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Abstract—Heterogeneities have emerged as a critical challenge
in Federated Learning (FL). In this paper, we identify the cause of
FL performance degradation due to heterogeneous issues: the local
communicated parameters have feature mismatches and feature
representation range mismatches, resulting in ineffective global
model generalization. To address it, Heterogeneous mitigating FL
is proposed to improve the generalization of the global model with
resource-independence aggregation. Instead of linking local model
contributions to its occupied resources, we look for contributing
parameters directly in each node’s training results.

I. INTRODUCTION

Federated learning (FL) [1] can effectively use distributed
edge computing resources to train machine learning models.
When using FL to practice, the need for generalization of the
global model makes heterogeneities of edge devices urgent and
distinct challenges. Previous methods for dealing with hetero-
geneities typically began with a resource-aware perspective.
The disadvantages stem from that the global model may be
overfitted to the devices with more resources. The optimization
space expands dramatically when confronted with multiple
heterogeneous issues at once. In addition, heterogeneities not
only coexist but also collaborate to influence FL.

To address the challenges posed by resource-aware meth-
ods, we propose a resource-independence FL framework that
does not compensate for the differences with considering het-
erogeneous resources. Heterogeneities between local devices
bring feature mismatches and feature representation range mis-
matches. These mismatches impede the global model’s general-
ization. Therefore, our method dynamically seeks contribution
information directly from the different local training results to
assist the global model in reducing mismatches in features and
feature representation ranges between communicated parame-
ters and obtaining more general features that will allow it to
generalize to different devices.

II. THE SCHEME OF FEATURE REPRESENTATION
DISTINGUISHING

To reduce feature mismatches and feature representation
ranges mismatches between communicated parameters, we de-
sign a scheme to distinguish feature representations in different
models in a federated manner.

In order to realize the federated evaluation scheme and
toward the generalization of the global model, we choose the
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Fig. 1. GM’s determination at each round of the training process.

general information in the global model as the evaluation crite-
rion. To obtain such general information, we utilize Geometric
Median (GM) [2]. The GM, argmin

y∈Rn

∑m
i=1 ‖xi − y‖2, is an

estimate of the Euclidean space point center. Point y is where
the sum of all Euclidean distances to the xi is minimum.

Following that, we apply the GM to the neural network. The
filter is the basic structure for feature representation in neural
networks which can also be viewed as points in Euclidean
space. Thus, by computing the GM, the ’center’ of these filters
can be regarded as their common feature in a specific layer:

FGMi ∈ argmin
x∈RNi×K×K

∑
j∈[1,Ni+1]

‖x−Fi,j‖2 , (1)

where FGM
i is the GM of the ith layer, Ni and Ni+1 are the

number of input and output channels in the ith layer, K is the
kernel size, Fi,j is the jth filter in the ith layer.

After the GM for each layer in the global model is deter-
mined, the distance between each filter and the GM can be used
to determine their feature representations:

ski,j =
∥∥∥Fki,j −FGMi ∥∥∥

2
, (2)

where ski,j denotes the similarity between GM and the jth filter
in the ith layer of the kth device. Such similarity can be viewed
as the feature representation. If a filter is close to this GM, it
is assumed that the features extracted by that filter are more
similar to the common feature of the global model.

III. GENERALIZATION-ORIENTED DYNAMIC SELECTION OF
CONTRIBUTING PARAMETERS

We propose a method for generalization-oriented parameter
selection and aggregation in this section. First, we assess the
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communication costs. Each device’s data transmission time is
denoted as follows:

tuk =
Uk
Ck

, Ck = Bk log2

(
1 +

Tk |hk|2

σ2
k

)
, (3)

where Uk is the upload data size of the local device k, and
Ck is the transmission rate from the local device k to the
server S. The transmit power is Tk, and the variance of the
Additive Gaussian White Noise (AWGN) at the receiver is σ2

k.
The channel parameter is hk experiences Rayleigh flat fading
with the average channel gain of εk, and the communication
bandwidth of the local device k is Bk.

Due to the service quality requirement of edge computing, a
latency threshold γth should be set. The device k, in particular,
selects some of the filters Fk, allowing it to complete the
corresponding parameter upload with a latency less than the
latency threshold γth, i.e., tuk(Fk) ≤ γth.

After that, the filters with different feature representations
should be selected with greater fairness to ensure the general-
ization of the global model. As a result, before selecting filters,
we cluster them in each layer based on their distance from
the GM. Clustering filters can ensure that filters with different
features have the opportunity to be selected. Filters will be
divided into groups using a distance threshold τ , and filters in
the same group have more similar feature representations. We
select the same ratio of filters across different groups for further
filter selection.

Furthermore, with the communication latency constraint, we
can construct the optimization problem to trade-off upload data
size and parameter contribution, resulting in improved global
model performance. For each device k:

minLoss(Fk, θ) + S(Fk), s.t. tuk(Fk) ≤ γth, (4)

where loss function maintains the model performance, Fk is the
filter candidate set of device k with parameter θ, S is a sparse
term to implement the filter selection according to GM, tuk(Fk)
is the communication time of the corresponding parameters.
The Alternating Direction Method of Multipliers (ADMM) is
used to solve the optimization problem. With it, the objective
function can be decomposed into easily solved sub-problems.

IV. EXPERIMENTS AND RESULTS

The VGG-16 and ResNet-18 are chosen as the global model
for training on the CIFAR-10 and CIFAR-100 datasets. We
follow [3] to generate the Non-IID dataset. We construct an
FL with ten devices chosen at random from the Raspberry Pi
4B, 3B+, and 3B. The training time per epoch on the Raspberry
Pi 4B is set as the system requirement. We set the local epoch
E = 1 in experiments. The communication bandwidth of each
device will be assigned at random between 5 and 10 MHz.
The device’s transmit power is set to 0.5W, and σ is 104

cycle/sample. The average channel gain of the kth device to
the server is set to εk = (k+50)/200 when Rayleigh flat fading
is present. γth = 5s is the valid communication time. FedAvg
[3], FedFA [4], FedFV [5], and FMore [6] are the baselines.

As shown in the Table I, our method has the highest
accuracy. The parameters are scaled and aggregated based on

TABLE I
THE COMPARISON OF ACCURACY (%) WITH SOTA METHODS UNDER

DIFFERENT EXPERIMENTAL SETTINGS.

Dataset Method #2 #4 IID

CIFAR-10

FedAvg 43.82 49.76 79.06
FedFA 45.36 54.85 82.44
FedFV |τ=1 45.81 53.15 81.68
FedFV |τ=3 46.22 54.32 82.57
FedFV |τ=10 47.92 56.64 83.99
FMore |K=5 43.48 52.25 84.37
FMore |K=25 42.27 52.09 82.61
Ours 49.58 58.38 84.19

Dataset Method #20 #40 IID

CIFAR-100

FedAvg 46.52 52.39 81.46
FedFA 48.91 57.86 84.79
FedFV |τ=1 47.63 56.52 83.23
FedFV |τ=3 48.54 57.29 84.97
FedFV |τ=10 49.62 58.37 85.82
FMore |K=5 47.28 53.18 86.72
FMore |K=25 46.37 52.51 84.67
Ours 54.33 60.39 86.83

the training results [5] and the amount of information in the
local data [4], which causes the global model overfitting to
some devices. The incompatibility of the global model with
the local data causes fluctuations in the following training
process and affects convergence. Furthermore, when confronted
with a highly Non-IID dataset, partial device involvement [6]
reduces the overlap between local data, which influences the
extraction of general features and the performance of the global
model. Ours identifies the adaptive representation relationships
between local models and the global model and uses this as the
basis for model aggregation with matched feature representa-
tion. Specifically, our method achieves up to 7.31% and 7.96%
accuracy improvement on both datasets.

V. CONCLUSION

In this paper, we propose an FL framework with resource-
independence aggregation to mitigate heterogeneities. Lever-
aging feature representation distinguishing scheme in a fed-
erated manner and generalization-oriented dynamic parameter
selection and aggregation method. Contributing parameters can
be selected to reduce the feature mismatches and feature
representation range mismatches between local communicated
parameters and improve the global model’s generalization.
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