
UVMMU: Hardware-Offloaded Page Migration
for Heterogeneous Computing

Jihun Park∗, Donghun Jeong†, and Jungrae Kim‡
∗†SK Hynix ‡dept. of Semiconductor Systems Engineering, Sungkyunkwan University
E-mail: ∗jihun.park1012@gmail.com, †dounghun22@g.skku.edu, ‡dale40@skku.edu

Abstract—In a heterogeneous computing system with multiple
memories, placing data near its current processing unit and
migrating data over time can significantly improve performance.
GPU vendors have introduced Unified Memory (UM) to automate
data migrations between CPU and GPU memories and sup-
port memory over-subscription. Although UM improves software
programmability, it can incur high costs due to its software-
based migration. We propose a novel architecture to offload
the migration to hardware and minimize UM overheads. Unified
Virtual Memory Management Unit (UVMMU) detects access to re-
mote memories and migrates pages without software intervention.
By replacing page faults and software handling with hardware
offloading, UVMMU can reduce the page migration latency to a
few µs. Our evaluation shows that UVMMU can achieve 1.59×
and 2.40× speed-ups over the state-of-the-art UM solutions for
no over-subscription and 150% over-subscription, respectively.

Index Terms—GPU, Unified Memory, Page Migration and Fault
I. INTRODUCTION

Heterogeneous computing combines the best among CPUs
and accelerators (e.g., GP-GPU) to achieve versatility, high
performance, and low energy consumption. Applications parti-
tion their jobs and execute on the best fitting processor, which
requires data sharing among the processors. Meanwhile, a high-
end accelerator typically has a separate memory to meet its
high data bandwidth requirement. Fetching data from the local
memory provides low latency, high bandwidth, and low energy
consumption. Therefore, it is important to migrate data to
its current processing unit for high performance and energy
efficiency in heterogeneous computing.

Conventionally, data sharing between CPU and GPU is
based on user-directed memory copies. A programmer allocates
memory regions in both memories and uses explicit commands
(e.g., cudaMemcpy()) to copy data back and forth between
the regions. However, this simple approach has several issues.
First, the programmer is responsible for the tedious and error-
prone data migration job. After the human endeavor, the copy
operation blocks a kernel execution to serialize and significantly
increases the total execution time. As GPU memory comprises
fewer DRAM chips, programmers must partition data and tasks
to fit into the limited memory capacity.

NVIDIA introduced Unified Memory (UM) to improve pro-
grammability [1]. With a single virtual address space, CPU and
GPU can share data using the same pointer. It also allows over-
subscription to GPU memories. GPU applications can use more
memory than the physical capacity of GPU memory, using the
CPU memory as backing storage.

This work was partly supported by National Research Foundation of Ko-
rea(NRF) (No. 2020R1C1C1011419, 40%) and Institute of Information &
communications Technology Planning & Evaluation(IITP) (No. 2021-0-00479,
40% / 2021-0-00863, 20%) grant funded by the Korea government(MSIT).

∗† This work was done when the authors were at Sungkyunkwan University.

Although UM improves programmability, it comes with
severe performance costs in current implementations. With UM,
the role of data migration is now delegated from programmers
to the GPU hardware and its driver. When the hardware detects
access to a remote page, it raises a fault via a PCIe interrupt
and wakes the driver on the CPU. The driver migrates the
remote page to the local memory to fix the fault, and replays
the instruction. Although it can partially overlap data migration
with computation, the software-based fault handling requires a
significant latency (20µs ∼ 50µs) and stalls GPU execution for
many cycles. As a result, executions with UM are significantly
slower than ones with user-directed copies. [2]

Industry and academia have proposed various prefetching
and eviction mechanisms to reduce UM overheads [2]–[7]. Al-
though they reduce the number of page faults, the significantly
long latency of page fault still worsens their execution time
than cudaMemcpy()-based executions.

To this end, this paper proposes a novel architecture, called
Unified Virtual Memory Management Unit (UVMMU), to min-
imize the performance costs of UM. Although prior work
utilizes hardware to detect remote page accesses and transfer
pages between memories, their software-based destination se-
lection significantly increases the overall latency.

UVMMU replaces the software handling with a dedicated
hardware IP in determining migration destinations, making
page migrations entirely hardware-based. The IP maintains
a free frame list to select a destination without software
intervention. For memory over-subscription, it selects a victim
for eviction and swaps the victim page with the accessed
page. This selection is processed entirely by hardware to have
a minimal latency, which is further hidden by background
candidate generation. As a result, UVMMU can reduce the page
migration latency to a few µs.

The main contributions of this paper are as follows:
• We investigate the impact of page fault latency in current

fault-based page migration for UM.
• We propose UVMMU, a holistic solution to offload page

migration to the hardware. UVMMU eliminates page
faults in the migration process and reduces page migration
overhead. To the best of our knowledge, UVMMU is the
first to propose hardware-only page migration handling in
heterogeneous computing systems.

• We improve the performance by 1.59× and 2.40× over
the state-of-the-art software-based scheme for no over-
subscription and 150% over-subscription, respectively.

II. BACKGROUND

This section provides background on memory synchroniza-
tion in heterogeneous computing, using NVIDIA Unified Mem-

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

ory (UM) as an example.

A. NVIDIA Unified Memory

NVIDIA introduced Unified Memory (UM) in CUDA 6.0
to improve programmability [1]. Unified memory is a single
address space accessible from any processor in a system.
With a special API, cudaMallocManaged(), applications can
allocate a managed memory region shared by CPU and GPUs.
The processors can collaborate on the same data using a
single pointer without explicit data copy. UM alleviates the
programmer’s burden of managing memory copy operations
and improves programmability.

Another strength of UM is memory over-subscription. GPUs
have limited physical memory capacity, and programmers often
have to partition their data set into the limited capacity. UM
utilizes a large virtual address space to accommodate both
CPU and GPU memories so that a programmer can allocate
beyond the GPU memory capacity using the CPU memory as
backing storage [8]. With UM, programmers are relieved from
the data management jobs and can improve their productivity.

To support UM, NVIDIA Pascal GPUs added a new field,
Aperture (A) flag, to their Page Table Entries (PTEs) [9]. A
page that resides on the local GPU memory has the A flag as
zero, whereas a page that resides on a remote memory has a
non-zero value. For remote pages, the Physical Frame Number
(PFN) in the PTE represents the PFN in the remote memory.

As a GPU core accesses a page for the first time, it results
in a TLB miss and creates a request to the GPU Memory
Management Unit (GMMU). GMMU receives the request and
walks through the page table to find the corresponding PTE. If
the PTE indicates a remote memory, the SM raises a fault and
freezes the L1 TLB. Any new translation will be stalled until
all faults are resolved to keep translations consistent during
the page table modification [10]. The CUDA driver running
on the CPU receives the page fault via a PCIe interrupt and
determines a new location in the local memory. Then Page
Migration Engine (PME) conducts the page migration. Once
the migration is complete, the driver updates the PTEs with
zero A flags (indicating local memory) and local PFNs, and
the SM replays the fault instruction.

Although UM gives programmers an illusion of a single
memory, its implementation incurs high performance costs.
Accessing a remote memory raises a fault and requires the
driver’s software-based handling with significantly large la-
tency. (20µs ∼ 45µs [2]). This long latency cannot be com-
pletely hidden by the limited thread-level parallelism inside
an SM and leads to frequent SM stalls (Section III). The
performance penalty grows even further with memory over-
subscription due to page evictions and thrashing.

B. Page Prefetching and Eviction

NVIDIA and academia have proposed various prefetching
and eviction mechanisms for UM to reduce the number of page
faults and its overheads. Ganguly et al. proposed a sequential-
local prefetcher that prefetches 64KB chunk of pages where the
faulty page resides [3]. They also discovered that the NVIDIA
driver utilizes a tree-based neighborhood prefetcher [3]. The

tree-based prefetcher partitions a 2MB memory region into
64KB basic blocks and builds a binary tree using the basic
blocks as leaf nodes. As demand accesses and prefetching
migrate leaf nodes, it prefetches non-leaf nodes with more than
50% leaf nodes are migrated. By dynamically increasing the
prefetching granularity, the tree-based prefetcher can deal with
different locality granularities.

With memory over-subscription, evicting the right page can
be important to reduce page evictions and minimize perfor-
mance degradation from page-fault handling latency. To prevent
frequently accessed pages from eviction, some utilize the LRU
(Least-Recently-Used) in their eviction policies. UVMSmart
proposed Sequential-local policy, which applies LRU at the
64KB basic block granularity. It maintains an LRU page list
and evicts the basic block which the LRU page belongs to
[3]. Furthermore, they extended the LRU policy to tree-based
neighborhood eviction. It maintains binary trees among basic
blocks within a 2MB memory region and dynamically adjusts
the eviction granularity based on the eviction history, similarly
to its tree-based prefetching. However, maintaining an LRU list
can be too expensive for a hardware implementation [2].

These prefetch and eviction policies can reduce page faults
in applications with regular memory access patterns. However,
they may worsen the performance of irregular applications.
To mitigate this problem, NVIDIA introduced zero-copy to
directly access pinned CPU memory without page migration
[11]. UVMSmart [4] proposed adaptive page migration that
detects cold pages and prevents them from migration using
zero-copies. To handle applications with dynamically changing
access patterns, UVMSmart went further step to utilize a
pattern-detection scheme to select the best policy [5].

C. Related Work

Some studies have optimized GPU-to-GPU data transfer, but
they still require software handling. Muthukrishnan et al. [12]
proposed GPS, an HW/SW global publish-subscribe model for
multi-GPU memory management. Baruah et al. [13] proposed
Griffin, a holistic hardware-software solution to migrate pages
evenly across the GPUs for load balancing.

There are trials of hardware-based migrations for non-UM
systems. Lee et al. [14] proposed hardware-based demand
paging for CPU-only systems. Jeong et al. [15] proposed on-
demand page copy to reduce host-to-device memory copy
overheads. Those works adopted hardware-based migration but
did not target UM systems.

III. MOTIVATION

Although the state-of-the-art prefetching and eviction
schemes can reduce the number of page faults and performance
overheads, executions with UM are still significantly slower
than ones with user-directed memory copies. We suspected the
worse performance is primarily due to the long latency from
software-based fault handling and performed an experiment.
We used the modified GPGPU-Sim, a cycle-level GP-GPU
simulator, from UVMSmart [16] and run its NVIDIA UM con-
figuration with different fault-handling latencies. More details
of the experiment are in Section V-A1. We gradually reduce the

!

!

0

1

2

3

100% 125% 150%

Sp
ee

du
p

ov
er

 5
0
us

 p
ag

e
fa

ul
t

la
te

nc
y

Over-subscription ratio

50 us 40 us 30 us

20 us 10 us 0 us

Fig. 1: A comparison of UM execution times with varying page-
fault handling latency

latency to zero and see how much performance improvements it
provides. Note that prior research reported the lower bound of
realistic page fault handling latency is 20µs or 45µs, depending
on the processor [2].

Figure 1 shows execution times with different page fault
handling latency. The execution times are normalized to ones
with 50µs latency under the same over-subscription ratio.
Without over-subscription, reducing the latency from 50µs to
20µs speeds up the execution by 35%. Reducing it further to
zero, which is not feasible with software, gives an additional
47% speed-up, resulting in a total speed-up of 82%. The perfor-
mance improvement is more apparent with over-subscription.
Decreasing the latency to 20µs provides 54% speed-ups for
both 125% and 150% over-subscription. Moreover, a zero
latency gives 135% and 174% speed-ups over 50µs latency
with 125% and 150% over-subscription, respectively.

The results show that faster page migration can reduce
the execution time significantly and imply that prompt page
migration using full offloading to hardware can significantly
speed up UM executions. Moreover, it implies that the speed-
ups will grow further with higher over-subscription ratios.
These insights motivated us to develop a novel hardware-based
page migration scheme called UVMMU.

IV. UVMMU

We propose a novel architecture called Unified Virtual Mem-
ory Management Unit (UVMMU) to minimize page migration
overheads of UM. UVMMU replaces the current fault-based
page migration, which has a significant latency due to the
software involvement. Instead, UVMMU utilizes a hardware
IP to migrate pages without software intervention. This section
provides an overview of how UVMMU eliminates software
intervention in page migration, followed by the details of the
software interface and the hardware micro-architecture.

Most UM implementations utilize 64KB as the migration
granularity to amortize PCI-e transfer overheads. UVMMU
follows the approach and refers to a 64KB memory chunk in
the virtual address as a page-group and a 64KB memory chunk
in the physical address as a frame-group.

A. Overview
UVMMU offloads page migration operation from software

to hardware entirely. Figure 2 presents the overall flow with
the hardware-offloaded page migration. If an SM accesses
a remote page, it results in a TLB miss and generates an
address translation request to UVMMU (1). The UVMMU

UVMMU

PTWPTWPTW

Background Operation
System
Memory

SMSMSM

GPU GPU Memory

Page Table

xxxx01
xxxx11

--0

AV PFN

Local UM
Region

Destination
Allocator

Page Migration
Engine

Remote UM Region

PCI-e

1
2

3

5

6

7

5

4 Inverted
Page-group Table

-1 0 -
xxxx0 0 0

VPgNFree CIDP

Fig. 2: The overall architecture with UVMMU and the
hardware-offloaded page migration flow.

utilizes its Page Table Walker (PTW) to find the corresponding
PTE in the GPU page table (2). If the A flag in the PTE
indicates a remote page, UVMMU initiates a hardware-only
page migration instead of returning the PTE to the SM. It first
asks an internal module, Destination Allocator (DA), to allocate
a memory frame for the migration destination (3). More
details of DA are presented in Section IV-D. Then UVMMU
requests the PME to perform a page transfer from the remote
PFN (from the PTE) to the allocated local PFN (4). If needed,
it swaps the victim page with the requested page. PME transfers
pages through the PCI-e interconnect (5). Once the transfer is
completed, UVMMU updates the PTE with the new PFN and
clears the A flag (6). Finally, UVMMU returns the updated
PTE to the requesting SM (7). From the SM’s point of view,
it is a local page with a longer-than-usual page walk time rather
than a remote page.

B. Data Structure

UVMMU requires a couple of additional tables to select a
migration destination during execution. The software configures
the tables before a kernel execution to prepare for the hardware-
based migration.

1) Inverted Page-group Table: Inverted Page-group Table
(IPgT) stores the mapping from the physical-to-virtual ad-
dresses. It is similar to the inverted page table in operating
systems, and the only difference is that the granularity is a
page-group, not a page. The table is indexed by the physical
frame-group number (PFgN), and each entry contains a free
flag, the mapped virtual page-group number (VPgN), and the
GPU context ID (CID). Also, it contains the protection (P) flag
to prevent migration of non-UM regions (e.g, cudaMalloc()).
The table is somewhat large (each entry is 8B and an 80GB
GPU memory requires 1.25M entries) and we store it in the
GPU memory. UVMMU utilizes this table to find free frame-
groups and the virtual addresses of the victim page-groups.

2) Frame-region Available Bitmap: Although UVMMU can
find a free frame-group from IPgT, it takes too much time to
iterate over the entire table in DRAM. In order to speed up the
search, UVMMU introduces Frame-region Availability Bitmap
(FrAB), which is a collapsed version of the free flags in IPgT.
It groups 32 64KB frame-groups into a 2MB frame-region and
collapses the free flags of the frame-groups into the available
flag of the region. A region has the flag set if it has at least

!

!

Destination Allocator

Migration
request

Pseudo-Random
Number Generator

Page Migration Engine

1 1 0 1 0 0 1 1 0 1 1

Frame-region
Available Bitmap

Available Frame
Manager

Inverted
Page-group Table

-1 0 -
0 1 0
0 0 1
1 0 -

xxxx
xxxx

-

VPgNFree CID
PFgN 0
PFgN 1
PFgN 2
PFgN 3

P

DCQ

PFgN 30
PFgN 00

PFgNS

Fig. 3: The micro-architecture of the Destination Allocator and
its data structures (Inverted Page-group Table and Frame-region
Availability Bitmap)

one free frame-group. If the flag is cleared, the region has no
free frame-group, and UVMMU can skip accessing IPgT for the
frame-groups. The bitmap is small (40K bits for 80GB physical
memory) and stored in an internal SRAM within the GPU.
C. Software Interface

The software is responsible for configuring IPgT and FrAB
before kernel executions. On a device bring-up, the CUDA
driver allocates IPgT in the GPU memory and puts all available
frame-groups to a free list by setting the free flags in IPgT
and the available flags in FrAB. The cudaMallocManaged()
does not directly change the tables, whereas the cudaMalloc()
removes mapped GPU memory frames from the free list by
clearing the free flags and setting the protection flags in IPgT.
If all frame groups within a 2MB region are mapped, it also
clears the available flag in the FrAB.

During a kernel execution, UVMMU hardware selects a free
frame-group from the tables and updates them. If there is
no available frame-group, the hardware selects a victim and
swaps the victim page-group with the requested page-group
using the IPgT. When the kernel is complete, the waiting
cudaDeviceSynchronize() API writes back modified pages to
the CPU memory in preparation for CPU accesses. When the
application invokes a cudaFree(), the driver reads the page table
to find the mapped frame-groups and adds them back to the free
list by updating the IPgT and FrAB.

Because the page management is shared between software
and hardware, multiple kernels running in parallel could cause
inconsistent tables. For instance, the GPU driver may try to
update IPgT for one kernel while the GPU hardware updates
the table for another. To avoid inconsistency in such cases,
UVMMU can unify the modification paths to hardware. For
cudaMalloc(), the software can ask hardware to pop a free
frame-group from DCQ via PCIe BAR (Base Address Register)
address space. Similarly, on a cudaFree(), the software can ask
the hardware to update IPgT and FrAB via the memory-mapped
I/O. This single modification path can avoid race conditions
and provide atomic updates and consistent page management
for multi-kernel scenarios.

D. Hardware Operation

UVMMU is an extension of GMMU, and this section pro-
vides the details of its operation, focusing on the Destination

Allocator (DA) inside UVMMU. Figure 3 illustrates the internal
organization of DA. Once a PTW reads a PTE of a remote page
(Step 2 in Figure 2), it requests DA for a destination frame-
group. To save latency, DA generates destination candidates
in advance and holds them in a queue called Destination
Candidate Queue (DCQ). Each queue entry has a frame-group
number and a swap (S) flag indicating whether it requires
swapping for eviction. As a result, DA can provide a destination
in few cycles using the queue. If the destination does not require
swapping (i.e., a free frame-group), UVMMU requests PME
to fetch the page-group from the remote memory to the local
frame-group. To minimize latency, PME fetches the request
page (i.e., critical page) first among the pages within the page-
group. Once the transfer is complete, UVMMU updates the
PTE with the local frame-group number and returns the PTE
to the SM.

If the destination requires swapping, UVMMU requests PTE
for swapping the page-groups. The remote physical address
is from the PTE of the requested page-group, and the local
physical address is the destination address from DA. Once
swapping is complete, UVMMU updates the PTEs. In addition
to updating the PTE of the requested page-group, UVMMU
also updates the PTE of the evicted page-group to point the
remote PFgN, which was originally occupied by the requested
page-group.

In the background, Available Frame Manager (AFM) in DA
starts finding new candidates and filling them into DCQ, if the
number of entries in the queue goes below a threshold. In our
evaluation, DCQ has 64 entries, and the threshold value is 32
entries. AFM first searches for destination candidates among
free frame-groups. It iterates over FrAB to find a region with a
free frame-group(s). FrAB utilizes a wide SRAM (e.g., 256-bit)
to check multiple regions with single access. If a region has
its available flag set, AFM fetches IPgT entries of its frame-
groups and add frame-groups whose free and protected flags
are 1 and 0, respectively. A 2MB region has 32 64KB frame-
groups, thus AFM can fill up to 32 free frame-groups to the
queue at a time. AFM repeats this procedure over chunks until
DCQ has more entries than the threshold.

If the memory is over-subscribed and AFM cannot find
a free frame-group, it moves to find candidates from used
frame-groups. It utilizes a pseudo-random number generator to
select a random victim from frame-groups. Then it accesses
IPgT to check the protection flag whether the frame-group
is protected. If not, it adds the victim to the DCQ and sets
the swap flag. A random eviction policy may be sub-optimal
in some configurations, yet our evaluation shows it provides
fair performance with UVMMU (Section V-C1). Meanwhile,
its simplicity relieves UVMMU from managing metadata for
eviction (e.g., an LRU list).

V. EVALUATION

A. Execution Time
1) Environment Setup: We extended the GP-GPU simulator

used in UVMSmart [3]–[5]. UVMSmart modified GPGPU-Sim
to implement UM [16]. The simulator is configured to represent
NVIDIA GTX 1080 Ti (Table I). We modified the simulator to

!

!

0

1

2

3

4

Sp
ee

du
p

ov
er

 N
VI

D
IA

 U
M

(a) No over-subscription

0

1

2

3

4
NVIDIA UM UVMSMART UVMMU

9.92

(b) 125% over-subscription

0

2

4

6

8 14.52

(c) 150% over-subscription
Fig. 4: The speedups of UVMMU and UVMSmart [5] over NVIDIA UM with different memory over-subscription ratios. Note
that the Y-axis scale of (c) is twice than others.

replace GMMU with UVMMU and added PCIe models. The
migration time is the sum of migration handling latency and
PCIe data transfer time. The handling latency is to select a
destination page group and configure the PME engine and is
10 cycles with UVMMU and 45µs with fault-based handling.
The PCIe is modeled as delay queues with a 1µs round-trip
time (TRTT) and 16GB/s bandwidth (PCIe gen3 x16).

The baseline architecture is the NVIDIA UM implementation
from [3]. We also compared the performance of our architec-
ture with state-of-the-art UM implementation, UVMSmart [5].
The benchmark applications are from UVMSmart [16], which
converted 9 workloads from Rodinia [17] and PolyBench [18]
into UM. We evaluate execution time for each workload with
different memory over-subscription ratios.

2) Results: Figure 4 compares execution times with the
different UM implementations. The execution times are normal-
ized to ones with the baseline with the same over-subscription
ratio, and the figures show speedups from the baseline.

With no over-subscription (Figure 4a), the baseline and
UVMSmart show the same performance. It is because both
utilize the same tree-based prefetching, and the scenario has
no eviction and does not utilize the smarter eviction policy.
On the other hand, UVMMU achieves 59.3% speedup even
though it does not prefetch (except for the 64KB migration
granularity). NVIDIA UM and UVMSmart can reduce the
number of page faults using their tree-based prefetching, yet
their large processing delay (45µs) and freezing L1 TLB
generate long stalls in SMs. With faster migration handling
process (10 cycles at 1.4GHz) and critical-page-first transfer,
page migration with UVMMU takes about 1.3µs and can hide
most of the latency with the WARP-level parallelism.

Figure 4b and 4c show results with memory over-
subscription, which migrates more pages due to page evictions.
With the smarter prefetching/eviction policies, UVMSmart can
reduce the number of page faults more than NVIDIA UM

TABLE I: The simulated GPU configuration
Core 1481MHz, 28 SMs, 64 warps/SM

Cache Line 128B Line with 4 sectors(32B)
L1 Cache 48KB, 6 Way Associative
L2 Cache 3MB, 16 Way Associative
L1 TLB 128 entries Fully Associative
Memory 11GB 484GB/s GDDR5X

Page Table Walker 64 walkers
PCIe PCIe 3.0 x16(16GB/s BW, 1us RTT)

Migration Handling Latency 10 cycles (UVMMU), 45 µs (Baseline)

and speed up the execution. It shows 23.9% and 37.2%
better performance than the baseline with 125% and 150%
over-subscription, respectively. However, both software-based
schemes show severe costs from memory over-subscription.
UVMSmart with 125% over-subscription, for example, is 75%
slower than UVMSmart without over-subscription.

UVMMU shows significantly better speedups with mem-
ory over-subscription. With 125% over-subscription, UVMMU
shows speedups of 2.73× and 2.21× over NVIDIA UM
and UVMSmart with the same over-subscription, respectively.
In 150% over-subscription, the speed-ups increase to 3.29×
and 2.40×. Looking deeper, applications with irregular access
patterns (e.g., RA, NW, BFS) show the largest improvements.
In the applications, the fault-based schemes cannot accurately
prefetch pages due to irregularity, and the long migration
latency severely impacts the performance. On the contrary,
UVMMU quickly migrates irregularly-accessed page-groups to
minimize processor stalls and execution time. For instance,
UVMMU improves the execution time of RA 14.52× than the
NVIDIA UM in 150% over-subscription. UVMSmart utilizes
the zero-copy policy for irregular access patterns and reduces
the execution time to some extent (2.79× of the baseline), yet
still 5.2× slower than UVMMU.
B. Hardware Overheads

Despite the significant performance improvement, UVMMU
has small additional overheads. We implemented the logic part
of destination allocator in Verilog and synthesized it using
Synopsys Design Compiler and Samsung 8nm process. For
SRAM-based FrAB, we set its size to 40Kb (corresponding
to 80GB physical memory) and used CACTI [19] with ITRS
22nm process (the latest technology supported by CACTI) to
estimate the overheads.

The additional area for extending GMMU to UVMMU is
estimated to 5800µm2, which corresponds to 0.0012% of
the GTX 1080 Ti die area (471mm2) [20]. It is estimated
that UVMMU will only consume 65mW more power than
conventional GMMU, which is 0.026% of the 250W TDP of
GTX 1080 Ti [20].
C. Sensitivity Studies

1) Eviction Policy: An eviction policy impacts performance
by changing the number of page faults. Meanwhile, a sophisti-
cated policy requires maintaining a data structure and complex

!

!

0.6

0.7

0.8

0.9

1.0

1.1

1.2

125% 150%

Linear-Random Sequential-local
NRU Tree

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fig. 5: A comparison of execution times with different eviction
policies.

0

0.5

1

1.5

2

100% 125% 150% 175% 200%

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Fig. 6: A comparison of UVMMU execution times with differ-
ent over-subscription ratios.

hardware. This section evaluates performance with different
eviction policies, showing that a simple random policy can
provide sufficiently good performance.

UVMMU randomly selects a frame-group using a pseudo-
random number generator and evicts the mapped page-group.
We call this policy as Linear-Random because a page-group
is selected randomly, and the pages within the page-group
are linearly replaced. We compare Linear-Random against
Sequential-local, NRU (Not Recently Used) [21], and Tree-
based. Sequential-local and Tree-based policies are from
UVMSmart [5] and based on the LRU policy (Section II-B).

Figure 5 compares UVMMU performance in geometric mean
with the different eviction policies. The Linear-Random policy
is not inferior to other sophisticated policies with UVMMU. In
fact, it shows the best performance with 125% and 150% over-
subscription, except an 1% slow-down than Sequential-local
with 150% over-subscription. This shows that eviction policy’s
impacts are significantly less than those reported by fault-
based studies. For example, UVMSmart reported that eviction
policies affect performance by up to 4.5× with 110% over-
subscription. This is because fetching an evicted page again
incurs significantly fewer costs with UVMMU.

2) Over-subscription Ratio: A higher over-subscription ratio
increases page evictions and can degrade performance signif-
icantly. We evaluate the UVMMU performance in geometric
mean with different over-subscription ratios (Figure 6). Overall,
the UVMMU execution time increases almost linearly with
the ratio. For instance, UVMMU shows 1.52× and 1.90×
slowdowns to no over-subscription with 150% and 200% over-
subscriptions, respectively. In contrast, fault-based solutions
have a rapid growth in execution time with increasing ratios
(not shown in the figure). UVMSmart, for example, 125% and
150% over-subscription increase the execution time to 1.75×
and 2.27×, respectively. We failed to run UVMSmart with
higher over-subscription ratios(e.g., 175%). We analyze the

reason for the rapid growth with UVMSmart is its fault-based
migration which cannot efficiently hide the increasing number
of page evictions. On the other hand, UVMMU shows a modest
growth from reduced page eviction costs, and users may enjoy
memory over-subscription with fewer overheads.

VI. CONCLUSION

Current fault-based UM implementations sacrifice significant
performance for improved programmability. The performance
costs primarily come from the page-fault handling in software,
and most prior works focus on optimizing the software to
minimize page faults. We proposed a novel architecture, called
UVMMU, to eliminate the faults and offload the entire migra-
tion operation to hardware. UVMMU significantly outperforms
state-of-the-art UM implementations with minimal hardware
overheads with hardware-based rapid migration.

REFERENCES

[1] M. Harris, “Unified memory in cuda 6.” Nov. 18, 2013 [Online] Available:
https://developer.nvidia.com/blog/unified-memory-in-cuda-6/.

[2] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler,
“Towards high performance paged memory for gpus,” in HPCA, pp. 345–
357, 2016.

[3] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Interplay between
hardware prefetcher and page eviction policy in cpu-gpu unified virtual
memory,” in ISCA, p. 224–235, 2019.

[4] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page migration
for irregular data-intensive applications under gpu memory oversubscrip-
tion,” in IPDPS, pp. 451–461, 2020.

[5] D. Ganguly, R. Melhem, and J. Yang, “An adaptive framework for
oversubscription management in cpu-gpu unified memory,” in DATE,
pp. 1212–1217, 2021.

[6] Q. Yu, B. Childers, L. Huang, C. Qian, and Z. Wang, “Hpe: Hierarchical
page eviction policy for unified memory in gpus,” TCAD, vol. 39, no. 10,
pp. 2461–2474, 2020.

[7] Q. Yu, B. Childers, L. Huang, C. Qian, H. Guo, and Z. Wang,
“Coordinated page prefetch and eviction for memory oversubscription
management in gpus,” in IPDPS, pp. 472–482, 2020.

[8] N. Sakharnykh, “Unified memory for cuda beginners.” Jun.
19, 2017 [Online] Available: https://developer.nvidia.com/blog/
unified-memory-cuda-beginners/.

[9] NVIDIA, “Pascal mmu format changes.” Mar. 5, 2016 [Online] Available:
https://nvidia.github.io/open-gpu-doc/pascal/gp100-mmu-format.pdf.

[10] N. Sakharnykh, “Maximizing unified memory performance in cuda.”
Nov. 19, 2017 [Online] Available: https://developer.nvidia.com/blog/
maximizing-unified-memory-performance-cuda/.

[11] C. Garg, “Improving gpu memory oversubscription performance,” 10
2021.

[12] H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “Gps: A global
publish-subscribe model for multi-gpu memory management,” in MICRO,
p. 46–58, 2021.

[13] T. B. et al, “Griffin: Hardware-software support for efficient page migra-
tion in multi-gpu systems,” in HPCA, pp. 596–609, 2020.

[14] G. L. et al., “A case for hardware-based demand paging,” in ISCA,
pp. 1103–1116, 2020.

[15] D. Jeong, J. Park, and J. Kim, “Demand memcpy: Overlapping of com-
putation and data transfer for heterogeneous computing,” IEEE Access,
vol. 10, pp. 79925–79938, 2022.

[16] D. Ganguly, “Gpgpu-sim uvm smart.” 2018 [Online] Available: https:
//github.com/DebashisGanguly/gpgpu-sim UVMSmart.

[17] S. C. et al., “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, pp. 44–54, 2009.

[18] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” 05 2012.

[19] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “Cacti 7: New tools for interconnect exploration in innovative
off-chip memories,” vol. 14, jun 2017.

[20] “Nvidia geforce gtx 1080 ti specs,” 02 2019.
[21] E. Kabir, N. Akhtar, and S. Mahmud, “An efficient page replacement

algorithm,” 11 2013.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

