
Block Group Scheduling: A General
Precision-scalable NPU Scheduling Technique with

Capacity-aware Memory Allocation
Seokho Lee1, Younghyun Lee1, Hyejun Kim2, Taehoon Kim1, and Yongjun Park2

1Hanyang University, 2Yonsei University
{seokholee, younghyunlee, ted6345}@hanyang.ac.kr, {gpwns3717, yongjunpark}@yonsei.ac.kr

Abstract—Precision-scalable neural processing units (PSNPUs)
efficiently provide native support for quantized neural networks.
However, with the recent advancements of deep neural networks,
PSNPUs are affected by a severe memory bottleneck owing to
the need to perform an extreme number of simple computa-
tions simultaneously. In this study, we first analyze whether the
memory bottleneck issue can be solved using conventional neural
processing unit scheduling techniques. Subsequently, we introduce
new capacity-aware memory allocation and block-level scheduling
techniques to minimize the memory bottleneck. Compared with
the baseline, the new method achieves up to 2.26× performance
improvements by substantially relieving the memory pressure of
low-precision computations without hardware overhead.

Index Terms—Precision-scalable MAC, NPU, Roofline

I. INTRODUCTION

Owing to the rapid increase in the sizes and computation
amounts of deep learning models, researchers have focused
on reducing the memory usage of weight parameters on tar-
get models. Among them, quantized neural network (QNN)
models effectively compress original models to obtain low-
precision parameter data with slight accuracy degradations.
Despite model size minimization, QNN-specific neural process-
ing unit (NPU) hardware, which supports rapid low-precision
computation natively, is required to obtain high inferencing
performance. Precision-scalable NPUs (PSNPUs) are a spe-
cialized hardware for efficient QNN computation support, by
processing multiple low-precision operations in parallel. They
modulate the number of parallel computations in a cycle based
on the needed precision of the target operation by adding
reconfigurable logics to existing fixed-width multipliers in their
basic processing elements (PEs). Therefore, the native support
capability of multi-precision operations enables PSNPUs to im-
prove processing speeds with low power and memory overhead.

However, recent model trends have changed to decrease the
operational intensity of the main computation workload by
reducing computational loads. For example, recent convolu-
tional neural network (CNN) models include point- and depth-
wise convolutions, and Transformers solve natural language
processing and computer vision problems by adopting matrix
multiplication to the main computation pattern.

PSNPU operations are more memory bound than general
NPUs with fixed precision support. Specifically, the compu-
tational intensity decreases with the lower precision of the
target operations, but the amount of required memory increases
significantly as more data elements are fetched in each cycle

to support a growing number of low-precision operations.
These characteristics are not a significant problem for typical
CNNs owing to the high computational intensity of convolu-
tion operations. However, matrix multiplication, which is the
main computation pattern in recent model trends, has a lower
operational intensity than conventional convolution operations.
Therefore, matrix multiplication with low-precision data on
PSNPUs can result in severe memory bottlenecks.

Previous studies pertaining to PSNPUs focused primarily
on minimizing the area and power overhead of the additional
reconfigurable logic. However, the fundamental problem of
PSNPUs is its inability to support high memory require-
ments while minimizing processing performance degradations.
Adding faster memory interfaces or larger on-chip memories
to PSNPUs is not a feasible solution as they typically incur
expensive hardware overhead costs.

In this study, we first analyze whether the memory bound
problem can be solved using classical scheduling techniques
currently used with fixed-precision NPUs, and if not, the
amount of additionally required on-chip memory size to solve
memory bottleneck. We then introduce new NPU scheduling
techniques that minimize the memory bound problem with
given on-chip scratchpad memory: 1) capacity-aware memory
allocation (CMA) and 2) block-level scheduling. Our schedul-
ing techniques allow performance to be improved from two
aspects: 1) data reuse maximization and 2) effective data
prefetching. CMA allows more elements to be stored in the
on-chip memory by increasing the total utilization of the input
scratchpad (IS) memory. Using the CMA technique, fewer data
movements are required to perform the same number of tasks
than the baseline owing to data reuse. Meanwhile, block-level
scheduling improves data prefetching by consolidating multiple
unit operations.

To evaluate the effects of the new scheduling techniques,
we apply the PSNPU on RISC-V environment using Gemmini
NPU platform [1]. Based on the FPGA-based performance, the
proposed PSNPU scheduling techniques increase computation
speeds by up to 2.26× over the baseline.

II. BACKGROUND

Precision-scalable multiply–accumulate (PSMA) enables
deep neural networks (DNNs) to process faster with less
energy by performing more element operations in parallel as
precision decreases. PSMA is categorized into two types of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA 

	



Fig. 1. (a) (n-bit, m-bit) PSNPU operation: AnWm, where n, m can be {8, 4, 2}. The term “8b” denotes 8-bit; (b) Number of PEs: L2. Total size of Input
and Acc scratchpads: IS and AccS, respectively; (c) Tiling in O[I][J ] = A[I][K] × W [K][J ] matrix multiplication; (d) a load (LD), execute (EX), or store
(ST) tile composed of the same types of low-level instructions. Tile-level instructions comprise the LD and ST required to execute an EX tile.

architecture: bit-serial and bit-parallel. Bit-serial architectures
perform a binary operation of multiple elements in several
cycles on a single multiply–accumulate (MAC) unit, whereas
bit-parallel architectures perform multiple low-precision MACs
in a single cycle on a single MAC unit. Bit-parallel architectures
(e.g., Bitblade [2]) have recently shown superior area and
energy efficiency [3]. Therefore, we target the inefficient use
of hardware resources in bit-parallel precision scalable NPUs
that can operate with 8-, 4-, and 2-bit data for both activations
and weight parameters.

Fig. 1a shows the PE of BitFusion [4], a representative
bit-parallel PSMA. One PE comprises 16 bit-bricks (bb) that
perform a 2 × 2-bit multiplication operation, and bit bricks
belonging to the same shift–add region manage one activation
and one weight. All shift–add outputs from the PE are added
to create PE outputs. For example, if the activations are 8-
bit, and the weight precision is 2-bit (A8W2), the shift–add
regions are grouped by four bit-bricks, and one PE can perform
four (activations × weight) MACs. In this case, the PE requires
40 bits per cycle (activation: 8-bit × 4 = 32 bits; weight: 2-
bit × 4 = 8 bits). Therefore, to achieve faster low-precision
PSNPU operations, more elements must be fetched than 16
bits (activation: 8-bit × 1 = 8 bits; weight: 8-bit × 1 = 8 bits)
required by the A8W8.

The structure of the matrix multiplication unit (MMU) is
categorized primarily into a systolic spatial array (TPU-like) [5]
and a parallel vector engine (NVDLA-like) [6]. TPU-like NPUs
may exhibit higher clock frequencies than NVDLA-like NPUs
while consuming more power with a higher area overhead
[1]. Therefore, parallel vector engine architectures have been
adopted in many mobile NPUs and their corresponding PSN-
PUs [2], [6]. The parallel vector engine operates as a weight-
stationary data flow with a separate accumulative scratchpad
(AccS) to recycle the partial sums computed by the MMU.

Gemmini [1] is an open-source NPU framework that provides
a complete solution spanning both the hardware and software
stack, on the RISC-V environments. For effective data access
latency hiding in SoC environments, Gemmini is designed to
support many architectural techniques such as isolated execu-
tion access, double buffering, reservation stations, and cache

bursts. Gemmini provides three types of low-level instructions
(insts) (load(LD), execute(EX), and store(ST)), and tile-level
instructions that can reduce instruction fetches by executing
multiple low-level instructions (low-insts) per operation. These
instructions can be performed separately by using the reserva-
tion station’s dependency check and double buffering.

Fig. 1d presents an example of tile instruction execution
for an A8W8 operation. Each LD, EX, and ST tile comprises
multiple low-insts. Moreover, the tile group comprises an EX
tile and other tiles (LD and ST tiles) that depend on the EX tile.
A tile group can be executed in the form of a tile instructions
(tile-insts), and they can operate in parallel. In Fig. 1d, different
adjacent tile-insts are distinguished by the brightness of the LD,
EX, and ST tiles. By allocating two buffers (double buffers) to
the IS, the EX tiles of the current tile group and the LD tiles
of the next one are executed simultaneously.

To exploit the advantage of Gemmini’s effective data-access
latency hiding, the Gemmini architecture was redesigned for
the PSNPU, as shown in Fig. 1b. The PSNPU constructed in
this study comprises an MMU with a Bitblade [2] architecture,
and it offers 8-, 4-, and 2-bit operations for both activation and
weight. It features nine operation modes. Additionally, the EX
low-inst that controls the MMU operation is customized so that
the precision of the activation and weight can be specified. The
instruction length can be reduced by sharing multiple IS row
addresses to be accessed by low-precision operations.

To support multiple low-precision operations, the number of
banks in the IS was increased, and to use the IS efficiently,
multiple small bit-width data were stored by packing them
into 8-bit data. Specifically, the number of banks in an IS
was increased from 4 to 16, and the IS areas for activation
and weight were separated to avoid bank conflicts, which
typically occur when activation and weight data are stored in
the same bank. Additionally, we pre-packed the elements under
8-bit widths and stored partial sums (Psums) in DRAM by
compressing them to one of 8-, 4-, or 2-bit precisions, thus
allowing the 8-bit IS storage space and DRAM bandwidth to
be used effectively. However, even if the bit width of Psums
can be reduced in low-precision operations, the sums are stored
as 32-bit data, same as the original Gemmini, because the

!

!



extra memory space of the AccS in low-precision operations
is not as large as the extra memory space of IS. Furthermore,
to exploit the extra memory space of the AccS, the memory
controller must have an additional hardware logic overhead,
such as having more banks.

III. PRECISION-SCALABLE NPU ANALYSIS

In low-precision operations, as discussed, the PSMA must
process not only more elements but also more bit-level data.
In Fig. 1d, the characteristics of the PSMA are shown based
on a comparison between the A2W2 and A8W8 operations.
As shown in the examples, each A2W2 operation requires
four times less data than each A8W8 operation; however, the
operation speed is 16 times faster, and the data should be
fetched much faster in A2W2. Therefore, as a lower precision
operation requires a greater amount of data to perform the
operation on the PSNPU, it becomes more memory bounded.

PSMA is designed to compute low-bit data rapidly, with
the disadvantage of the reconfigurable logic (shift-add) area
overhead. If low-precision operations are memory bounded,
and their maximum computation speed is not achievable, the
maximum performance will not be increased at the expense of
the reconfigurable area overhead. Therefore, one must analyze
whether conventional scheduling can solve the memory bottle-
neck of low-precision operations; if it cannot, then one must
determine the amount of additional local memory required by
PSNPUs, compared with general NPUs.

We used the roofline model [7] to analyze the performance
bottleneck of the PSNPU. The roofline model provides valu-
able insights into performance bottlenecks and estimations of
performance based on the operational intensity (OI), which can
be determined at its application.

In this section, based on the system parameters defined in
Fig. 1, we analyze the correlation among the tile size, precision,
and OI of a matrix multiplication operation, which is frequently
used in transformer-based network models.

A. Tiling and Operational Intensity of PSNPUs

Fig. 1c shows the tile group structure of matrix multiplication
(O[I][J ] = A[I][K] × W [K][J ]). A large tile group can
reduce DRAM access and hide data transfer latency. Therefore,
itile, jtile, and ktile, which determine the sizes of a,w, and o,
should be the maximum values with limited on-chip memory.
Moreover, each a,w, and o tile should use half of each IS and
AccS to apply the double buffering scheme, as shown in Fig.
1b. For apack and wpack, which are the ratios of (maximum n,m)
and (n,m in AnWm) of the A and W matrices, respectively
(also the ratios of the maximum and current bit widths of the
matrices), and the elements are stored as 8- and 32-bit data
types in the IS and AccS, respectively, Eq. (1) must be satisfied.(

itile

apack
+

jtile

wpack

)
ktile · 8 ≤ IS

2
, itile jtile · 32 ≤ AccS

2
(1)

Because PSNPUs have different computational characteris-
tics depending on precision, we analyzed the OI based on the
number of binary operations, instead of the number of integer
operations. This is because a binary operation can reflect the

bit width of the elements, which is related to the computation
characteristics.

Because we intend to analyze the overhead of the local mem-
ory size in the PSNPU by comparing it with that of the 8-bit
fixed-precision NPU, we assume that itile, jtile, and ktile are the
optimal tile sizes in the A8W8 operation. We analyzed the OI,
which depends on precision, without scheduling optimization
based on the following OI equation:

OI =
Binary Operations

(A, W, Psum)Read Bits + (Psum)Write Bits

=
itile jtile ktile · 64/(apack wpack)

(itilektile · 8/apack + jtilektile · 8/wpack + 2 · itilejtile · 8)

=
1

8

(
wpack

jtile
+

apack

itile
+

2wpackapack

ktile

)−1

(2)

In Eq. (2) and Fig. 1, each tile of matrices A,W, and O
is denoted by aik, wkj , and oij , and each bitwise size of
aik, wkj , and oij is itilektile8/apack, jtilektile8/wpack, and itilejtile8,
respectively. Psum is saved in AccS as itilejtile32, however,
Psum is moved to DRAM as itilejtile8.

In A8W8 operation apack, wpack is 1, but apack, wpack in-
creases as the precision decreases. Therefore, if PSNPU
has the same OI as a general NPU, itile, jtile, and ktile
must increase by apack, wpack, and apack×wpack, respectively
(based on Eq. (2)), which requiring larger IS and AccS, by
(max(apack)×max(wpack)), respectively (based on Eq. (1)).

B. Data Reuse Scheme Analysis of PSNPUs
We show the amount of local memory required for the lowest

precision operation to achieve the same OI as the highest
precision operation in conventional scheduling. Conventional
scheduling can reduce the data footprint and increase OI by
reusing one of the A, W, and Psum matrices that already exist in
the local memory. For example, the output reuse (OR) scheme
reads the input data and weight parameters of all tile-insts
and reuses Psum such that the 2wpackapack/ktile term becomes
negligible in Eq. (2), and the weight-reuse (WR) reuses the
weight parameters such that apack/itile becomes negligible.

Herein, we show the operational intensity in a steady state. In
Fig. 2b (WR case), the tile-insts in the steady state can compute
two oij from one aik tile. Therefore, the average OI in the WR
case is approximated by the ratio of the data movement to the
computational amount of the two tile-insts with and without
reading tile ai. The equations used to estimate the OIs in the
OR and WR cases are as follows:

OIOR ≈ 1

8

(
wpack

jtile
+

apack

itile

)−1

(3)

OIWR ≈ 1

8

(
wpack

2jtile
+

2apackwpack

ktile

)−1

(4)

As discussed, in WR or OR scheduling, the amount of IS
is additionally required for A2W2 to exhibit the same OI as
A8W8, which can be obtained by comparing Eqs. (1), (3),
and (4): To maintain OI, the tile group size in the OR must
be increased by apack and wpack in itile and jtile, respectively,
depending on the operating precision. Furthermore, as shown
in Eq. (1), the AccS must be increased by wpack×apack to

!

!



prevent memory bound problems in all precision operations.
In WR, jtile, ktile must be increased by wpack, apack×wpack,
respectively, and the IS and AccS must be increased by
max(wpack){itile + jtilemax(apack)}/{itile + jtile},max(wpack), re-
spectively. Compared with the previously analyzed simple
scheduling, OR and WR increase the OI and reduce the required
IS size, but require more local memory or a higher memory
bandwidth than an 8-bit fixed precision NPU. This implies
that conventional scheduling cannot fundamentally solve the
memory bound problem of PSNPUs and requires more memory
bandwidth or local memory.

The memory bottleneck problem of PSNPUs has been men-
tioned in several previous studies, but has not been solved.
According to BitFusion [4], the performance of PSNPUs is
bandwidth-sensitive. HAQ [8] assumed that the memory limit
of the PSNPU could not be solved and thus created a neural
architecture search-based model optimized for the PSNPU by
reflecting performance degradation via precision change.

IV. PRECISION-SCALABLE NPU SCHEDULING

Conventional scheduling can generally be applied to any
NPUs, regardless of the local memory and target workload size.
However, PSNPU typically exhibits substantial performance
degradation owing to the memory bounded problem when
typical scheduling parameters are assumed. To incorporate
more elements into IS memories such that the OI can be
improved, we leveraged the large local memory in mobile NPUs
for DRAM access reduction and the small data size in low-
precision operations. However, the number of elements fetched
in conventional tile-level scheduling is still limited. The main
reason is that the size of the tile group cannot be increased
because the bit width of the partial sum in the AccS remains
at the original bit width (typically 32-bit), and prefetch cannot
be efficiently performed because of the dependency of the tile
groups.

To compensate for the limitations of typical tile-level
scheduling, we introduce capacity-aware memory allocation
(CMA) and block-level scheduling. These offer two perfor-
mance enhancement opportunities by allowing more data to
be stored in the on-chip memory: 1) more effective data reuse
capability and 2) data prefetching. First, CMA can improve
data reuse opportunities, which increases OI by performing
the same number of computations with fewer data fetches. To
utilize the second opportunity, we further introduce a concept
of a block group, which comprises a set of tiles that can be
collectively prefetched. This allows block-level scheduling to
use the memory bandwidth efficiently.

CMA and block-level scheduling are PSNPU scheduling
techniques that can be applied to general data reuse-based NPU
scheduling. By introducing CMA and block-level scheduling
to WR-based scheduling, we successfully solved the memory
bound issue of PSNPUs without hardware overhead.

A. Limitation of Tile-level Scheduling in a Large Memory
Environment

In energy-constrained mobile environments, mobile NPUs
feature large IS memories to minimize DRAM access [6]. In

Fig. 2. (a) Memory allocation scheme; (b) A2W2 operation in weight reuse; (c)
A2W2 operation in capacity-aware memory allocation; (d) A2W2 operation in
block-level scheduling; (e) state of input scratchpad in block-level scheduling.

a large IS memory, most AI model layers are not required
to have multiple tiles in the k dimension. Furthermore, in
a low-precision condition, tiling is rarely required in the k
dimension. Without k tiling, the Psum of read and write
operations performed in every tile-inst in WR is not necessary,
and OI may increase because the output can be calculated using
only a single write to DRAM.

Even when tiling is not applied in the k dimension, WR
does not fully utilize the large local memory, owing to the
limitations of tile-level scheduling. TVM [9] and Gemmini
achieved efficient dependency monitoring and decoupled access
executions while encapsulating loads, executions, and stores
into a single execution unit and verifying dependencies between
groups of tiles in hardware or synchronizing them through
virtual threads in software. To efficiently perform dependency
verification using HW or SW techniques, the tile-inst should
be allocated to half of the IS and AccS. Furthermore, once the
spaces in the IS and AccS are allocated, they should not be
accessed by other tile groups during the operation.

However, this limitation is unfavorable for the PSNPU for
two reasons. First, even though the precision becomes low, the
bit width of the output elements stored in the AccS does not
change; therefore, the sizes of itile and jtile cannot be increased
by Eq. (1). Unless the k dimension is tiled on A8W8, ktile
cannot increase, as shown in Fig. 2a, and the IS will be under-
utilized. Second, data for the next tile-inst cannot be prefetched
because the location of memory allocation is often predefined
to a unique address to eliminate complex dependencies [9].
For example, in tile-level scheduling examples, as illustrated
in Figs. 2b–c, the load is frequently idle even though memory
underutilization is the main performance bottleneck.

B. Capacity-aware Memory Allocation
In low-precision operations, if the IS is small and the

workload size is large, then the IS can be fully utilized by
increasing ktile. However, if tiling is not applied to the k
dimension because of the sufficient IS memory size, then ktile
is already maximized to k. Therefore, if tiling is not performed
for the k dimension, even in A8W8, the total IS usage rates

!

!



based on the precision of the activation and weight parameters
are only 1/apack and 1/wpack at the most, respectively.

It is not possible to increase the tile size without increasing
the size of the scratchpad, but reusing previously referenced
tiles in another tile-inst can increase OI. CMA creates addi-
tional data reuse opportunities by allocating data while pre-
serving data from previous tile groups when additional memory
spaces are available.

Fig. 2a shows an illustration of ordinary memory allocation
and CMA. Ordinary memory allocation overwrites the current
tile group data over data fetched from the previous tile group.
However, CMA utilizes additional memory space to obtain
more activation and weight parameter data (a1, a2, a3, w1, w2,
and w3) to increase the data reuse opportunity. Fig. 2c shows
the timeline of the faster computing process via additional data
reuse. The first four tile-insts fetch wj to be reused sequentially
later, and their performance does not differ from the initial state
shown in Fig. 2b. When ai is loaded from the fifth tile-inst, as
shown in Fig. 2c, it can be computed with all the prefetched
wjs. Thus, the same workload can be managed with less data
transfer and computed quickly. Therefore, CMA can improve
performance by improving OI and reducing power consumption
owing to its reduced memory access.
C. Block-Level Scheduling

CMA allows more data to be prefetched without overwriting
the memory allocated by other groups of tiles. Next, we
introduce a block-level scheduling technique for prefetching
memory bounded workloads efficiently. A block group com-
prises tile groups that can be preloaded via prefetching. In
Figs. 2a and d, the block group is represented by a dotted
red line, and block-level scheduling is performed based on the
block groups. CMA enables the loading of a1, a2, a3, w1, w2,
and w3, in addition to a0 and w0 which constitute one block
group. A key feature of block-level scheduling is that execute
and store operations still apply double-buffering per tile group,
but load operations apply double-buffering per block group. The
performance improvement afforded by effective prefetching can
be shown by comparing Figs. 2c and d. Although the main
reason for the performance degradation of the PSNPU is a
memory bottleneck, the tile-level scheduling shown in Fig. 2c
often renders the load unit idle. Meanwhile, the block-level
scheduling shown in Fig. 2d can always activate the load unit
to maximize memory utilization.

Let us look at the correlation between the block group size
and tile group size to obtain the OI of block-level scheduling
(OIBlock). As the tile size of tile group is expressed as itile, jtile,
and ktile, the size of the block group is expressed as iblock, jblock,
and k, respectively. Here, the sizes of iblock and jblock are itile and
jtile multiplied by at least apack and wpack, respectively, because
the lower the precision, the more tile-insts (a and w) can be
fetched via CMA (iblock ≥ itile × apack, jblock ≥ jtile × wpack).
Therefore, based on iblock and jblock, OIBlock can be expressed
as follows:

OIBlock =
1

8

(
wpack

jblock
+

apack

iblock
+

apackwpack

k

)−1

≥ 1

8

(
1

jtile
+

1

itile
+

apackwpack

k

)−1

(5)

Block-level scheduling and WR are orthogonal methods that
can be applied simultaneously. The OI when block-level
scheduling is applied to WR is as follows:

OIBlock+WR ≈ 1

8

(
1

2jtile
+

apackwpack

k

)−1

(6)

Through CMA, we successfully increased the OI by increasing
the data-reuse opportunity, and through effective prefetching
via block-level scheduling, we further increased the empirical
bandwidth to improve performance.

V. EXPERIMENTAL RESULT

We evaluated the end-to-end performance of the PSNPUs
using the FireSim FPGA-accelerated simulation platform [10].
We set WR as a baseline and measured the performance when
CMA and block-level scheduling (Block) were applied in a full
SoC system environment. To obtain target hardware configura-
tions similar to those of flagship mobile NPUs, we tested two
NPU configurations of 128KB-8KB-256 and 256KB–8KB–256
(IS size–AccS size–number of PEs). The clock frequency of the
NPUs was 1 GHz, and DDR3 memory was used.

We compared the performances of WR, CMA, and Block
via different visualization techniques, including the OI roofline,
AI roofline, and bar plot. Figs. 3a–b show the OI and AI
rooflines of matrix multiplication in the size of [512]-[512]-
[2048]([I]-[J]-[K]). In Fig. 3a (OI roofline), we can compare
the ratio of memory stall to computation time. In Fig. 3b
(AI roofline), we can compare the actual performance between
different operational precision levels. Figs. 3c–d, which show
the results of [512]-[512]-[512, 1024, 2048] ([I]-[J]-[K]) matrix
multiplications, allow us to determine the performance im-
provement of Block and the performance trends based on the
size of workload k. Figs. 4a–c, which show Block performance
improvement for various matrix multiplication workload sizes,
allow us to determine the performance improvement yielded by
computing all matrix multiplications in various BERT models
(tiny, small, and base) with 128, 256, 512, and 1024 sequences.
Fig. 4d shows Block performance improvement for various
local memory sizes, and we compared the average total cycles
in 128, 256, 512, and 1024 sequences for two BERT models
(tiny and small) based on two NPU configurations.

A. Roofline Analysis
Based on the OI roofline analysis shown in Fig. 3a, the

peak performance is independent of the operation precision
and thus comprises only one roofline. By normalizing the data
based on the peak performance of the OI roofline, the y-value
of the OI roofline represents the utilization of computation
resources (MMU), which can be close to 1 when memory stalls
decrease. Considering the empirical bandwidth, A8W8 is in the
sweet spot of the roofline for all the scheduling techniques.
However, in low-precision operations, the OI of WR decreases
and the memory bottleneck becomes substantial. In particular,
the MMU utilization in 2-bit weight precision operations, is
less than 40%. This is because WR cannot increase OI in
low-precision operations, as discussed in IV-A. In CMA, OI
improved compared with WR, although its performance was

!

!



Fig. 3. (a) OI roofline analysis (single workload); (b) AI roofline analysis
(single workload); (c) AI roofline analysis (multi-workload); (d) performance
results for two scheduling techniques (multi-workload).

not significantly better than that of WR because an efficient
prefetch was not used. Block, which can prefetch data ef-
fectively, achieved the highest performance among the three
scheduling techniques at all precision levels.

Fig. 3b show the ineffectiveness of the reconfigurable logic
as it depicts the unstable performance that results in WR.
In WR, A2W2 indicated a performance level lower than the
peak performance of A2W4, and A8W2 did not outperform
A4W8. This indicates that without efficient scheduling, the
reconfigurable logic in the PSNPU incurs additional power
and area costs without any corresponding performance benefits.
This is because the WR performance is significantly affected
by the weight precision owing to the wpack/2jtile term in Eq.
(4). If the weight precision increases, then the OI becomes
substantially low (based on Eq. (4)), which results in significant
performance degradation. However, the performance of Block
is similar to its peak performance at most precision levels and
is unaffected by the various weight precision levels.

Fig. 3c shows the performance results based on the work-
load size through the line connecting the results of the same
scheduling technique and precision level. The performance of
operations where apack×wpack is less than 8 did not change
significantly with the size of the workload k, unlike the perfor-
mance of others. This is because in Eq. (6), apack×wpack/k
affects the OI by more than 1/2jtile in operations where
apack×wpack is greater than or equal to 8. Therefore, operations
where apack×wpack is greater than or equal to 8 requires a larger
workload to efficiently utilize the hardware resources.

Fig. 3d shows the performance improvements of Block over
the baseline. Here, Block is up to 2.26× faster than WR
and 1.74× faster in the fastest operation (A2W2). It achieves
substantial performance improvement in operations where the
activation precision is greater than the weight precision, which
is memory bounded in WR. Furthermore, Block achieves per-
formance improvement in most cases via an efficient prefetch.

B. Performance Comparison on BERT Models

As shown in Fig. 4, even when unpredictability occurred
in the actual system environments, Block achieved decent
performance improvements over the baseline. In fact, its per-
formance improvement was not mainly affected by the model

��
 ��	 ��� ������

��
��

��
�	
��
���
��

�
��
�	
 ���

���
���
���

���� ���� ���
 ���� ���� ���
 �
�� �
��
�	� ������ ����

���
���
���
���

���� ���� ���
 ���� ���� ���
 �
�� �
��
�
� ������ ��	��

��� ������ 
	��

���
���
���
���

���� ���� ���
 ���� ���� ���
 �
�� �
��

���
���
���
���

���� ���� ���
 ���� ���� ���
 �
�� �
��

��
������ ����	������ ��	������� ��
�������

��� 	��	�
Fig. 4. Performance improvements in various input sequence lengths based
on BERT models: (a) BERT-tiny, (b) BERT-small, and (c) BERT-base; (d)
Average performance improvement of various input sequence lengths in BERT-
tiny and small for 256KB-IS 8KB-AccS and 128KB-IS 8KB-AccS hardware
configurations

or local memory size but depended on the precision level.
Specifically, the geomean of the Block performance gains are
5.5%, 19.4%, and 29.4% in (weight- > activation-precision),
(weight- = activation-precision), and (weight- < activation-
precision), respectively.

VI. CONCLUSION

In this study, we proposed an analytical model to illustrate
the PSNPU performance trends. We then proposed block-level
scheduling to improve OI via CMA and efficient prefetch.

ACKNOWLEDGMENT

This work was supported by IITP (2021-0-00310) and
NRF (No. 2021R1C1C1011613, 2020M3H6A1085498,
2020M3H6A1085535) funded by the Korea govern-
ment(MSIT). Yongjun Park is the corresponding author.

REFERENCES

[1] H. Genc et al., “Gemmini: Enabling systematic deep-learning architecture
evaluation via full-stack integration,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC), 2021, pp. 769–774.

[2] S. Ryu et al., “Bitblade: Area and energy-efficient precision-scalable neu-
ral network accelerator with bitwise summation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC), 2019, pp. 1–6.

[3] V. Camus et al., “Review and benchmarking of precision-scalable
multiply-accumulate unit architectures for embedded neural-network pro-
cessing,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 4, pp. 697–711, 2019.

[4] H. Sharma et al., “Bit fusion: Bit-level dynamically composable archi-
tecture for accelerating deep neural network,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), 2018,
pp. 764–775.

[5] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proceedings of the 44th annual international symposium
on computer architecture, 2017, pp. 1–12.

[6] F. Sijstermans, “The nvidia deep learning accelerator,” in Hot Chips,
vol. 30, 2018, pp. 19–21.

[7] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[8] Wang et al., “Haq: Hardware-aware automated quantization with mixed
precision,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[9] T. Chen et al., “TVM: An automated End-to-End optimizing compiler
for deep learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA:
USENIX Association, Oct. 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[10] S. Karandikar et al., “Firesim: Fpga-accelerated cycle-exact scale-out
system simulation in the public cloud,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
29–42.

!

!


	Select a link below
	Return to Previous View
	Return to Main Menu


