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Abstract—In this paper, we propose a multi-dimensional prun-
ing framework, EMNAPE, to jointly prune the three dimensions
(depth, width, and resolution) of convolutional neural networks
(CNNs) for better execution efficiency on embedded hardware.
In EMNAPE, we introduce a two-stage evaluation strategy to
evaluate the importance of each pruning unit and identify the
computational redundancy in the three dimensions. Based on
the evaluation strategy, we further present a heuristic prun-
ing algorithm to progressively prune redundant units from the
three dimensions for better accuracy and efficiency. Experiments
demonstrate the superiority of EMNAPE over existing methods.

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved
promising accuracy in various vision applications, such as
image classification [1] and object detection [2]. However,
better accuracy comes at the cost of higher computational
complexity, which impedes the deployment of advanced CNNs
onto resource-constrained embedded devices. To facilitate the
deployment of CNNs onto embedded devices and advance the
development of EdgeAI, model pruning has aroused widespread
attention in reducing the computational redundancy in the three
dimensions (depth, width, and resolution) of CNNs [3]–[5].
Nevertheless, existing pruning approaches mainly focus on
reducing the redundancy in a single dimension, which ignores
the redundancy in the other dimensions and thus only achieves
very limited improvements in model efficiency.

To pursue higher execution efficiency without sacrificing
accuracy, in this paper, we propose a multi-dimensional pruning
framework, EMNAPE, to coordinately prune the three dimen-
sions of CNNs. The main insights of the proposed pruning
framework are a two-stage importance evaluation strategy
and a heuristic pruning algorithm. Specifically, the two-stage
evaluation strategy will conduct both inner-dimensional and
inter-dimensional evaluation to determine the importance of
each unit in terms of model computation (Multiply-Accumulate
Operations, MACs), accuracy, and inference latency, according
to which we are able to comprehensively identify redundant
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Fig. 1: The overview of EMNAPE. In inner-dimensional eval-
uation, the deeper the color, the more important the unit.

units in the three dimensions. Based on the proposed evaluation
strategy, our heuristic pruning algorithm will progressively
remove less sensitive units and obtain the optimal tiny model.
By this means, we can comprehensively reduce the computa-
tional redundancy in all three dimensions of CNNs, thereby
achieving higher execution efficiency on embedded devices
without compromising accuracy.

II. MULTI-DIMENSIONAL PRUNING

The architecture of the proposed framework is demonstrated
in Fig. 1. Given an overparameterized CNN model, we first
separately evaluate and compare the importance of each pruning
unit within each dimension. Inspired by single-dimensional
pruning [6], in this stage, we utilize the gradient of each unit
as the importance metric, which can be represented as follows:

Iin =

(
∂L

∂u

)2

(1)

where u denotes the pruning unit, L is the prediction loss,
and Iin is the importance score of u within the correspond-
ing dimension. According to Equation 1, we can efficiently
evaluate the importance of units within each dimension and
identify the most redundant unit of each dimension. To make
the final pruning decision, we need to further compare the
selected redundant unit of each dimension. However, the inner-
dimensional importance metric only considers the impact of
units on accuracy, which is unable to compare units of different
dimensions since pruning units of different dimensions will
lead to diverse impacts on model computation, accuracy, and
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TABLE I: Comparison with SOTA pruning approaches on
ImageNet. The baseline network is ResNet50. {d, w, r} indicate
the pruned dimensions in different methods.

Method d w r MACs (B) Acc@1 (%) Acc@5 (%)

ResNet50 [7] 4.10 76.80 93.38

DECORE-4 [8] ✓ 1.19 69.71 89.37
GAL-1 [9] ✓ ✓ 1.58 69.82 89.75
Bilinear [10] ✓ 1.10 69.97 89.19
HAP [11] ✓ 1.34 71.18 -
Taylor [6] ✓ 1.34 71.69 -
HRank [3] ✓ 1.55 71.98 91.09
DBP-0.5 [4] ✓ 2.05 72.44 -
EMNAPE-S (ours) ✓ ✓ ✓ 1.05 73.07 91.18

GAL-0.5 [9] ✓ ✓ 2.33 71.95 90.94
Bilinear [10] ✓ 2.53 73.40 91.30
RANet [12] ✓ 2.30 74.00 -
Taylor [6] ✓ 2.25 74.50 -
DBP-0.4 [4] ✓ 2.56 74.74 -
HRank [3] ✓ 2.30 74.98 92.33
DR-ResNet50 [5] ✓ 2.30 75.30 92.20
EMNAPE-M (ours) ✓ ✓ ✓ 2.24 75.68 92.79

SSS-32 [13] ✓ ✓ 2.82 74.18 91.91
Bilinear [10] ✓ 3.00 74.30 91.90
HAP [11] ✓ 2.71 75.12 -
Taylor [6] ✓ 2.66 75.48 -
PFP-A [14] ✓ 3.70 75.90 92.80
DECORE-8 [8] ✓ 3.54 76.31 93.02
EMNAPE-L (ours) ✓ ✓ ✓ 2.87 76.34 93.20

on-device inference latency. To address this problem, in the
subsequent stage, we design a novel importance metric to
further compare units of different dimensions according to
their impacts on model computation, accuracy, and inference
latency. The proposed importance metric for inter-dimensional
evaluation is formulated as follows:

Iout =
∆A(u)

α∆M(u) + (1− α)∆T (u)
(2)

where Iout represents the inter-dimensional importance score
of u. ∆A, ∆M , and ∆T denote the changes in accuracy,
model computation, and inference latency caused by pruning
u, respectively. α ∈ [0, 1] is a hyperparameter to control the
contribution of ∆M and ∆T , which is empirically set to 0.5
in this paper. Although collecting ∆A, ∆M , and ∆T requires
considerable training and deployment costs, we only perform
the inter-dimensional evaluation on the most redundant unit of
each dimension, and thus the cost of inter-dimensional evalu-
ation is mitigated significantly. With the two-stage evaluation
pipeline, we can efficiently and comprehensively identify the
redundancy in the three dimensions. Finally, we present a
heuristic pruning algorithm to progressively prune the three
dimensions of CNNs. In each pruning iteration, we will utilize
the proposed two-stage evaluation strategy to identify the most
redundant unit from the three dimensions, and then the unit will
be safely pruned. At the end of each pruning iteration, we will
fine-tune the model for 1 epoch to more accurately estimate
the importance of each unit for the next pruning iteration.

III. EXPERIMENTS

We evaluate our approach on ImageNet and summarize the
results in TABLE I, which demonstrates that our approach
outperforms other competitors across a wide spectrum of
model computation. Specifically, in the low compute regime,

Fig. 2: Comparison of inference latency on Nano and TX2.

EMNAPE-S observes 3.36% higher top-1 accuracy with about
12% fewer MACs than DECORE-4 [8]. In the highest MACs
regime, EMNAPE-L surpasses SSS-32 [13] with 2.16% higher
top-1 accuracy. In addition, we also evaluate the run-time
latency of models obtained from different pruning frameworks
on two popular edge platforms: 1) Jetson Nano and 2) Jetson
TX2. The experimental results are shown in Fig. 2, which
reveals that our approach achieves the best on-device efficiency
on both platforms. Specifically, our method achieves 3.7%
higher accuracy than HRank [3] with similar latency on Jetson
TX2. On Jetson Nano, our method also observes 1.12% higher
accuracy than GAL [9] with only 50% latency budget.

IV. CONCLUSION

In this paper, we present a multi-dimensional pruning frame-
work, EMNAPE, to prune CNNs for higher inference efficiency
on embedded devices. With our two-stage evaluation strategy,
we effectively identify the computational redundancy in the
three dimensions. Subsequently, our heuristic pruning algorithm
efficiently compress CNN models towards better trade-offs be-
tween accuracy and efficiency. Extensive experiments validate
the superiority of EMNAPE over existing pruning approaches.
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