom-
posed dot-product over time. When the time step is chosen,
such that it matches the resolution of a fixed-point number
representation, it produces equivalent numerical values. The

activations are fully representable by an integer value in the
set D ∈ [0, 2n − 1] ⊂ N0 scaled by the constant factor 2−n.
The scaling of the temporal axis after conversion into spike
latencies is a power of 2, which skews the result of the
membrane voltage in comparison to a dot-product. These are
compensated with constant shift operations after integration
without hardware overhead.

We exemplify proposed encoding scheme in a minimal
example for an activation word size of n = 3 and dot-product
of x̂ = 2−3 · [6, 4, 3, 1]T and weights ŵ = [1, 2,−4, 1]T (see
Fig. 4). The corresponding spike latencies t̂ = 2−3 ·[2, 4, 5, 7]T

are weighted and integrated twice. The first integration results
in a sum of weighted step functions representing the derivative
∆w of the membrane voltage u. The second integration results
in the actual value of u, whereas u(t = 1) = x̂ · ŵ = 2−3 · 3.
Note that this example assumes integer weights. Similar to the
activations, arbitrary positions of the radix point are considered
with a normalization factor implemented as constant shifts.

III. SYSTEM ARCHITECTURE

This section performs a high-level analysis of system per-
formance, similar to previous ANN-SNN mapping literature
[7], [18], [19]. However, we additionally aim to compare the
impact of the conversion scheme on dedicated logic imple-
mentations. Therefore, comparable ANN and SNN designs are
implemented in a standard-cell based flow. A generic acceler-
ator framework is designed to incorporate both conventional
multiply-and-accumulate (MAC) based PEs and a novel SNN-
based PE from neuron model in Section II-C.

A. Number of Operations vs. Precision

To investigate the impact of proposed SNN PE on performed
operations, we compare the expected additions for one convo-
lution operation. As mentioned earlier, the resolution of ANN
quantization defines the size of the time step. Considering
a word size n for all activations x̂ after quantization, the
number of additions performed in a dot-product in fixed-
point arithmetic is investigated. Here, a 1D-convolution with
kernel size k and C input channels plus a bias term, i.e.
âl+1

norm =
∑k−1
κ=0

∑C−1
c=0 â

l
norm,κc · wκc + b, results in

NADD,ref = n · k · C + 1 (4)
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Fig. 5. Concept of proposed system-level architecture (left) and block diagram of a PE unit (right). The accelerator performs the convolution using the
time-encoding scheme, while pooling operations and activation memory are calculated using fixed-point arithmetic.

additions. In case of our proposed coding scheme a spike
triggers an update of ∆w, while each time step accumulates
∆w in u for 2n cycles.

NADD,proposed = 2n + k · C + 1 (5)

Fig. 6 visualizes the trade-off between both calculation
methods. Due to the exponential relation, proposed time-
encoding method needs less additions for n ∈ [2, 14] with
declining benefit for fewer input channels. Since chosen
reference network is quantized to n = 12 bits and chan-
nel size is C ∈ [2, 63], slightly less additions are expected
for the reference. As the initial estimation only considers
computational complexity, dedicated inference circuits might
scale differently based on the mapping approach. Therefore,
experimental results are necessary to evaluate the efficiency of
circuits proposed in the Section III-C.
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conventional and proposed method for kernel size k = 5.

B. SNN QoS-Latency Trade-off

We have established in Section II-A that a fixed time
period T = 53.3 ms > τcrit is a real-time constraint on the
SNN execution latency. Since the SNN’s temporal resolution
is directly dependent on the precision of the reference, a trade-
off between QoS and latency is observed (see Fig. 7).

The Pareto-optimal front shows that the latency increases
exponentially, while QoS converges to an optimum. Since
layers are executed in sequence, the critical path results
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Fig. 7. Pareto-optimal front for number of cycles per layer and SNN QoS at
temporal resolutions n ∈ [8, 16] ⊂ N0.

in τcrit ≈ 2n · L/fsys. Our proof-of-concept requires approx.
20k cycles for computation (L = 5 layers and n = 12).
In the optimal case, the system frequency fsys is chosen,
such that T = τcrit. This results in a minimum frequency
fsys,min ≈ 384 kHz.

C. PE and Accelerator Design

Fig. 5 shows the overall accelerator design. Analogous to
[17], the computations are mapped fully flat into synchronous
digital logic. However, the general system architecture needs
to be modified to incorporate multiple PE variants, while still
providing the full functionality of the reference ANN classifier
(see Section II-B).

First, activations are buffered in serial-in parallel-out (SIPO)
registers for the calculations in the PEs. Then, after the PE
is finished with its computation, the samples are inserted
into a separate pooling unit. Since input samples are inserted
sequentially, the pooling unit outputs only once every third
input (see subsampling factor in Table I).

The three different PE variants are implemented for com-
parison, which provide identical IO functionality:

• ANN Ref: MAC-based ANN reference
• SNN Base: Proposed time-encoded SNN
• SNN LS: SNN Base with “late-start” (LS) logic

While the reference design implements conventional MAC
units, the logic for the base SNN variant is shown in Fig. 5 on

 



the right. First, the PE requires a binary input from the SIPO
registers. This is realized by a comparison between the register
value and a decrementing (due to inversion of x̂) counter
resulting in step functions. Then, those are weighted by
multiplexing between 0 and their corresponding weight using
the input signal as select signals. The results are accumulated
spatially to generate the increment for the membrane voltage
∆w, which is then integrated over time with a sequential
adder. In the final cycle, the bias is added and the activation
function is applied for insertion into pooling or buffer units
of the next layer. Note that the only sequential element in the
PE, i.e. accumulation register of u, is clock-gated, such that
accumulation is only performed while a counter encodes the
activations of its layer in a period of 2n cycles.
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Fig. 8. Statistics of SNN activations after normalization and conversion to the
temporal domain. A subset of 86 ECG samples is chosen for quick assessment,
while the resulting distribution is similar towards several disjunct sets.

Fig. 8 shows the distribution of activations after normaliza-
tion and encoding in the temporal domain. It is visible that
early spikes are rare, which results in long idle periods at the
beginning of the calculation period. Especially, in synchronous
designs idle clock pin toggling results in significant overhead.
The LS logic exploits that the majority of spikes are generated
in later cycles. The goal is to enable the accumulation after the
first spike changes the increment ∆w to a non-zero value, thus,
inducing a non-zero membrane voltage u. This is achieved by
combining the ORed input with the global enable signal for
input into the integrated clock-gating (ICG) cell.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed design is implemented in a 22 nm FDSOI
CMOS technology node and a standard digital design flow
with industry-standard EDA tools is used for synthesis and
simulation. PVT corners are provided as analysis corners to
account for variation, whereas post-synthesis simulations and
power estimations are performed under nominal conditions
(TT process corner, @0.8V, at room temperature). The designs
are operated at fsys = 1 MHz satisfying minimum frequency
requirement established in Section III-B, while maintaining
enough slack to incorporate further cycles for logic-level
debugging and analysis purposes.

The designs are tested under real-time conditions, i.e. ECG
sequences @300 Hz are streamed into the DUT for 60 s. Traces
are captured during worst case conditions, i.e. in the period
from the input sample inducing computations in all layers until
the result of the prediction is computed.

A. Comparison to the ANN Accelerator Baseline

As shown in Fig. 9a, the power consumption is reduced by
46 % for the base implementation of proposed SNN accelerator
and even 57 % for the late-start version compared to the ANN
reference. This corresponds to a total system power reduction
of up to 2.32×. The reduction can be reasoned by the reduction
of addition operations and corresponding adder logic (see
Section III-A). Especially in layers with a high number of
elements in the convolution operations, e.g. FC layer, the effect
is most prominent. A component breakdown reveals, that up
to 95.3 % of total power is consumed by the PE, whereas
major reductions are achieved by reducing the carry-save adder
(CSA) logic in the module (see Fig. 9b). This further supports
the findings from the high-level analysis.
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Fig. 9. Power breakdown of HW accelerators for ANN reference, SNN base
implementation and SNN with late-start logic.

However, control logic consumes more power in the SNN
designs (ANN ref: 0.66 %, SNN base: 3.23 %, SNN LS:
5.91 %), due to the additional counter logic for temporal en-
coding. However, compared to the PE units they are negligible.

Due to sequential accumulation, register activity is high
even when ∆w is zero given toggling of the clock pin.
Although this results in an increase of register power (2.73×),
the LS logic reduces this by 4.98× resulting in an overall PE
power reduction of 3.24× compared to the ANN PEs.

TABLE II
CELL AREA OF IMPLEMENTED LOGIC DESIGNS

ANN ref SNN base SNN LS
Area (µm2) 843.2k 73.4k 116.8k

Table II summarizes the cell area of synthesized designs.
SNN implementations occupy less, i.e. 11.49× for SNN base
and 7.22× for SNN LS, when mapped fully flat into logic.

B. State-of-the-Art Discussion

As mentioned in Section I, this work approaches SNN
acceleration from a radically different perspective than state-
of-the-art. The direct comparison proves especially difficult, if
the application context and classifier architecture deviates too
much. Many works evaluate SNN inference efficiency without
hardware implementations [7], [18], [19] or extrapolate energy
consumption from spike events, thereby neglecting system
periphery [12]. Further, we focus on neuromorphic designs

 



implementing ECG processing, which report system power as
an optimization metric for our target application.

This work reimplements the architecture from [17] with
a generic control architecture for better comparability of
proposed PE implementation with its MAC-based reference.
Furthermore, worst case power is compared at maximal load.
Unfortunately, previous work only reports average power
under power gating assumptions.

Other works design classifiers for an existing neuromorphic
system, e.g. DYNAP-SE [10] or Loihi [11], or reconfigurable
FPGA architectures [15]. Typically, they consume multiple
orders of magnitude more power (>500 µW) than the pro-
posed system, due to system flexibility and scalability through
sophisticated communication fabrics. Other works achieve
remarkable power records (<1 µW) through level-crossing
analog-to-digital converters [14] and/or compute-in-memory
(CIM) integration plus mixed-signal design [13]. Hereby, the
SNN architecture and its training technique is optimized, such
that good benchmark performance is achievable with minimal
number of computations. Our applied top-down approach
mainly intends to preserve full QoS of its reference. Therefore,
performance gains in terms of power are relative to the ANN
reference, while QoS can be optimized with quantization
related methods [20]. Naturally, same device-level techniques
are applicable for proposed architecture. Especially spike
generation benefit from CIM structures with e.g. standard-cell
based memory [21], due to its highly regular structure and thin
computation near the activation memory.

Looking generally at digital neuromorphic circuits, which
employ ANN-SNN mapped classifiers, temporal coding is
rarely supported (exception: e.g. [22]). Instead, rate coding
is more prominent, e.g. [22], [23], due to native support
of IF neuron variants for such classifiers. However, recent
works question the efficiency of corresponding digital imple-
mentations compared to conventional ANNs [24]. Our direct
comparison shows that sparse temporal coding does enable
more efficient neural computation than an ANN equivalent.

V. CONCLUSION

This work introduces a novel lossless ANN-SNN mapping
method, which encodes an ANN reference with spike laten-
cies. In a top-down approach a neuron model is derived,
which produces numerically equivalent values compared to
fixed-point ANN neurons. A system-level comparison reveals
that the temporal decomposition of performed dot-product
results in complexity reductions for a range of activation
word lengths. These complexity reductions are seen in power
estimations of hardware implementations with identical IO,
which can classify ECG in real-time. Experimental results
from a 22 nm FDSOI technology node reveal that proposed
SNN solutions achieve power reductions of 2.32× and area
reductions of 7.22× compared to its ANN reference.

REFERENCES

[1] P. Kirchhof et al., “2016 ESC guidelines for the management of atrial
fibrillation developed in collaboration with EACTS,” European Heart
Journal, vol. 37, no. 38, pp. 2893–2962, Aug. 2016.

[2] G. Moody and R. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.

[3] G. Clifford et al., “AF classification from a short single lead ECG
recording: the physionet computing in cardiology challenge 2017,” in
2017 Computing in Cardiology Conference (CinC). Computing in
Cardiology, Sep. 2017.

[4] D. Auge et al., “A survey of encoding techniques for signal processing
in spiking neural networks,” Neural Processing Letters, vol. 53, no. 6,
pp. 4693–4710, Jul. 2021.

[5] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Oppor-
tunities and challenges,” Frontiers in Neuroscience, vol. 12, Oct. 2018.

[6] A. Tavanaei et al., “Deep learning in spiking neural networks,” Neural
Networks, vol. 111, pp. 47–63, Mar. 2019.

[7] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2018, pp. 1–5.

[8] J. Venton et al., “Robustness of convolutional neural networks to phys-
iological electrocardiogram noise,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
379, no. 2212, Oct. 2021.

[9] A. Basu et al., “Spiking neural network integrated circuits: A review of
trends and future directions,” in 2022 IEEE Custom Integrated Circuits
Conference (CICC). IEEE, Apr. 2022.

[10] F. C. Bauer, D. R. Muir, and G. Indiveri, “Real-time ultra-low power
ECG anomaly detection using an event-driven neuromorphic processor,”
IEEE Trans. on Biomed. Circ. and Syst., vol. 13, no. 6, pp. 1575–1582,
Dec. 2019.

[11] K. Buettner and A. D. George, “Heartbeat classification with spiking
neural networks on the loihi neuromorphic processor,” in IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI). IEEE, Jul. 2021.

[12] A. Amirshahi and M. Hashemi, “ECG classification algorithm based on
STDP and r-STDP neural networks for real-time monitoring on ultra
low-power personal wearable devices,” IEEE Trans. on Biomed. Circ.
and Syst., vol. 13, no. 6, pp. 1483–1493, Dec. 2019.

[13] Y. Liu et al., “An 82nw 0.53pj/SOP clock-free spiking neural network
with 40µs latency for AloT wake-up functions using ultimate-event-
driven bionic architecture and computing-in-memory technique,” in
IEEE Int. Solid- State Circ. Conf. (ISSCC). IEEE, Feb. 2022.

[14] H. Chu et al., “A neuromorphic processing system with spike-driven
SNN processor for wearable ECG classification,” IEEE Trans. on
Biomed. Circ. and Syst., pp. 1–12, 2022.

[15] Y. Xing et al., “Accurate ECG classification based on spiking neural
network and attentional mechanism for real-time implementation on
personal portable devices,” Electronics, Jun. 2022.

[16] C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up and top-down neural
processing systems design: Neuromorphic intelligence as the conver-
gence of natural and artificial intelligence,” arXiv preprint, Jun. 2021.

[17] J. Loh, J. Wen, and T. Gemmeke, “Low-cost DNN hardware accelerator
for wearable, high-quality cardiac arrythmia detection,” in 2020 IEEE
31st International Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), Jul. 2020.

[18] B. Rueckauer et al., “Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification,” Frontiers in
Neuroscience, vol. 11, Dec. 2017.

[19] S. Park et al., “T2FSNN: Deep spiking neural networks with time-to-
first-spike coding,” in Proc. Design Automation Conf., ser. DAC ’20,
no. 25. IEEE Press, 2020, pp. 1–6.

[20] A. Gholami et al., “A survey of quantization methods for efficient neural
network inference,” in Low-Power Computer Vision. Chapman and
Hall/CRC, Jan. 2022, pp. 291–326.

[21] X. Fan et al., “Synthesizable memory arrays based on logic gates for
subthreshold operation in IoT,” IEEE Trans. on Circ. and Syst. I, vol. 66,
no. 3, pp. 941–954, Mar. 2019.

[22] J. Stuijt et al., “µBrain: An event-driven and fully synthesizable archi-
tecture for spiking neural networks,” Frontiers in Neuroscience, vol. 15,
May 2021.

[23] D. Wang et al., “Always-on, sub-300-nW, event-driven spiking neural
network based on spike-driven clock-generation and clock- and power-
gating for an ultra-low-power intelligent device,” in 2020 IEEE Asian
Solid-State Circuits Conference (A-SSCC). IEEE, Nov. 2020.

[24] S. Davidson and S. B. Furber, “Comparison of artificial and spiking
neural networks on digital hardware,” Frontiers in Neuroscience, vol. 15,
Apr. 2021.

 


	Select a link below
	Return to Previous View
	Return to Main Menu


