
ArrayFlex: A Systolic Array Architecture with
Configurable Transparent Pipelining

C. Peltekis, D. Filippas, G. Dimitrakopoulos
Electrical and Computer Engineering

Democritus University of Thrace, Greece

C. Nicopoulos
Electrical and Computer Engineering

University of Cyprus, Cyprus

D. Pnevmatikatos
Electrical and Computer Engineering

National Technical University of Athens, Greece

Abstract—Convolutional Neural Networks (CNNs) are the
state-of-the-art solution for many deep learning applications. For
maximum scalability, their computation should combine high
performance and energy efficiency. In practice, the convolutions
of each CNN layer are mapped to a matrix multiplication that
includes all input features and kernels of each layer and is
computed using a systolic array. In this work, we focus on the
design of a systolic array with configurable pipeline with the goal
to select an optimal pipeline configuration for each CNN layer.
The proposed systolic array, called ArrayFlex, can operate in
normal, or in shallow pipeline mode, thus balancing the execution
time in cycles and the operating clock frequency. By selecting
the appropriate pipeline configuration per CNN layer, ArrayFlex
reduces the inference latency of state-of-the-art CNNs by 11%, on
average, as compared to a traditional fixed-pipeline systolic array.
Most importantly, this result is achieved while using 13%–23%
less power, for the same applications, thus offering a combined
energy-delay-product efficiency between 1.4× and 1.8×.

I. INTRODUCTION

The quality of deep learning has increased significantly with
Convolutional Neural Networks (CNNs) [1]. CNNs have en-
abled remarkable performance in many application fields, such
as computer vision [1], [2], natural language processing [3],
and robotics [4].

This widespread adoption of CNNs has triggered the need
to accelerate them directly in hardware. To do so, CNN
layers are mapped to General Matrix Multiplication (GEMM)
kernels [5]. GEMMs are at the heart of deep learning hardware
and they naturally map onto Systolic Arrays (SA) [6]. Tensor-
processing units [7] and other related architectures [8], [9],
[10], [11] are characteristic examples of newly designed SAs.

Systolic arrays have also been implemented as config-
urable architectures that support arbitrary bit-width arithmetic
precision to enable sub-word parallelism [12]. Furthermore,
configurable SAs can support various dataflows [13], [14]
that are more amenable to the different forms of convolutions
found across different CNNs, and even across different layers
within one model. Coarse-grained SA reconfiguration allows
for the partitioning of the hardware resources into multiple
CNNs that execute concurrently on the different parts of the
SA [15], [16], [17]. In the same context, SAs have been
customized to handle sparse matrices [18].

This work is supported by the project ”Study, Design, Development and
Implementation of a Holistic System for Upgrading the Quality of Life
and Activity of the Elderly” (MIS 5047294) implemented under the Action
”Support for Regional Excellence”, funded by the Operational Programme
”Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and
co-financed by Greece and the EU (European Regional Development Fund).

In this work, we focus on customizing the pipeline structure
of SAs with the goal being to reduce the execution latency of
matrix multiplication. Throughput can always be increased by
adding more processing elements and increasing the input and
output bandwidth of the SA. On the contrary, optimizing the
execution latency requires architectural re-organization of the
SA that should also adjust to the structure of each CNN layer.
Reducing latency is important in applications executed at the
edge [19] and a necessity for applications that also require real-
time responses [20]. Moreover, for small batch sizes, reducing
the latency can also reduce the time to the final result. This is
critical in RNNs, which are harder to batch than CNNs [21].

The proposed SA architecture, named ArrayFlex, can con-
figure its pipeline structure between normal and various shal-
low pipeline depths. In shallow mode, two or more adjacent
pipeline stages are joined by bypassing intermediate pipeline
stage(s) [22], [23]. This merging effectively reduces the num-
ber of cycles needed to complete matrix multiplication. On
the other hand, the clock frequency is reduced to avoid timing
violations due to the increased logic depth. This double-faceted
tradeoff allows us to identify the best possible configuration
per CNN layer that minimizes the total execution latency in
absolute time. Overall, the contributions of this work can be
summarized as follows:

• ArrayFlex introduces a configurable pipeline architecture
for SAs that can adjust its pipeline depth to the size of
the corresponding matrix multiplication while aiming to
minimize the total execution latency.

• When shallow pipeline mode is beneficial, power is
equivalently reduced, since transparent registers remain
clock-gated and the design as a whole operates at a lower
clock frequency.

• Extensive evaluations using state-of-the-art CNN applica-
tions demonstrate that the proposed architecture reduces
the latency by 11%, on average, while also consuming
13%–23% less power, as compared to SAs with a fixed
pipeline organization. This amounts to a substantial im-
provement in overall energy efficiency.

The rest of the paper is organized as follows: Section II
revisits the basics of computing matrix multiplication on SAs.
Section III introduces the proposed ArrayFlex SA architecture
with configurable pipeline depth. Experimental results are pre-
sented in Section IV and conclusions are drawn in Section V.

II. MATRIX MULTIPLICATION ON SYSTOLIC ARRAYS

SAs consist of an array of Processing Elements (PEs)
organized in R rows and C columns, as shown in Fig. 1(a).

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



(a) Typical SA organization (b) Weight-Stationary Dataflow

(c) Tiled matrix multiplication

Fig. 1. The organization of a typical SA and the structures of the Weight-
Stationary dataflow and of tiled matrix multiplication.

Each PE consists of a multiplier and an adder and necessary
registers to appropriately pipeline the operation. SAs are fed
by local memory banks placed on the west edge (for the input
features) and the north edge (for the weights of the convolution
kernels) of the array, while output results are collected on the
south edge. The dataflow selected for the SA determines the
structure of the PEs and how matrix multiplication A× B is
executed. Fig. 1(b) shows how the SA performs matrix multi-
plication using the Weight-Stationary (WS) dataflow [8]. WS
is generally preferred over other dataflows, since it exploits
high spatio-temporal reuse of the weights [7], [10].

Matrix multiplication XT,M =AT,N×BN,M can be mapped
to a SA, if the SA is large enough to accommodate in parallel
a column of A and a row of B. This can happen when the
spatial dimensions N and M of matrix multiplication match
the size of the SA, i.e., R = N and C = M .

In this case, and assuming a WS dataflow, as shown in
Fig. 1(b), matrix B is first pre-loaded in the SA by loading
a new row per cycle. Thus, R cycles are needed to complete
the loading. Once B is loaded, matrix A is streamed in from
the left edge of the array. The first arriving element would
reach the rightmost column of the SA after C − 1 cycles.
After the top row is filled with the incoming data elements,
it takes R − 1 cycles to reduce the result of all PEs of the
same column. For the reduction operation, the result of the
multiplication and addition in each PE is first registered at the
borders of the PE and it then moves downwards to the next
PE of the same column. The SA becomes empty when the
reduction is finished on the rightmost column for all incoming
skewed columns of A. Since A consists of T rows, the overall
latency L of computing matrix multiplication equals:

L = 2R+ C + T − 2 (1)

When the size of matrices A and B is larger than the size
of the SA, i.e., N > R and/or M > C, matrix multiplication
is executed in tiles, as shown in Fig. 1(c), where each tile
(sub-matrix) matches the size of the SA. The partial sums for

each tile that reach the bottom of the SA, get accumulated into
the corresponding output accumulator located below the SA
(see Fig. 1(a)). According to [8], the latency of tiled matrix
multiplication is equal to

Ltotal = L×
⌈
N

R

⌉
×

⌈
M

C

⌉
. (2)

L is the latency for computing the product of two tiles Asub
T,R×

Bsub
R,C and it is given by (1), and ⌈N

R ⌉ × ⌈M
C ⌉ represents the

total number of tiles.

III. A SYSTOLIC ARRAY WITH CONFIGURABLE
TRANSPARENT PIPELINING

In this work, we aim to adjust the pipeline depth of
the vertical and horizontal pipelines of the SA, in order to
optimally calibrate them to the size of the systolic array (R
and C), and the size T of matrix A, which are crucial in the
overall latency of computation.

(a) Normal pipeline; k = 1

(b): Shallow pipeline; k = 2

Fig. 2. (a) In normal pipeline mode, each data item moves to the next PE,
either horizontally or vertically, in one clock cycle. (b) In shallow pipeline
mode, the dataflow of every k = 2 PEs is merged in a single-cycle operation.
Merging is possible by bypassing the intermediate pipeline registers. The input
and output dataflow skew is altered to match the shallower pipeline structure.

To reduce the R−1 cycles spent in the reduction operation
in each column of the SA, we can configure the vertical
reduction pipeline to operate in shallow mode, where two
or more adjacent pipeline stages are merged by making the
intermediate registers transparent. The registers in transparent
mode, bypass the input data to the next stage, thereby joining
two adjacent combinational logic circuits into one pipeline
stage. Up to k registers can be joined in the vertical direction.

Pipeline collapsing is also performed in the horizontal
dataflow. Instead of letting the input stream move one column
to the right in each cycle, we allow it to broadcast to k columns
when operating in shallow pipeline mode [24].

The normal pipeline mode that corresponds to the case of
k = 1 is shown in Fig. 2(a). Similarly, Fig. 2(b) depicts an

 



example of shallow pipeline operation assuming k = 2. In this
case, the result of the top row of PEs is added transparently to
the result of the second row of PEs in the same clock cycle.
The same operation occurs for every two adjacent PEs.

To align the shallow pipelines of the SA with the arrival of
the input data, their arrival skew should be altered. The first
(and last) elements of matrix A arrive in batches of k words.
It should be stressed that this change does not fundamentally
alter the operation of the systolic array, since the required input
and output bandwidth remains the same and it is equal to R
and C words per cycle (i.e., equal to the number of rows and
columns of the SA).

A. Latency vs. clock frequency tradeoff
Using this approach, and assuming that we can col-

lapse/merge k intermediate PEs into the same pipeline stage in
both the vertical and the horizontal directions, the number of
cycles spent in the reduction operation reduces from R− 1 to
R
k − 1, and the number of cycles spent in the broadcast of the
first data element to the rightmost column of the SA reduces
from C − 1 to C

k − 1. Thus, the overall latency of computing
a matrix product Asub

T,R×Bsub
R,C (as needed by each sub-matrix

of the original A×B product) becomes

L(k) = R+
R

k
+

C

k
+ T − 2 (3)

The number of cycles needed for all tiles is then equal to

Ltotal(k) = L(k)×
⌈
N

R

⌉
×
⌈
M

C

⌉
. (4)

Overall, the higher the amount of collapsing (i.e., higher value
of k), the larger the reduction in the number of cycles needed
to complete matrix multiplication.

On the other hand, to enable pipeline collapsing within the
SA, one must slow down the clock frequency to avoid timing
violations due to increased logic depth. Column collapsing
only affects the delay marginally. However, row collapsing
requires k additions to be performed in series in the same clock
cycle. Therefore, for each shallow pipeline configuration, there
is an equivalent throttling of the operating clock frequency
to adjust the clock period to the logic depth of the selected
configuration. Our goal is to select the best possible k that
minimizes the total execution latency in absolute time (i.e.,
clock cycles × clock period), given the size of the systolic
array R × C and the size of the matrix multiplication, as
determined by N,M , and T .

B. The Organization of Configurable PEs
The minimum clock period that the design can operate at

is determined by the maximum logic delay between any two
pipeline registers, plus any clocking overhead (sum of the
register clock-to-Q delay and the setup time of the flip-flops).
In the baseline case (k = 1), the maximum combinational
delay remains inside the borders of one PE and is equal to the
delay of the multiplier and the delay of the adder.

When collapsing k pipeline stages into one, the maximum
combinational delay again involves the delay of one multiplier
plus the delay of k carry-propagate adders in series plus
the delay of bypass multiplexers. To avoid this significant

Fig. 3. The organization of two enhanced, configurable PEs of the same
column. Registers are bypassed in the vertical and horizontal directions
according to the pipeline configuration. In shallow pipeline mode, reduction
is performed using a series of 3:2 carry-save adders ending with a carry-
propagate adder.

delay overhead when collapsing adjacent pipeline stages, we
augment the PEs of the SA with an additional 3:2 carry-save
stage that is only enabled during shallow pipeline mode. The
organization of two enhanced PEs of the same column are
shown in Fig. 3. The 3:2 carry-save adder is composed of
parallel full-adders, with each one placed at each bit position.

When PEs are collapsed, the registers placed in the hori-
zontal direction are bypassed (and clock gated) by additional
multiplexers controlled by configuration bits loaded in parallel
to the weights of matrix B. In the vertical direction, to add
the k products produced by the multipliers of each PE, we
utilize k carry-save adder stages. The carry-save adders are
connected in series through additional bypass multiplexers
placed in the vertical direction. At the last stage, where
pipeline collapsing ends and the result needs to be saved in
the corresponding pipeline register, the result of the carry-save
adders is transformed to one operand using the carry-propagate
adder of each PE.

(a) Normal pipeline (b) Shallow pipeline; k = 2

Fig. 4. Example of active paths for (a) a normal pipeline (k = 1), and (b) a
shallow pipeline (k = 2).

This configuration is shown in Fig. 4(b) for k = 2. The
products of the first and the second row in each column are
added using carry-save adders. The final sum is produced by
the carry propagate adders of the last row. The carry propagate

 



adders of the top row are not used, while the registers that are
bypassed are clock-gated to save power.

Each PE needs two configuration bits that configure inde-
pendently the transparency (bypassing) of the pipeline registers
in each direction. Separate configuration bits per PE are
needed since each PE can play a different role depending on
the selected pipeline mode.

The incoming input and the weight stored in each PE
have the same bit width. However, the vertical connections,
including the carry-save adders and the carry propagate adders,
have double the bit width, in order to accommodate the full
product of the multiplier.

The 3:2 carry-save adder and the bypass multiplexers par-
ticipate in the operation of each PE even when configured for
a normal pipeline, i.e., k = 1. As shown in Fig. 4(a), the
product of each multiplier is first added to the result of the
previous PE of the same column through the carry-save adder
before finalizing the addition with the carry-propagate adder.
This extra hardware placed in series between the multiplier
and the adder inevitably affects the minimum delay that can be
achieved by a conventional PE that does not offer any pipeline
reconfiguration. The experimental results show that this delay
overhead is marginal and does not limit the applicability of
the proposed approach.

C. Minimizing the total execution time

To identify the optimal value of k that best fits the examined
configuration, we first need to develop for ArrayFlex a rough
model of how the clock period is affected with respect to k.

When collapsing k pipeline stages of the SA, the maximum
combinational delay involves the delay of k bypass multiplex-
ers in the horizontal direction, the delay of the multiplier (dmul)
of the rightmost PE of the collapsed pipeline block, plus the
delay of k cascaded 3:2 carry-save adders (dCSA) and bypass
multiplexers (dmux) in the vertical direction. In this delay, we
should add the delay of the final carry propagate adder (dadd)
of the last row of the collapsed pipeline block and any flip-
flop clocking overhead (dFF). Overall, we can roughly estimate
that the minimum clock period that can be achieved by a k-
collapsed pipeline is:

Tclock(k) = dFF + dmul + dadd + k(dCSA + 2dmux) (5)

In practice, the design supports a maximum pipeline col-
lapsing depth kmax. When collapsing fewer than kmax pipeline
stages, the combinational paths that still exist in the design
but are not used are considered false paths. We provide this
information explicitly to the static timing analyzer.

The latency in absolute time Tabs(k) of computing a com-
plete matrix multiplication using an SA with k-collapsible
pipeline is the product of the latency in clock cycles Ltotal(k)
given in Equation (4) and the minimum clock period Tclock(k)
that corresponds to each k (as given by Equation (5)):

Tabs(k) = Ltotal(k)× Tclock(k) (6)

To explore the interesting interplay between computation
latency in cycles and the configurable pipeline depth of
the columns of the systolic array, we performed a simple
experiment. We measured the execution time required to

(a) ResNet-34 Layer 20 (b) ResNet-34 Layer 28

Fig. 5. The execution time of computing layers (a) 20 and (b) 28 of ResNet-
34 [25] as an equivalent matrix multiplication using a configurable SA under
various pipeline collapsing depths k. The execution time of the conventional
(non-configurable) SA that operates only in normal pipeline mode under the
highest clock frequency is depicted as a straight line.

compute layers 20 and 28 of ResNet-34 CNN [25] as ma-
trix multiplications using a configurable SA that consists of
(R,C) = (132, 132) rows and columns. The values of R and
C were selected to be divisible by all the examined values of k,
i.e., 1, 2, 3, and 4. The sizes of the corresponding matrix mul-
tiplications for computing layers 20 and 28 are (M,N, T ) =
(256, 2304, 196) and (M,N, T ) = (512, 2304, 49), respec-
tively. In both cases, we examined various pipeline collapsing
depths. The obtained results in each case are depicted in Fig. 5.

For each pipeline collapsing depth k, we scaled the clock
frequency accordingly to match the combinational delay for
each case. The execution latencies that correspond to a con-
ventional (non-configurable) SA are shown as straight lines in
both cases of Fig. 5. The conventional SA operates using a
normal pipeline at the highest clock frequency, since it does
not suffer any delay overhead associated with configurability.

According to Fig. 5(a), the execution time for layer 20 is
minimized at k = 2. In this case, the reduction of clock cycles
and the increase of the clock period find their optimal match.
Collapsing the pipeline deeper, i.e., k = 3, still reduces the
execution time, relative to a conventional SA, but the savings
are less. For layer 28, as depicted in Fig. 5(b), deeper pipeline
collapsing offers the best execution time. In this case, utilizing
a pipeline collapse depth of k = 4 is the best choice.

To identify the optimal pipeline depth k̂ that minimizes
Tabs(k), we take the derivative of Tabs(k) with respect to k
and set it equal to zero. This leads to:

k̂ =

√(
R+ C

R+ T − 2

)(
dFF + dmul + dadd

dCSA + 2dmux

)
(7)

Even though k is a discrete variable, Eq. (7) gives a simple
analytical model that leads to one interesting conclusion: the
pipeline depth of the SA should be judged not only on the
delay profile of the adder and the multiplier hardware blocks,
but also on the size of the matrix multiplication (dimension
T ) relative to the size of the SA.

For instance, the first layers of the CNN try to identify
on the input coarse features using a wide search area. This
leads to large values for dimension T on the corresponding
matrix multiplication. As a result, k̂ cannot easily reach values
larger than one. This means that the best choice is to use an
architecture with a normal pipeline, i.e., with k = 1. On the
contrary, in the last CNN layers, it is common the size of the

 



input features to decrease and their number to increase [1],
[2]. Effectively, in these layers the value of T drops and using
shallow pipelining (higher k) is a better choice. Allowing
for pipeline collapse, which also reduces the clock frequency,
not only reduces the overall execution time, but it also saves
dynamic power. Under shallow pipelining, the clocking power
is also reduced, since more registers remain clock-gated.

IV. EVALUATION

In the experimental evaluation, the goal is to highlight: (a)
when SAs operating in shallow mode make sense, (b) the
latency and power savings in these cases, and (c) the area
overhead incurred in offering pipeline-depth reconfigurability.

To answer these questions, we developed parameterized
models of a conventional SA and ArrayFlex in SystemVerilog
RTL. Both SAs operate on 32-bit quantized inputs and weights
executing single-batch inference of various CNNs that consist
of matrix multiplications of different sizes. The additions in
each column of the SAs are performed at 64 bits.

The SAs were implemented using Cadence’s digital imple-
mentation flow using a 28 nm standard-cell library. Conven-
tional SAs operating only with a normal pipeline in a non-
configurable manner can reach a clock frequency of 2 GHz.
The proposed configurable SAs support one normal and two
shallow pipeline modes. In normal pipeline mode (k = 1), the
proposed SA operates at 1.8 GHz. The two shallow pipeline
modes allow for collapsing k = 2 or k = 4 pipeline stages. In
these cases, the clock frequency is configured at 1.7 GHz and
1.4 GHz, respectively. Collapsing three pipeline stages is not
supported, since three does not divide exactly with the size of
the SA, which is a power-of-two in both dimensions.

Fig. 6. The physical layouts of 8×8 PEs using the conventional SA (left)
and the proposed ArrayFlex design (right).

To estimate the area cost of reconfigurability, Fig. 6 high-
lights the physical layout of a conventional SA, relative to the
ArrayFlex design, using 8×8 PEs. From the physical layout of
both SAs, it is evident that the area of ArrayFlex is increased
in both dimensions. The area overhead per PE for this design is
approximately 16%. This extra area is consumed by the carry-
save adder and the bypass multiplexers, while some marginal
area is consumed by the two configuration bits per PE.

A. Performance evaluation

Initially, the aim is to highlight the effectiveness of con-
figuring the pipeline depth per CNN layer in a way that
minimizes the total execution time. Fig. 7 illustrates the
execution time per CNN layer of ConvNeXt [1] using SAs
that consist of 128×128 PEs. The proposed ArrayFlex SA

selects the optimal pipeline depth based on the structure of
each CNN layer. For the first 11 layers, it is advantageous
to operate under normal pipeline mode. This means that both
the conventional SA and ArrayFlex require the same number
of cycles to finish the matrix multiplication of each layer.
Thus, since the conventional SA operates at a higher clock
frequency, it finishes earlier in these cases. For layers 12–46,
the proposed SA works optimally under a shallow pipeline
mode of k = 2, while, for layers 47–55, k = 4 is the best
configuration. In those cases, the execution time required by
ArrayFlex is less than the execution time on the conventional
SA. Interestingly, the best pipeline organization per CNN layer
is approximated fairly accurately (assuming continuous values)
by Equation (7). For ArrayFlex, the execution time savings per
layer range between 1.5% and 26%, while the total execution
time for all layers is 11% less than the time required by the
conventional SA.

Similar behavior is observed under other CNN models
and different SA sizes. Fig. 8 depicts the normalized total
execution time of three CNNs, ResNet-34 [25], MobileNet [2],
and ConvNeXt [1], using 128×128 and 256×256 SAs. In all
cases, the proposed ArrayFlex design, which configures the
pipeline depth and the corresponding clock frequency to the
characteristics of each CNN layer, achieves lower execution
latency, ranging between 9% and 11%. The savings increase
for larger SAs, since more CNN layers prefer a shallow
pipeline configuration with k = 4. This behavior is in line
with Equation (7) that ”predicts” higher values for k̂ when the
size of the SA increases, i.e., with larger values of R and C.

B. Power consumption evaluation
One other equally important attribute of the proposed Ar-

rayFlex architecture is that it reduces execution time without
increasing power.

ArrayFlex has larger switched capacitance than a con-
ventional SA, due to the extra hardware required to enable
pipeline-depth configurability. Furthermore, it operates at a
lower clock frequency than a conventional SA in all pipeline
modes. The latter property partially amortizes the power cost
of the additional hardware. However, in normal pipeline mode,
ArrayFlex still consumes more power than a conventional
SA. This behavior changes when in shallow pipeline mode,
whereby the clock frequency is further reduced and additional
power is saved by the clock gating of the bypassed registers.
Therefore, the power profile of ArrayFlex strongly depends on
the selected pipeline mode, which is decided independently for
each CNN layer.

Fig. 9 depicts the average power consumption of both SAs
under comparison when executing inference on the ResNet-
34 [25], MobileNet [2], and ConvNeXT [1] CNNs. For
ArrayFlex, the power cost of each pipeline mode is shown
separately. ArrayFlex operates in shallow pipeline mode in the
majority of the CNN layers of each application. Consequently,
this behavior translates to overall power savings that range
between 13% and 15% for SAs of size 128×128 PEs, and
increase to 17%–23% for SAs of size 256×256 PEs. The com-
bined effect of reduced power and less execution time makes
ArrayFlex 1.4×–1.8× more efficient in terms of energy-delay-
product than a conventional SA.

 



Fig. 7. The execution time of each CNN layer of ConvNeXt [1] using the conventional and the proposed ArrayFlex SAs. Size of both SAs: 128×128 PEs.

(a) 128×128 SAs (b) 256×256 SAs

Fig. 8. The normalized execution times for complete runs (i.e., execution of
all layers) for three CNNs using (a) 128×128 and (b) 256×256 SAs. The
times are normalized for visual clarity, since the execution time of ConvNeXt
is significantly higher than the execution times of the other two CNNs.

(a) 128×128 SAs (b) 256×256 SAs

Fig. 9. The power of the SAs for complete runs (i.e., execution of all layers)
for three CNNs using (a) 128×128 and (b) 256×256 SAs. The power of the
SRAMs and any other peripheral circuitry outside the SAs is omitted.

V. CONCLUSIONS
Merging the pipeline stages of an SA creates an interesting

tradeoff for the computation of GEMM. On one hand, the
number of cycles required to complete the matrix multi-
plication is reduced proportionally to the collapsed pipeline
depth. On the other hand, the clock period should increase to
accommodate the larger combinational delay of the merged
pipeline stages. Utilizing carry-save adders in parallel to the
multiply-add components of the PEs allows us to efficiently
control the clock frequency degradation. Since the clock
frequency reduction is smaller than the reduction achieved
in the number of cycles for certain CNN layers, ArrayFlex
can minimize the total execution time. The reduced clock
frequencies and the marginal hardware overhead incurred also
allow for the reduction of power. Currently, this work focuses
on dense computations. In the future, we plan to explore the
applicability of ArrayFlex to sparse CNN layers too.

REFERENCES

[1] Z. Liu et al., “A ConvNet for the 2020s,” in IEEE Conf. on Comp.
Vision and Pattern Recognition (CVPR), 2022, pp. 11 976–11 986.

[2] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv:1704.04861, 2017.

[3] T. Young et al., “Recent Trends in Deep Learning Based Natural Lan-
guage Processing,” IEEE Computational Intelligence Magazine, vol. 13,
no. 3, pp. 55 – 75, 2018.

[4] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-Time
Dense Monocular SLAM with Learned Depth Prediction,” in IEEE Conf.
on Comp. Vision and Pattern Recognition (CVPR), 2017, pp. 6243–6252.

[5] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[6] H. T. Kung, “Why systolic architectures?” Computer, vol. 15, no. 1, pp.
37–46, 1982.

[7] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Int. Symp. on Comp. Arch. (ISCA), 2017, p. 1–12.

[8] A. Samajdar et al., “A systematic methodology for characterizing
scalability of DNN accelerators using scale-sim,” in IEEE Int. Symp.
on Perf. Analysis of Systems and Software (ISPASS), 2020, pp. 58–68.

[9] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in DAC, 2017.

[10] B. Asgari, R. Hadidi, and H. Kim, “Meissa: Multiplying matrices
efficiently in a scalable systolic architecture,” in IEEE Int. Conf. on
Computer Design (ICCD), 2020, pp. 130–137.

[11] I. Ullah, K. Inayat, J.-S. Yang, and J. Chung, “Factored radix-8 systolic
array for tensor processing,” in Design Automation Conf. (DAC), 2020.

[12] V. Camus et al., “Review and benchmarking of precision-scalable
multiply-accumulate unit architectures for embedded neural-network
processing,” IEEE JETCAS, vol. 9, no. 4, pp. 697–711, 2019.

[13] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
JETCAS, vol. 9, no. 2, pp. 292–308, 2019.

[14] R. Xu et al., “Configurable multi-directional systolic array architecture
for cnns,” ACM TACO, vol. 18, no. 4, July 2021.

[15] J. Lee et al., “Dataflow mirroring: Architectural support for highly
efficient fine-grained spatial multitasking on systolic-array npus,” in
Design Automation Conf. (DAC), 2021, pp. 247–252.

[16] S. Ghodrati et al., “Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,” in IEEE Intern.
Symp. on Microarchitecture (MICRO), 2020, pp. 681–697.

[17] A. Samajdar et al., “Self Adaptive Reconfigurable Arrays: Learning
Flexible GEMM Accelerator Configuration and Mapping-Space Using
ML,” in Design Automation Conf. (DAC), 2022, p. 583–588.

[18] X. He et al., “Sparse-tpu: Adapting systolic arrays for sparse matrices,”
in ACM Intern. Conf. on Supercomputing (SC), 2020, pp. 1–12.

[19] R. Hadidi et al., “Toward collaborative inferencing of deep neural net-
works on internet-of-things devices,” IEEE Internet of Things Journal,
vol. 7, no. 6, pp. 4950–4960, 2020.

[20] S. I. Venieris et al., “How to reach real-time ai on consumer devices?
solutions for programmable and custom architectures,” in IEEE ASAP,
July 2021, pp. 93–100.

[21] F. Silfa, J. M. Arnau, and A. Gonzalez, “E-BATCH: Energy-efficient
and high-throughput RNN batching,” ACM TACO, vol. 19, no. 1, 2022.

[22] H. Shimada, H. Ando, and T. Shimada, “Pipeline stage unification: a
low-energy consumption technique for future mobile processors,” in Int.
Symp. on Low power electr. and design (ISLPED), 2003, pp. 326–329.

[23] J. H. Choi et al., “Improved clock-gating control scheme for transparent
pipeline,” in ASP-DAC, 2010, pp. 401–406.

[24] T. Risset, “A method to synthesize modular systolic arrays with local
broadcast facility,” in IEEE ASAP, 1992, pp. 415–428.

[25] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016, pp. 770–778.

 


	Select a link below
	Return to Previous View
	Return to Main Menu


