
FPGA-Based Accelerator for Rank-Enhanced and
Highly-Pruned Block-Circulant Neural Networks

Haena Song1, Jongho Yoon1, Dohun Kim1, Eunji Kwon1, Tae-Hyun Oh1,2,†, and Seokhyeong Kang1,2*
1Department of EE and 2Graduate School of AI, POSTECH, Pohang, South Korea

*shkang@postech.ac.kr

Abstract—Numerous network compression methods have been proposed
to deploy deep neural networks in a resource-constrained embedded
system. Among them, block-circulant matrix (BCM) compression is one
of the promising hardware-friendly methods for both acceleration and
compression. However, it has several limitations; (i) limited representation
due to the structural characteristic of circulant matrix, (ii) limitation
of the compression parameter, (iii) need to specialize the dataflow for
BCM-compressed network accelerators. In this paper, rank-enhanced and
highly-pruned block-circulant matrices compression (RP-BCM) frame-
work is proposed to overcome these limitations. RP-BCM comprises two
stages: Hadamard-BCM and BCM-wise pruning. Moreover, a dedicated
skip scheme is introduced to processing element design for exploiting high-
parallelism with BCM-wise sparsity. Furthermore, we propose specialized
dataflow for a BCM-compressed network on a resource-constrained FPGA.
As a result, the proposed method achieves parameter reduction and FLOPs
reduction for ResNet-50 in ImageNet by 92.4% and 77.3%, respectively.
Moreover, the proposed hardware design achieves 3.1× improvement in
energy efficiency on the Xilinx PYNQ-Z2 FPGA board for ResNet-18 on
ImageNet compared to the GPU.

Index Terms—Network Compression, Structured Pruning, CNN Accel-
erator, FPGA, Convolution Neural Networks

I. INTRODUCTION

Deep neural networks (DNNs) have exhibited great performance
improvement as network size increases, stacking layers deeper to
extract complex features [1]. However, the enormous parameter size
and computational overhead make DNNs difficult to deploy on edge
devices that must operate with limited resources and low power
consumption. Therefore, numerous methods have been proposed to
compress and accelerate DNNs [2]. Unstructured pruning was in-
troduced as one of the earliest methods [3]. Unstructured pruning
measures the importance of weights in an individual element level,
and then removes less important weights. Despite the advantage of
high compression, it is difficult to accelerate on hardware, primarily
because the network has an irregular sparsity, which renders it unable
to maintain high-parallelism on hardware.

To resolve the problem of irregular computation patterns, network
compression imposing regular structure has been introduced. As one of
them, block-circulant matrix (BCM) compression divides the weight
tensor into sub-blocks, where each block is represented in the form
of a circulant matrix [4]. A circulant matrix has the same elements
in all row vectors; but the elements in each row vector are rotated
(Fig. 1a). Consequently, the memory size complexity is reduced from
O(n2) to O(n), since the full weight tensor can be represented with
only one row vector per BCM. BCM compression can maintain high-
parallelism of the computation due to the regular computation pattern
of sub-circulant matrices. Moreover, the computational complexity can
be reduced from O(n2) to O(n logn), since the matrix multiplication
of the circulant matrix can be replaced by “FFT−Elementwise MAC
(eMAC)−IFFT.”

Despite these strengths, BCM compression has some critical lim-
itations that degrade performance. First, when training the weights
of network to form BCMs, most weights have limited representation,

This work was supported by LIG Nex1 Co., Ltd. and Institute of Information
communications Technology Planning Evaluation (IITP) grant funded by
the Korea government (MSIT).(No.2022-0-01172, DRAM PIM Design Base
Technology Development).

†T.-H. Oh is adjunct with Yonsei University, Seoul, South Korea.

IFFT =

𝑦!

𝑦"
𝑦#
𝑦$𝑥! 𝑥" 𝑥# 𝑥$

FFT

FFT

𝑤! 𝑤" 𝑤# 𝑤$
𝑤$ 𝑤! 𝑤" 𝑤#
𝑤# 𝑤$ 𝑤! 𝑤"
𝑤" 𝑤# 𝑤$ 𝑤!

𝑷𝒂𝒓𝒕𝒊𝒂𝒍	𝑰𝒏𝒑𝒖𝒕

𝑾𝑩𝑪𝑴	
𝑷𝒂𝒓𝒕𝒊𝒂𝒍
𝒐𝒖𝒕𝒑𝒖𝒕

Element-wise
Multiplication

(a)

=

𝑾𝒃𝒄𝒎
𝟎,𝟎,𝟎,𝟎 𝑾𝒃𝒄𝒎

𝟎,𝟏,𝟎,𝟎 𝑾𝒃𝒄𝒎
𝟎,𝟐,𝟎,𝟎

𝑾𝒃𝒄𝒎
𝟏	𝟐,𝟎,𝟎𝑾𝒃𝒄𝒎

𝟏	𝟏,𝟎,𝟎𝑾𝒃𝒄𝒎
𝟏	𝟎,𝟎,𝟎

𝑾𝒃𝒄𝒎
𝟐	𝟎,𝟎,𝟎 𝑾𝒃𝒄𝒎

𝟐	𝟏,𝟎,𝟎 𝑾𝒃𝒄𝒎
𝟐	𝟐,𝟎,𝟎

𝐴𝑐𝑡𝑢𝑎𝑙	𝑠𝑎𝑣𝑒𝑑	𝑤𝑒𝑖𝑔ℎ𝑡	

(b)
Fig. 1: (a) Computation sequence of circulant matrix. (b) Illustration of
BCM-compressed convolution layer. The elements of the same color form
each BCM.

because each row of a BCM must contain the same elements of the
first row. Due to this constraint, the representation of the network may
be limited, resulting in a significant accuracy degradation. Second,
the trade-off between compression ratio and accuracy drop cannot
be flexibly determined, since the BCM size should be 2n for the
FFT calculation. Second, the trade-off between compression ratio
and accuracy drop cannot be flexibly determined, since the BCM
size should be 2n for the FFT calculation. Furthermore, when the
BCM size is larger, there is a significant accuracy drop because the
BCM compression compresses the network without considering the
importance of the weights. For this reason, it is necessary to overcome
the limitations while maintaining the advantages of BCM compression.

In this paper, we propose a rank-enhanced and highly-pruned block-
circulant matrices compression (RP-BCM) framework. Our proposed
framework compresses the network in two stages. In the first stage,
we apply the Hadamard product of BCM to mitigate the accuracy
degradation in the rank-perspective. In the second stage, we obtain
the importance of the weights in the BCM units and further compress
with BCM-wise pruning. Moreover, a dedicated hardware design for
RP-BCM is proposed along with specialized dataflow for a BCM-
compressed network on a resource-constrained FPGA. The main
contributions of this paper are as follows:

• We introduce Hadamard-BCM (hadaBCM) to overcome the
lack of representation of traditional BCM compression in rank-
perspective. Our method can be utilized without any overhead on
the inference accelerator.

• We propose the BCM-wise pruning to yield more effective
compression ways. Moreover, we show that BCM-wise pruning
achieves significant compression ratio compared to other com-
pression methods. In particular, to the best of our knowledge,
this is the first time we have achieved a parameter reduction of
more than 90% within similar accuracy drop as we have reported
for ResNet-50 on ImageNet.

• We propose the dedicated dataflow for RP-BCM on FPGAs. We
also propose the processing element design to exploit BCM-wise
sparsity with high-parallelism.

The rest of this paper is organized as follows: Section II summarizes
the background for BCM compression and our research motivations.
Section III and IV explain the RP-BCM framework and hardware im-
plementation, respectively. Section V reports the experimental result.
Finally, the conclusion is presented in Section VI.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

II. BACKGROUND AND MOTIVATION

A. Block-Circulant Matrices (BCM) Compression

Matrix-multiplication of the circulant matrix and “FFT-eMAC-
IFFT” of first row vector of the circulant matrix have the same result
(Fig. 1a). It can reduce the computational complexity from O(n2)
to O(n logn). Also, the memory storage complexity is reduced from
O(n2) to O(n), since only one row vector of the circulant matrix is
needed. After BCM compression, the network can be accelerated more
efficiently than other compression methods, primarily because it can
maintain high-parallelism on the hardware with the regular structure,
BCM. Because of these advantages, BCM compression is used for
various networks [4]–[8].

We briefly introduce the BCM-compressed convolution layer which
is the focus of this paper. Let W ∈ RK×K×Cin×Cout denote the
weight tensor of a convolution layer, where K, Cin, and Cout rep-
resent the weight kernel size, input channel size, and output channel
size, respectively. In BCM compression, W forms multiple BCMs
toward the input and output channel directions. In other words,
W is partitioned into the set of BCMs, {W0,0,0,0

bcm , W0,0,0,1
bcm , ... ,

W
kh,kw,

cin
BS ,

cout
BS

bcm , ... , W
K-1,K-1,Cin−1

BS ,
Cout−1

BS
bcm } ∈ RBS×BS , where BS

indicates the size of the BCM. Fig. 1b illustrates the example of BCM-
compressed convolution weights with K=3, Cin=Cout=4, and BS=4.
The ‘FFT−eMAC’ between each BCM and the partial input vector
is executed. Then, the fully accumulated complex-valued output is
recovered to the real-valued output via the IFFT. Note that for better
understanding, we notate the process of BCM compression with the
entire BCM. However, in practice, only the first row vector per Wbcm

is used in the training and inference phases. This is because the
substituted computation (Fig. 1a) is applied in both backward and
forward propagation [4].

B. Motivation

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Gaussian
Convolution
BCM

Singular Value Index Singular Value Index

N
or

m
al

iz
ed

 M
ag

ni
tu

de

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Gaussian
Convolution
BCM

Fig. 2: Visualization of the singular values decaying of convolution layer
in VGG-16 network trained on Cifar-10. The left and right graphs show
singular values of 16×16 matrix and 32×32 matrix, respectively.

1) Limited Representation from Rank-Perspective: In neural net-
works, the matrix rank contains the information of the features [9]–
[11]. Thus, the matrix rank measures the strict upper bound on the
degree of expressiveness of a weight matrix [10]. However, due to
the structural constraint of the BCM, numerous BCM-compressed
weights eventually may have limited capability of representation. If the
effective rank tends to be restricted by this constraint, each layer of the
network lacks feature representation power, resulting in performance
degradation. Fig. 2 visualizes this problem by showing singular value
decaying graphs of different weight types. Rank-condition of a matrix
can be checked by observing the decay of the singular values [12].
The singular values of a matrix close to full rank have a linear decay
(e.g., Gaussian random matrix [13]). In contrast, a matrix with poor
rank-condition tends to have an exponential decay. The singular values
of the BCM exhibit extreme exponential decay compared to those
of the Gaussian and the original convolution. This means that the
rank-condition of each BCM seems to be unfavorable for sufficient
feature extraction. In such a scenario, we define that the BCM is
in a poor rank-condition, particularly when it has more than 50%

=

Actual	saved	weight	

𝑺𝒕𝒂𝒈𝒆	𝟏)
𝒉𝒂𝒅𝒂𝑩𝑪𝑴	𝒄𝒐𝒎𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏

𝑺𝒕𝒂𝒈𝒆	𝟐)	
𝑩𝑪𝑴𝒘𝒊𝒔𝒆	𝑷𝒓𝒖𝒏𝒊𝒏𝒈

⨀

set	of	𝑊!"#

set	of	𝐴!"# set	of	𝐵!"#

=

Pruned	set	of	𝑊!"#

Fig. 3: Proposed two-step BCM compression framework, RP-BCM.

singular values whose magnitude is less than 5% of the largest value,
which can be regarded as a simple special case of the effective rank
measure [14]. In VGG-16 on Cifar-10, more than 70% of BCMs
are observed in poor rank-conditions across entire layers in all BCM
sizes of 8, 16, and 32. This ratio is notable compared to the original
convolution, where only 2% of the matrix units are in poor rank-
conditions. This observation indicates that the limited representation
of traditional BCM compression needs to be alleviate.

2) Limitation of Compression Parameter: BCM compression uses
only one parameter, block size (BS), to determine the compression
ratio. Therefore, it has several limitations. First, increasing BS directly
affects the hardware cost. In general, BS should be 2n for the FFT
calculation. Thus, a larger compression ratio requires additional com-
putation overhead. Second, the compression ratio cannot be determined
at a fine-grained level. Simply adopting a large 2n for BS can result
in a significant accuracy drop, since BCM compression does not take
into account the importance of weights. Therefore, there are few
practical options for the compression parameters to achieve a good
trade-off between accuracy and compression ratio. These limitations
have been shown in the previous work. REQ-YOLO [6] applied BCM
compression to a CNN-based YOLO network using only four values of
BS (4, 8, 16, and 32). FTRANS [8], which applied BCM compression
to a transformer-based network, used only three values of BS (4, 8,
and 16). If we can assign flexible compression ratios according to
importance of the weights in BCM compression, it would be beneficial
to allow wider compression ratio ranges.

3) Need for Specialized Dataflow for BCM-compressed Networks
on FPGAs: Depending on the buffer size, the dataflow of the CNN
accelerator can be divided into four categories [15]; i) both inputs
and weights are fully buffered, ii) only weights are fully buffered, iii)
only inputs are fully buffered, and iv) neither inputs nor weights are
fully buffered. REQ-YOLO [6] proposed a BCM-compressed network
accelerator on FPGA, adopted a dataflow of ii), and treated “FFT-
eMAC-IFFT” as a computational delay in the dataflow. However,
resource-constrained FPGAs cannot buffer all weight data. Therefore,
most CNN accelerators for edge devices adopt the dataflow of iv).
In this dataflow, where off-chip access is performed tile-by-tile, it is
crucial to reuse the data with a limited buffer. Also, since the input data
is directly related to the amount of FFT computations in the BCM-
compressed network, the resue of input data should be maximized to
reduce unnecessarily repeated FFT computations. Furthermore, since
each computation has a different data dependency, it is inefficient to
treat “FFT-eMAC-IFFT” as a single computional delay in the dataflow,
where all data is loaded tile-by-tile. Therefore, it is inefficient to simply
adopt the existing CNN dataflow, and we need a special dataflow
for BCM-compressed networks when targeting resource-constrained
FPGAs.

!

!

B

𝑎! 𝑎" 𝑎# 𝑎$
𝑎$ 𝑎! 𝑎" 𝑎#
𝑎# 𝑎$ 𝑎! 𝑎"
𝑎" 𝑎# 𝑎$ 𝑎!

⨀

𝑏! 𝑏" 𝑏# 𝑏$
𝑏$ 𝑏! 𝑏" 𝑏#
𝑏# 𝑏$ 𝑏! 𝑏"
𝑏" 𝑏# 𝑏$ 𝑏!

𝑨

𝑤! 𝑤" 𝑤# 𝑤$
𝑤$ 𝑤! 𝑤" 𝑤#
𝑤# 𝑤$ 𝑤! 𝑤"
𝑤" 𝑤# 𝑤$ 𝑤!

=

𝑾𝑩𝑪𝑴	

(a)

Element-wise
Multiplication IFFT

𝑎! 𝑎" 𝑎# 𝑎$

=

𝑦!

𝑦"
𝑦#
𝑦$

𝑏! 𝑏" 𝑏# 𝑏$
⨀

𝑥! 𝑥" 𝑥# 𝑥$

FFT

FFT

Pre-Processing Part

(b)

Fig. 4: (a) Each BCM is reparameterized to the Hadamard product of two BCMs. (b) Implementation of hadaBCM. The Hadamard product and FFT
can be pre-computed before the inference.

(a) ResNet-18−first layer (b) ResNet-18−last layer (c) ResNet-50−first layer (d) ResNet-50−last layer
Fig. 5: Norm distribution of pruning unit from first/last layer of ResNet-18 on Cifar-10 and ResNet-50 on ImageNet. The curves and triangle marks
indicate the kernel distribution estimate (KDE) [16] of the norm distribution and min/max norm values.

III. RP-BCM FRAMEWORK

A. Hadamard-BCM Paramaterization
In Section II-B, we note that many BCMs have a limited represen-

tation in rank-perspective. For a better rank-condition of these BCMs,
we propose Hadamard-BCM (hadaBCM) in the training phase, a new
parameterization for BCMs that incorporates the Hadamard product
(Stage 1 in Fig. 3).

The hadaBCM is illustrated in Fig. 4. The hadaBCM replaces each
Wbcm by the Hadamard product of the two same sized circulant
matrices as Wbcm = Abcm⊙Bbcm. Note that, for the circulant matrices
Abcm and Bbcm, the result of Abcm⊙Bbcm is also a circulant matrix.
When rank(Abcm) = ra and rank(Bbcm) = rb, rank(Wbcm) =
rank(Abcm⊙Bbcm) ≤ rarb, and the upper bound is maximized when
ra = rb [10]. The weight update rule of hadaBCM has an inherent
regularization effect that makes ra = rb. Therefore, this condition can
be satisfied without requiring any special training techniques other than
applying the Hadamard product. The gradient of the loss function L
with respect to Abcm and Bbcm can be expressed as follows:

∂L
∂Abcm

=
∂L

∂Wbcm

⊙ Bbcm,
∂L

∂Bbcm

=
∂L

∂Wbcm

⊙ Abcm. (1)

The gradients for Abcm and Bbcm are regulated by the value of
each other, creating an opposite feedback loop between Abcm and
Bbcm. Accordingly, this effect stabilizes the value of Abcm and Bbcm

to ra = rb by repeating the training epoch. Using this property, the
reparameterized Wbcm can achieve better representation by improv-
ing the rank-condition compared to the original BCM, leading to
an improvement in the accuracy performance. We demonstrate this
performance improvement experimentally later in Section V.

The Hadamard product can be pre-processed in the frequency do-
main before the inference phase (Fig. 4b). This means that hadaBCM
does not require any overhead in computation and storage on the
inference accelerator for BCM-compressed networks. Accordingly,
hadaBCM can enhance accuracy while maintaining the benefits of
previous BCM compression.

B. BCM-wise Pruning
BCM-wise pruning eliminates weights in the BCM unit with low

importance (Stage 2 in Fig. 3). We use the ℓ2-norm as a criterion
for the importance of BCM. Norm-based pruning is one of the filter
pruning methods [17]–[19]. There are two requirements [20]; i) the
deviation of norm should be large, ii) the smallest norm should be
small. However, since it is difficult to satisfy these points with a

conventional CNN, the norm-based criterion has not been effectively
used for CNNs.

We argue that the norm-based criterion is suitable for BCM-
wise pruning, because the BCM-compressed network satisfies these
requirements due to the structural characteristic of the circulant matrix.
For the pruning unit U ∈ RBS×BS, the conventional CNN’s Ucnn has
BS2 individual values. Meanwhile, Ubcm of the BCM-compressed
network has BS values. According to the law of large number, the
larger size of samples gets, the smaller the standard deviation of the
sampling distribution becomes. Due to the smaller number of values
contributing to the norm than Ucnn, Ubcm statistically obtains a wider
norm distribution than Ucnn. Fig. 5 shows that Ubcm has a larger
deviation than Ucnn in the real observation of the norm distribution in
the trained network. It is also found that the minimum value of Ubcm

is closer to zero in most of the layers. These satisfactions show that
the norm-based criterion is suitable for BCM-wise pruning.

Algorithm 1: Pseudo-code for BCM-wise Pruning

input : Pre-trained Abcm = {A1
bcm, A2

bcm, ..., Anumtotal
bcm }, and Bbcm =

{B1
bcm, B2

bcm, ..., Bnumtotal
bcm }, Initial pruning ratio αinit, Step

pruning ratio αstep, Target Accuracy β
output: Pruned set of BCMs Âbcm and B̂bcm

1 Initialize α to αinit

2 Initialize Âbcm, B̂bcm to Abcm, Bbcm

3 for i=1 to numtotal do
4 norm list.append(ℓ2-norm of Ai

bcm⊙Bi
bcm)

5 end
6 norm listsort ← sort(norm list)
7 while Accbest ≥ β do
8 numprune ← α∗numtotal

9 Vthreshold ← norm listsort[numprune]
10 for i=1 to numtotal do
11 if norm list[i] ≤ Vthreshold then
12 Eliminate Âi

bcm and B̂i
bcm

13 end
14 end
15 Fine-tunining with Âbcm , B̂bcm

16 α← α + αstep

17 end

Algorithm 1 indicates the overall process of BCM-wise pruning.
After training with hadaBCM, we obtain the sets of BCMs, Abcm

and Bbcm. We obtain ℓ2-norm of W i
bcm = Ai

bcm ⊙ Bi
bcm, where i

= 1, . . . , numtotal (Line 5). The number of BCMs to be removed,
numprune, is determined according to α, the adaptive pruning ratio
parameter. Accordingly, Ai

bcm and Bi
bcm that have lower norm than

the Vthreshold are eliminated, and the network is fine-tuned. First,

!

!

α is initialized to pre-determined αinit. As long as the fine-tuned
accuracy meets the target accuracy β, α is updated to a larger ratio
by incrementally adding with small steps, αstep. Fine-tuning is done
iteratively using the pruned network with updated α to obtain an
optimal pruning ratio until the fine-tuned accuracy reaches β. By
adjusting α and β, we can determine the degree of trade-off between
the accuracy and the compression ratio at a more fine-grained level.

IV. HARDWARE IMPLEMENTATION

A. Overall Architecture

Real-Input
Read Buffer

BatchNorm

Complex-Weight
Read Buffer

Skip Index Buffer

Complex-Input
Partial Buffer

Pruned-BCM
PE Bank

ReLU Pooling

Off-Chip

Element-MAC

Element-MAC

…

FFT PE Bank

F
F
T

F
F
T

F
F
T

…

ROM >>

Complex-Output
Partial Buffer

Fig. 6: Overall architecture of RP-BCM on FPGA.

The hardware architecture consists of buffers, FFT processing
elements (PE) bank, Pruned-BCM PE bank, and non-linear modules
(Fig. 6). The complex weights are loaded directly after pre-processing
the weight data with the Hadamard product and FFT. The FFT PE
performs the conversion between real data and complex data. Essential
data for the FFT, such as the twiddle factor, are pre-stored in the ROM.
The Pruned-BCM PE bank performs the eMAC by exploiting BCM-
wise sparsity and produces a complex partial output.

B. PE Design for BCM-wise Pruning

Complex-Output
Partial Buffer

BS/2
 +1

Sk
ip

 In
de

x
Bu

ffe
r

1 …

0
1
1

Complex-Weight Buffer
x + jy

1
0
0

…

BS/2
 +1

𝑇!"

𝑇!#

x + jy

…

…

Complex-Input Partial Buffer

BS/2
 +1

𝑇$"

𝑇$#

𝑇!"(!$): input tile buffer width (height)
𝑇&"(&$): output tile buffer width (height)

…

p

𝑥$%&'(
𝑥")$*#(

conjugate

𝑦$%&'(
𝑦")$*#(
𝑥$%&'(
𝑦")$*#(
𝑦$%&'(
𝑥")$*#(

𝑥!'(&'(

𝑦!'(&'(

BS/2
 +1

…

Element-MAC PE

A
cc

um
ul

at
or

…

…

Fig. 7: Pruned-BCM PE design exploiting BCM-wise pruning. p indicates
the parallelism factor.

Since the FFT PE is designed using the well-known Cooley-Tukey
FFT algorithm [21], a detailed description is omitted. The IFFT
is computed by reusing the FFT module with BS size-divider and
conjugate. Since the FFT size is always 2n, we implement a BS size-
divider as a log2 BS shift operator to reduce the expensive hardware
cost of the divider. We integrate the conjugate operation into the MAC
of the Pruned-BCM PE (Fig. 7).

A Pruned-BCM PE includes multiple element-MAC (eMAC) PEs
(Fig. 7). One eMAC PE executes the complex eMAC for the BS-
size partial weights and BS-size partial inputs. Note that BS-size
computation consists of only BS

2
+1 MAC operations, since the FFT

result of the real value is conjugate-symmetric [6]. p indicates the
number of pruned-BCM PE in one bank. It is the parallelism factor
determined according to the resource capability. p PEs execute eMAC
with each different partial inputs with reusing the same BS-weight in

parallel. Before the computation, the PE controller checks the skip
index bit, which indicates whether the corresponding BCM is pruned
or not. When the skip index is zero, the PE controller skips the
execution of the PE banks for the corresponding pruned weight. Then,
the PE controller immediately executes the PE banks for the next non-
pruned BCM-weight.

Note that the dataflow can maintain high-parallelism even with
sparsity, since skip processing is performed over multiplie PEs
share the same partial weights. The skip index buffer is a neg-
ligible overhead, only one bit per BCM. For example, for the
K×K×Cin×Cout size convolution layer, the skip index buffer size
is only K×K×Cin

BS ×Cout
BS ×1 bits. Overall, the computation process

is maintained with only the costs of checking the skip index that
consumes very little time compared to main computation of PE.

C. Fine-grained Dataflow for RP-BCM

Off-chip input load ⎼
input FFT latency hide

FFT
Tiled
buffer

Pruned-BCM PE

Off-
Chip

>> FFTOff-
Chip

Non-
linear

Off-chip output store ⎼
output IFFT latency hide

Off-
Chip

Off-chip
weight load
⎼ eMAC

latency hide

1

3

2

(a)

In W In In Out OutIn W In Out In Out OutOut

eMAC eMAC eMAC eMAC eMAC eMAC

FFT FFT FFT IFFT FFT IFFT FFT IFFT FFT IFFT IFFT IFFT

Time: Off-chip Access delay : Compute delay

1 2 3

: Data dependency

(b)

Fig. 8: (a) Proposed dataflow with separated double buffering. Red and
blue arrows indicate alternative execution with each double buffering. (b)
Example of dataflow in tile-by-tile. One weight tile is reused for multiple
input tiles to produce multiple output tiles. For comparison with CNN’s
conventional dataflow, this access manner is the same as in Ma et al. [15].

As mentioned in Section II, most accelerators for edge devices use a
dataflow of where neither the inputs nor the weights are fully buffered
due to insufficient resources. We propose a fine-grained dataflow with
BCM-compressed network for the tile-by-tile process (Fig. 8a). There
are three tile-by-tile off-chip accesses: input read, weight read, and
output store. The BCM-compressed network consists of three types
of computations: FFT (Cfft), eMAC (Cemac), and IFFT (Cifft). We
separate these computations to each computational delay and apply
double buffering for each off-chip access. Each C has a different data
dependency that requires off-chip access. Cfft, Cemac, and Cifft need
off-chip access for the real input, complex weight, and real output,
respectively. Each double buffering can hide the corresponding off-
chip access latency with the respective C latency. Double buffering for
Cfft and Cifft requires only a small overhead of two BS-size buffer.
This is because FFT and IFFT are executed per BS-size. For Cemac, the
overhead depends on the parallelism of the PE banks. Depending on
the resource capability of the targeted FPGA, the size of the complex
partial input/output buffer and the parallelism of the PE bank are
determined. This has a direct impact on the computation delay of
Cemac. Moreover, each PE independently executes the corresponding
C in parallel, hiding the latency between each C, not just between
off-chip access and C (Fig. 8b).

!

!

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 M
ag

ni
tu

de

Singular Value Index

Convolution BCM hadaBCM

(a) Singular values decaying

87

90

93

85 88 91 94 97 100

A
cc

ur
ac

y
(%

)

Parameter reduction (%)

BCM Compression Ours *1 Ours *1 + *2 (BS=8)

BS = 8

𝛼 = 0.75
Baseline Accuracy

BS = 16

BS = 32

𝛼 = 0.5

(b) VGG-16 on Cifar-10

57

65

73

70 75 80 85 90 95 100

A
cc

ur
ac

y
(%

)

Parameter reduction (%)

BCM Compression Ours *1 Ours *1 + *2 (BS=4)

BS = 4

BS = 8

BS = 16

𝛼 = 0.75𝛼 = 0.5Baseline Accuracy

(c) VGG-19 on Cifar-100
Fig. 9: (b) and (c) indicate the accuracy and parameter reduction of proposed RP-BCM. Triangle marks indicate the break-down point of Algorithm 1
within target accuracy β (92.0% and 71.0%, respectively). Ours *1 and *2 indicate hadaBCM and BCM-wise pruning, respectively.

TABLE I: Comparison with other compression on ImageNet.

Method Top-1 Top-5 FLOPs ↓ (%) Params. ↓ (%)
Acc. (%) △ (%) Acc. (%) △ (%)

Baseline 76.15 - 92.87 - - -
BPPS [22] 70.58 -5.57 90.00 -2.87 75.80 68.55
GAL [23] 71.80 -4.35 90.82 2.05 55.01 24.27
HRank [9] 71.98 -4.17 91.01 -1.86 62.10 46.00
ThiNet [24] 72.04 -4.11 90.67 2.20 36.79 33.72

Ours (BS=8, α=0.5) 71.99 -4.16 90.25 -2.62 77.33 92.40
TRP [11] 72.69 -3.46 91.41 -1.46 56.50 N/A

BPPS [22] 73.06 -3.09 91.30 -1.57 67.97 57.49
CHIP [25] 73.30 -2.85 91.48 -1.39 76.70 68.60
FPGM [26] 74.83 -1.32 92.32 -0.55 53.50 N/A

Ours (BS=4, α=0.7) 73.12 -3.02 91.42 -1.45 68.88 88.79

V. EXPERIMENTAL RESULTS

A. Experimental Settings

To evaluate the accuracy improvement and compression, we im-
plemented common CNN-based networks with our proposed method.
To show that the proposed method works well for various network
architectures and datasets, we compressed VGG-16, VGG-19, and
ResNet-50 on Cifar-10, Cifar-100, and ImageNet, respectively. For
training, we used a SGD optimizer and a cosine annealing scheduler.
To evaluate the performance of the proposed hardware design, we
designed the hardware using Xilinx Vivado HLS, a high-level (C/C++)
based design tool. Since we targets low-power embedded systems, we
selected Xilinx PYNQ-Z2 (XC7Z020) as the target FPGA board, which
has low resources such as 630Kb BRAM, 220 DSPs.

B. Experimental Results of Proposed RP-BCM

To show the accuracy and compression performance of RP-BCM,
which comprises hadaBCM and BCM-wise pruning, we first show
and analyze the performance improvement of each stage. Then, we
also show the comparison with state-of-the-art compression methods.

1) Accuracy Improvement of the hadaBCM: Fig. 9a illustrates the
singular values decaying of the same BCM as in the left side of Fig. 2.
Compared to the BCM, which has an extremely exponential decay, the
singular values of the hadaBCM decay more linearly. A more linear
decay of the singular values indicates an improved rank-condition of
the matrix [12]. These improved BCMs were observed across the entire
network. For the traditional BCM-compressed VGG-16 on Cifar-10,
72.2% of the BCMs have a poor rank-condition. In contrast, only 2.1%
of the BCMs have poor rank-condition in the hadaBCM-compressed
network. These enhanced rank-condition of BCMs can have a better
representation, leading to an accuracy improvement, as shown in Figs.
9b and 9c (Ours *1).

2) Accuracy and Compression Results of the BCM-wise Pruning:
After applying hadaBCM, we pruned the weights in BCM-wise
manner, and fine-tuned VGG-16 on Cifar-10 and VGG-19 on Cifar-
100 with target accuracy β=92.0%, and β=71.0%, respectively. For
comparison, we indicated the α in the same total parameter reduction

TABLE II: Resource estimation with the proposed skip scheme.

BRAM DSP FF LUT
w/o Skip Scheme 109 (78%) 116 (53%) 30426 (29%) 17879 (34%)
w/ Skip Scheme 112.5 (80%) 117 (53%) 32105 (30%) 18203 (34%)

0

5

10

15

20

25

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BCM-wise Pruning Ratio α

w/ Skip Scheme
-3.1% 6.0% 13.8%

23.5% 33.2% 42.1% 51.6% 62.2% 68.8% 80.0%

w/o Skip Scheme

Ex
ec
ut
ion

	Cy
cle
	×

10
!

Fig. 10: Estimation of the execution cycle according to the pruning ratio.

with traditional BCM compression in Figs. 9b and 9c. For example,
our method with BS=8 and α=0.5 had the same parameter reduction
as traditional BCM compression with BS=16 in VGG-16. In VGG-
16 on Cifar-10, when BS=8 and α=0.75, it showed a 3.25% accuracy
improvement compared to traditional BCM compression with the same
parameter reduction. For more complex datasets (VGG-19 on Cifar-
100), our result using BS=4 and α=0.75 showed an 11.57% accuracy
improvement compared to traditional BCM compression using only
BS=16. The impact of BCM-wise pruning can be divided into two
main points. First, it provides more diverse compression ratios, in con-
trast to traditional BCM compression, which only has the compression
parameter BS that increases exponentially to 2n. The proposed method
can ahieve more diverse compression ratios by setting an additional
adaptive parameter, α. Also, since our method compresses the network
with considering the importance of the weights, our method achieves
better accuracy performance with a huge parameter reduction.

3) Accuracy and Compression of Entire Framework: Aforemen-
tioned VGG-16 and VGG-19 networks have only 1.2% and 1.3%
accuracy losses, respectively. With these small accuracy losses, our
method achieved 96.75% and 93.68% parameter reduction in each
network. Note that, greater compression than we reported can be
achieved by adjusting α and β in Algorithm 1. To evaluate on more
complex datasets, we applied RP-BCM to ResNet-50 on ImageNet.
Table I shows the accuracy, FLOPs reduction and parameter reduction
in comparison. We conducted the experiment by setting the target
Top-1 accuracy β in two categories: 92% and 93% with BS=8 and
4, respectively. Our method achieved 77.3% FLOPs reduction and
92.40% parameter reduction with an accuracy of 71.99%. With the
73.12% accuracy, the result showed 68.88% and 88.80% reduction
in FLOPs and parameter, respectively. This means that the degree of
compression can be determined in fine-grained levels by adjusting the
target accuracy. One noticeable thing is that the parameter reduction
of our result had quite a high ratio compared to other methods.
These results support that our method facilitates deployment of neural

!

!

TABLE III: Comparison of CNN implementation with GPU, the previous works and our implementation on PYNQ-Z2 (XC7Z020).

Implementation ResNet-18 (GTX 1080Ti) VGG [27] ResNet-18 [28] ResNet-18 [28] ResNet-18 (Ours)

Method - Quantization
(W8A8)

Mixed-Precision Quantization
(W4A5 + First & Last W8A5)

Mixed-Precision Quantization
(95% W4A5 + 5% W8A5)

RP-BCM
(hadaBCM + Pruning)

Frequency (MHz) - 214 100 100 100
kLUT - 29.9 (56%) 39.1 (74%) 41.3 (78%) 18.2 (34%)
DSP - 190 (86%) 214 (97%) 208 (95%) 117 (53%)

BRAM - 85.5 (61%) 126.5 (90%) 123 (88%) 112.5 (80%)
Power (W) 148.54 3.5 3.0 3.5 1.83

Frame Rate (FPS) 325.73 2.72 12.9 27.8 12.5
FPS/kLUT - 0.09 0.33 0.67 0.69
FPS/DSP - 0.014 0.06 0.13 0.11
FPS/W 2.19 0.11 4.3 7.94 6.83

networks on embedded systems. This is because the parameter size
directly affects the DRAM access that is the largest latency bottleneck.

C. Performance of Accelerator Design

1) Resource Estimation and Latency with BCM-wise Sparsity:
Table II shows the resource utilization with and without applying
the proposed scheme. Both designs have the same parallelism of PEs
and the same dataflow. This result shows that the resource overhead
of our design is quite low. Fig. 10 represents the execution cycle
estimation according to α. We performed the simulation of the one
layer of ResNet-18, which has the feature map size = 128×28×28, and
weight kernel size = 3×3. With the BCM-wise sparsity, the proposed
PE showed the linear tendency of cycle reduction according to the α.
This means that the proposed design can maintain high parallelism
with sparsity. To estimate the overhead time of the skip operation, we
compared the execution cycle of the proposed PE and the conventional
PE with α=0. For the non-pruned layer, the execution cycle was
increased by 3.1%, compared to conventional PE. This is quite a
small overhead compared to the main computations. Consequently,
our proposed design can maintain high parallelism exploiting BCM-
wise sparsity with negligible extra overhead in both resources and
execution time.

2) Efficiency for Embedded Systems: Resource efficiency and en-
ergy efficiency are important for low-power embedded systems. To
evaluate the efficiency of our proposed design, we compared the
resource efficiency (FPS/kLUT and FPS/DSP) and energy efficiency
(FPS/W) with GPU (Nvidia GTX 1080Ti) and other CNN accelerators
using the same target board, XC7Z020 (Table III). We implemented
the ResNet-18 on ImageNet with our proposed RP-BCM. The com-
pression parameters were BS=8 and α=0.5, which were used in Table
I. Our design achieved 0.69 FPS/kLUT, 0.11 FPS/DSP, and 6.83
FPS/W. Compared to the GPU, our design showed 3.1× higher FPS/W,
indicating higher energy efficiency. Although our implementation
had low resource utilization and any quantization was not applied,
our design with just 16-bit fixed-point computation showed similar
resource and energy efficiency as the previous implementation with
up to 4-bit quantization. Note that, since the dedicated quantization
methods for BCM-compressed network are available [6], [29], such
quantization methods may lead to further improvement in the energy
efficiency of our framework.

VI. CONCLUSION

In this paper, we propose a rank-enhanced and highly-pruned BCM
compression (RP-BCM) framework which overcomes the limitations
of existing BCM compression methods. We propose to use hadaBCM
to enhance the rank condition of BCM improving the representation of
the compressed network. We also suggest BCM-wise pruning, which
introduces high flexibility to choose the trade-off between accuracy
and compression. We introduce dedicated PE design to exploit struc-
tured sparsity from the BCM-wise pruning, and fine-grained dataflow
for BCM-compressed networks. As a result, our method achieved
outstandingly high compression performance with negligible accuracy
degradation. Especially, our proposed method achieved the largest

parameter reduction compared to other compression methods with the
same target accuracy. The experiments of hardware implementation
demonstrated the suitability of our method in deploying DNNs on
low-power embedded systems.

REFERENCES

[1] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, Proc. ICLR, 2015.

[2] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware
acceleration for neural networks: A comprehensive survey”, Proceedings of the IEEE
108(4), 2020, pp. 485-532.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: compressing deep neural
networks with pruning, trained quantization and huffman coding”, Proc. ICLR, 2016.

[4] C. Ding, et al., “CirCNN: accelerating and compressing deep neural networks using
block-circulant weight matrices”, Proc. MICRO, 2017, pp. 395-408.

[5] Y. Cheng, and S. F. Chang et al., “An exploration of parameter redundancy in deep
networks with circulant projections”, Proc. ICCV, 2015, pp. 2857-2865.

[6] C. Ding, and Y. Liang et al., “REQ-YOLO: A resource-aware, efficient quantization
framework for object detection on FPGAs”, Proc. FPGA, 2019, pp. 33-42.

[7] S. Wang, Z. Li, C. Ding, and Y. Liang et al., “C-LSTM: Enabling efficient LSTM
using structured compression techniques on FPGAs”, Proc. FPGA, 2018, pp. 11-20.

[8] B. Li, S. Pandey, H. Fang, and C. Ding et al., “Ftrans: energy-efficient acceleration
of transformers using fpga”, Proc. ISLPED, 2020, pp. 175-180.

[9] M. Lin, R. Ji, Y. Wang, and L. Shao et al., “Hrank: Filter pruning using high-rank
feature map”, Proc. CVPR, 2020, pp. 1529-1538.

[10] N. Hyeon-Woo, M. Ye-Bin, and T.-H. Oh, “FedPara: low-rank hadamard product
for communication-efficient federated learning”, Proc. ICLR, 2022.

[11] Y. Xu, and H. Xiong et al., “TRP: Trained rank pruning for efficient deep neural
networks”, Proc. IJCAI, 2020, pp. 977-983.

[12] T.-H. Oh, Y. Matsushita, Y. W. Tai, and I. S. Kweon, “Fast randomized singular
value thresholding for low-rank optimization”, IEEE Transactions on PAMI, 2017,
pp. 376-391.

[13] N. Halko, P. H. Martinsson, and J. A. Tropp, “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions”, SIAM
review, 2011, pp. 217-288.

[14] O. Roy, and M. Vetterli, “The effective rank: A measure of effective dimensionality”,
Proc. EUSIPCO, 2007, pp. 606-610.

[15] Y. Ma, Y. Cao, S. Vrudhula, and J. S. Seo, “Performance modeling for CNN
inference accelerators on FPGA”, IEEE Transactions on CAD, 2019, pp. 843-856.

[16] B. W. Silverman, “Density estimation for statistics and data analysis”, Routledge,
2018.

[17] H. Li, A. Kadav, I. Duranovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets”, Proc. ICLR, 2017.

[18] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating
deep convolutional neural networks”, Proc. IJCAI, 2018.

[19] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers”, Proc. ICLR, 2018.

[20] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning geometric median
for deep convolutional neural networks acceleration”, Proc. CVPR, 2019, pp. 4340-
4349.

[21] J. W. Cooley, and J. W. Tukey, “An algorithm for the machine calculation of complex
Fourier series”, Mathematics of computation, 1990, pp. 297-301.

[22] D. Li, S. Chen, X. Liu, Y. Sun, and L. Zhang, “Towards optimal filter pruning with
balanced performance and pruning speed”, Proc. ACCV, 2020.

[23] S. Lin, R. Ji, C. Yan, and D. Doermann et al., “Towards optimal structured cnn
pruning via generative adversarial learning”, Proc. CVPR, 2019, pp. 2790-2799.

[24] J. H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep neural
network compression”, Proc. ICCV, 2017, pp. 5058-5066.

[25] Y. Sui, and B. Yuan et al., “CHIP: CHannel independence-based pruning for compact
neural networks”, Proc. NeurIPS, 2021, pp. 24604-24616.

[26] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median
for deep convolutional neural networks acceleration”, Proc. CVPR, 2019, pp. 4340-
4349.

[27] K. Guo, and H. Yang et al., “Angel-eye:A complete design flow for mapping CNN
onto embedded FPGA”, IEEE Transactions on CAD 37(1), 2017, pp. 35-47.

[28] M. Sun, and Z. Fang et al., “FILM-QNN: Efficient FPGA accelerator of deep neural
networks with intra-layer, mixed-precision quantization”, Proc. FPGA, 2022, pp.
134-145.

[29] Y. He, J. Yue, Y. Liu, and H. Yang, “Block-circulant neural network accelerator
featuring fine-grained frequency-domain quantization and reconfigurable FFT mod-
ules”, Proc. ASP-DAC, 2021, pp. 813-818.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

