
MECALS: A Maximum Error Checking Technique
for Approximate Logic Synthesis

Chang Meng1, Jiajun Sun1, Yuqi Mai1, and Weikang Qian1,2
1University of Michigan-SJTU Joint Institute and 2MoE Key Lab of AI, Shanghai Jiao Tong University, Shanghai, China

Emails: {changmeng, sunjiajun2007, yq-mai, qianwk}@sjtu.edu.cn

Abstract—Approximate computing is an effective computing
paradigm to improve energy efficiency for error-tolerant appli-
cations. Approximate logic synthesis (ALS) methods are designed
to generate approximate circuits under certain error constraints.
This paper focuses on ALS methods under the maximum error
constraint and proposes MECALS, a maximum error checking
technique for ALS. MECALS models maximum error using
partial Boolean difference and performs fast error checking with
SAT sweeping. Based on MECALS, we design an efficient ALS
flow. Our experimental results show that compared to a state-of-
the-art ALS method, our flow is 13× faster and improves area
and delay reduction by 39.2% and 26.0%, respectively.

Index Terms—maximum error checking, approximate logic
synthesis, partial Boolean difference, SAT sweeping

I. INTRODUCTION

Approximate computing is an emerging low-power design
paradigm for error-tolerant applications, such as image pro-
cessing and machine learning [1]. Approximate logic synthesis
(ALS) is an automatic way to generate approximate circuits [2].
An ALS tool takes an exact circuit and error constraints as
inputs and explores the design space of approximate circuits
with specific strategies. It produces an approximate circuit with
a smaller area, power, and delay satisfying the constraints.

ALS typically handles two types of error metrics, i.e.,
average and maximum errors [2]. Average errors, such as error
rate and mean error distance, measure the average deviation
between the outputs of exact and approximate circuits. Max-
imum errors, such as worst-case error (WCE) and maximum
square error (MaxSE), compute the maximum deviation be-
tween the outputs of exact and approximate circuits over all
input patterns. Many ALS methods are proposed for different
error metrics [3]–[13]. The focus of our work is maximum
error, which is essential in many scenarios. For example, in
image processing, it is undesired that errors occur at the most
significant bits (MSBs) of pixels; otherwise, an image will
suffer from a large distortion. Another example is approxi-
mate arithmetic units, where MSBs are expected to be fully
accurate. In these cases, the maximum error constraint can
limit the errors only to the least significant bits. Several prior
works can tackle the ALS problem under the maximum error
constraint [4], [5], [10]–[13]. Among them, MUSCAT is a
state-of-the-art (SOTA) method proposed recently [5]. Its basic
approximate operation is replacing signals by constant 0s or 1s.
Moreover, to find the optimal set of signals for replacement
to maximize the area saving, a minimal unsatisfiable subset
problem is formulated.

This work is supported by the National Key R&D Program of China under
grant number 2021ZD0114701. Corresponding author: Weikang Qian.

Most ALS methods simplify circuits by applying local
approximate changes (LACs), i.e., approximating local sub-
circuits [3]–[13]. To avoid violating the error constraint, we
need to compute the maximum error of each LAC. A precise
computation is impractical since it requires an exhaustive
evaluation of all input patterns. To solve this issue, some
works propose to estimate an upper bound of maximum
error [4], [11], [13]. However, they are limited to a simple
LAC that replaces a signal by a constant 0 or 1 [3]. More
complex LACs such as signal substitution-based LACs [6],
[9] that can further simplify a circuit are not supported. To
facilitate the handling of complex LACs, another set of works
directly checks whether the maximum error exceeds a bound
or not [10], [12], [14]. They perform a one-by-one maximum
error checking for each LAC by constructing an error miter
and then solving the corresponding SAT problem. However,
a new challenge they face is the massive number of complex
LACs in a circuit, which makes checking them one by one
very time-consuming.

To address the above challenge, in this work, we propose
MECALS, an efficient maximum error checking technique
for ALS, which supports complex LACs and significantly
accelerates the maximum error checking of multiple LACs.
Our main contributions are as follows:

• We establish an important theoretical foundation for
checking the maximum error of a LAC based on partial
Boolean difference (PBD). We develop both exact and
approximate ways of computing PBDs.

• Based on the theoretical foundation, we design a maxi-
mum error checking circuit that can efficiently check the
maximum error of all LACs using the SAT-sweeping tool.

• Based on the maximum error checking circuit, we develop
an efficient ALS flow, i.e., MECALS-based flow.

Our experimental results show that compared to a SOTA
method, MUSCAT [5], our flow is 13× faster and improves
area and delay reduction by 39.2% and 26.0%, respectively.
The code of our ALS flow is made open-source at https://
github.com/SJTU-ECTL/MECALS.

II. PRELIMINARIES

A. Partial Boolean Difference (PBD)

PBD is an important tool for diagnosing errors in cir-
cuits [15]. The 1st-order PBD of a single-output Boolean
function f = f(n1, . . . , ni, . . .nM) with respect to (w.r.t.) one
of its variables, ni, is defined as

∆nif = f(n1, . . . , ni, . . . , nM)⊕ f(n1, . . . , ni, . . . , nM). (1)

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

By Eq. (1), if f(n1, . . . , ni, . . . , nM) and f(n1, . . . , ni, . . . , nM)
are different under a pattern on n1, . . . , nM , then ∆nif = 1,
implying that f changes after flipping the value of ni in the
pattern. Otherwise, f is not affected by the flip. When using
Eq. (1) in a circuit, ni can be any node, such as a primary
input (PI), a primary output (PO), or an internal node, while
f can be node ni or any transitive fanout (TFO) of ni.

Generally, the kth-order (k ≥ 2) PBD of f w.r.t. k different
variables ni1 , . . . , nik (1 ≤ i1, . . . , ik ≤ M) is derived from
the (k − 1)th-order PBD as follows:

∆k
ni1

. . .nik
f = ∆nik

(
∆k−1

ni1
. . .nik−1

f
)
,

where ∆1
ni1

f = ∆ni1
f . For example, the 2nd-order PBD of

f w.r.t. two variables ni and nj is ∆2
ninj

f = ∆nj (∆nif) =

f(n1,. . . , ni,. . . , nj ,. . . , nM)⊕f(n1,. . . , ni,. . . , nj ,. . . , nM)⊕
f(n1,. . . , ni,. . . , nj ,. . . , nM)⊕f(n1,. . . , ni,. . . , nj ,. . . , nM).

The kth-order PBD measures how f changes with the k
variables ni1 , . . . , nik . In what follows, for simplicity, PBD
refers to the 1st-order PBD unless otherwise specified.

B. Maximum Error

Let y : BI → BO and ŷ : BI → BO be the multiple-output
Boolean functions of an exact and an approximate circuit,
respectively. The maximum error is defined as the maximum
deviation between y and ŷ over all possible input patterns:

maximum error = maxx∈BI ε(y(x), ŷ(x)),

where y(x) (resp. ŷ(x)) is the output of the exact (resp.
approximate) circuit under the input pattern x, and ε is a
distance function measuring the deviation between y and ŷ.
For example, for WCE, ε(y, ŷ) = |int(y)− int(ŷ)|, where the
function int(v) returns the integer encoded by the binary vector
v. For MaxSE, ε(y, ŷ) = [int(y)− int(ŷ)]2.

Approx.

circuit !

Exact
circuit

Comparator
Distance

unit

!(", #") > $?!(", #")

"

#"

%

Error bound

!

"

Condition 1: LAC
affects node

Condition 2: the change on affects PO

Fig. 1. An error miter for maximum error check.

To check the maximum error, an error miter shown in
Fig. 1 is proposed [14]. It consists of an exact circuit, an
approximate circuit, a distance unit, and a comparator. The
exact and approximate circuits take the same PIs x, and their
corresponding outputs are y and ŷ, respectively. The distance
unit computes ε(y, ŷ). The comparator checks whether ε(y, ŷ)
exceeds the maximum error bound B. If the output of the
comparator, f , is identically 0, i.e., f ≡ 0, then the maximum
error of Ĝ does not exceed B; otherwise, the error constraint
is violated. Such a check is usually done by converting the
miter into a SAT instance solved by a SAT solver.

III. MECALS METHODOLOGY

This section presents the methodology of MECALS.

A. Motivation and Overview
Given an exact circuit G and a maximum error bound B,

ALS generates an approximate circuit satisfying the bound. A
widely-used ALS flow is the iterative ALS flow [2], which
simplifies the circuit iteratively. For each iteration, there is a
current approximate circuit Ĝ satisfying the error constraint.
To further simplify Ĝ, many candidate LACs are generated.
However, some candidates may violate the given maximum
error bound. Thus, the next step in the flow is to check whether
each candidate LAC satisfies the bound, i.e., the LAC is valid.
Then, a valid LAC is selected and applied to simplify Ĝ.1 As
the number of LACs is typically large, efficiently checking the
validity of all the LACs is challenging, and this is the problem
MECALS tries to solve.

Note that our work only considers single-output LAC that
replaces a single node n in Ĝ with a new node g. For instance,
a constant LAC [3] replaces n by g = 0 or g = 1. A SASIMI
LAC [6] replaces n by g = d or g = d̄, where d can be
any node in Ĝ not depending on n. This type of LAC is the
most widely-used one and can efficiently lead to approximate
circuits of low cost, as reported in many prior works [3], [5]–
[7], [9], [10], [13].

The following sections present our proposed solution,
MECALS. First, Section III-B introduces a theorem on check-
ing the validity of a LAC. Based on it, Section III-C presents
the details of MECALS, namely, how to check the validity
of all candidate LACs efficiently. MECALS builds upon a
vital component: constructing a circuit for calculating various
PBDs. Its detail is described in Section III-D.

B. Theorem on Checking the Validity of a LAC
To introduce the theorem, we start from a current error miter

(CEM) V in the form shown in Fig. 1, which checks whether
the current approximate circuit Ĝ satisfies the maximum error
bound. Initially, V ’s PO f ≡ 0, since Ĝ’s maximum error
satisfies the bound (from Ĝ’s definition in Section III-A).

Now assume that Ĝ is simplified by applying a LAC that
replaces n by g. We denote the LAC as Cn,g . Checking the
validity of the LAC Cn,g , i.e., whether the error constraint
is still satisfied after applying Cn,g , is equivalent to checking
whether f ≡ 0 is still satisfied. Given that f ≡ 0 before
applying Cn,g , it is equivalent to checking whether the function
of f remains unchanged after applying Cn,g . By the miter
structure shown in Fig. 1, if the function of f changes after
applying Cn,g , then we can find an input pattern of x, say v, so
that under pattern v, 1) the value of n changes after applying
Cn,g , and 2) the change can be propagated to the PO f . Since
Cn,g means replacing n by g, the above condition 1 means
that n(v) ⊕ g(v) = 1, where n(v) and g(v) denote the value
of n and g under pattern v. The above condition 2 means that
∆nf(v) = 1, where ∆nf(v) denotes the value of the PBD
∆nf under pattern v. Thus, if the function of f changes after
applying Cn,g , we can find an input pattern letting (n⊕g)∆nf
yield 1. Otherwise, which means that the LAC Cn,g is valid,
we must have (n⊕ g)∆nf ≡ 0. Thus, we conclude:

1For example, a simple yet efficient way to select a valid LAC is traversing
each candidate LAC in a specific order and selecting the first valid one.

!

!

Theorem 1. A LAC Cn,g is valid if and only if (n⊕g)∆nf≡0.

C. Details of MECALS

This section elaborates MECALS, which checks the va-
lidity of all the LACs efficiently. It is based on The-
orem 1. Assume that the nodes in the current approx-
imate circuit Ĝ are n1, n2, . . . , nN . For each node ni

(1 ≤ i ≤ N), assume that there are Li available single-output
LACs, Cni,gi1 , Cni,gi2 , . . . , Cni,giLi

, where the LAC Cni,gij

(1 ≤ j ≤ Li) replaces ni by a new node gij .
By Theorem 1, checking the validity of Cni,gij is equivalent

to checking whether (ni ⊕ gij)∆ni
f ≡ 0. To efficiently check

this condition for all the LACs Cni,gij ’s, MECALS first builds
a maximum error checking circuit shown in Fig. 2. It consists
of a CEM V (in red), a PBD circuit (in green) that computes
the PBDs ∆ni

f ’s, and peripheral circuits to derive the validity
signal hij = (ni ⊕ gij)∆ni

f for each LAC Cni,gij . If hij ≡
0, then the LAC Cni,gij is valid; otherwise, it is invalid. The
PBD circuit is an essential component in MECALS, which
will be described in detail in Section III-D.

…

…

PBD

circuit

Current error miter (CEM)

Current approx. circuit

… …

LAC

,

LAC

,

LAC

,

XOR

XOR

XOR

AND

AND

AND

Fig. 2. Maximum error checking circuit. The signal hij is the validity signal
for the LAC Cni,gij . The red arrow indicates that some internal signals of
the CEM are passed to the PBD circuit.

MECALS then applies SAT sweeping [16] to the maximum
error checking circuit to check the validity of all LACs in
Ĝ efficiently. SAT sweeping is a powerful SAT-based method
that detects functional equivalence in a circuit. Theoreti-
cally, after performing SAT sweeping on the maximum error
checking circuit, we will find all hij’s that are identically 0
and the corresponding valid LACs. In reality, modern SAT-
sweeping methods, such as the ABC [17] command “ifraig”,
are resource-limited for efficiency consideration. They can
detect most functional equivalence cases in a circuit, while the
remaining small portion may be unidentified. Therefore, using
modern SAT sweeping, MECALS can also find most valid
LACs whose hij’s are identically 0, while few valid LACs
may remain unidentified. Compared to previous methods that
check the validity of each LAC one by one [10], [12], [14],
our method requires only one SAT sweeping on the maximum
error checking circuit and then obtains the validity of all LACs,
which is more efficient.

D. Construction of the PBD Circuit

This section describes how to construct the PBD circuit (the
green box in Fig. 2), which computes the PBD ∆ni

f for each
node ni in the current approximate circuit Ĝ. We propose exact
and approximate ways of constructing the PBD circuit. For
simplicity, we refer to ni as n in this section.

1) Exact PBD Circuit: Fig. 3(a) shows the exact PBD
circuit for calculating one ∆nf , which is based on the PBD
definition shown in Eq. (1). The left part of Fig. 3(a) is
the CEM, which directly gives f(n1, . . . , n, . . . , nM). The
right part computes the PBD ∆nf . Specifically, it first com-
putes f(n1, . . . , n, . . . , nM) by copying n’s TFOs (i.e., t1, t2,
and t3) and driving the copied nodes (i.e., t′1, t′2, and t′3)
with n. The new PO t′3 copied from the old PO t3 gives
f(n1, . . . , n, . . . , nM). Then, ∆nf is obtained as the XOR of
t3 and t′3. To compute all the PBDs ∆nf ’s, the right part of
Fig. 3(a) is repeated for each node n in the current approximate
circuit.

However, if the CEM V and the current approximate circuit
Ĝ have M and N nodes, respectively, then O(MN) nodes
are copied to construct the PBD circuit for all the PBDs. As a
result, for a large design, its maximum error checking circuit
is too large to be handled by SAT sweeping. Thus, we need a
more compact PBD circuit.

!"

!#

$"

$#

$%
&

$"
'

$#
'

$%
'

()*

CEM Exact PBD Circuit

XOR

 (!", � , !, � , !#)

 (!", � , $!,� , !#)

(a) Obtain an exact PBD.

CEM Approx. PBD Circuit

(b) Obtain an approximate PBD.
Fig. 3. Example circuits to compute PBDs.

2) Approximate PBD Circuit: To simplify the PBD circuit,
we start from a recursive formula of computing PBDs exactly
proposed in [15]. It calculates the PBD of n based on the
PBDs of n’s fanouts u1, u2, . . . , uk (k ≥ 1) as follows:
∆nf = (∆nu1·∆u1f)⊕(∆nu2·∆u2f)⊕· · ·⊕(∆nuk·∆ukf)

⊕(∆nu1·∆nu2·∆2
u1u2

f)⊕(∆nu1·∆nu3·∆2
u1u3

f)⊕· · ·
⊕(∆nuk−2·∆nuk·∆2

uk−2uk
f)⊕(∆nuk−1·∆nuk·∆2

uk−1uk
f)

⊕· · ·⊕(∆nu1·∆nu2 · · ·∆nuk·∆k
u1u2...uk

f),

(2)

where ∆nui (1 ≤ i ≤ k) is the 1st-order PBD of the fanout
ui w.r.t. n, which can be obtained directly by Eq. (1). ∆ui

f
(1 ≤ i ≤ k) is the 1st-order PBD of the output f w.r.t. the
fanout ui, ∆2

uiuj
f (i ̸= j, 1 ≤ i, j ≤ k) is the 2nd-order

PBD of f w.r.t. ui and uj , and so on. The base case of the
recursion is ∆ff , which equals 1 by definition. As Eq. (2) is
too complex, we propose to approximate it. For simplicity, we
illustrate our basic idea by the case where n has 2 fanouts, u1

and u2, which can be easily extended to general cases. In this
case, Eq. (2) can be written as
∆nf=(∆nu1·∆u1f)⊕(∆nu2·∆u2f)⊕(∆nu1·∆nu2·∆2

u1u2
f) (3)

Observing that the right-hand side (RHS) of Eq. (3) contains
the terms ∆nu1 and ∆nu2, we can expand Eq. (3) by
Shannon’s expansion w.r.t. ∆nu1 and ∆nu2 as
∆nf=∆nu1·∆nu2·∆nf |∆nu1=0,∆nu2=0+∆nu1·∆nu2·∆nf |∆nu1=1,∆nu2=0

+∆nu1·∆nu2·∆nf |∆nu1=0,∆nu2=1+∆nu1·∆nu2·∆nf |∆nu1=1,∆nu2=1,
(4)

where ∆nf |∆nu1=i,∆nu2=j’s (i, j ∈ {0, 1}) are the Shannon
cofactors.

To obtain the Shannon cofactor ∆nf |∆nu1=0,∆nu2=0, we
substitute ∆nu1 and ∆nu2 on the RHS of Eq. (3) with 0 and

!

!

obtain it as 0. The other Shannon cofactors can be obtained
similarly. Thus, Eq. (4) can be rewritten as

∆nf=∆nu1·∆nu2·∆u1f+∆nu1·∆nu2·∆u2f

+∆nu1·∆nu2·
(
∆u1f ⊕∆u2f ⊕∆2

u1u2
f
)
.

(5)

Since the 2nd-order PBD ∆2
u1u2

f is not easy to derive, we
propose to approximately set the Shannon cofactor containing
the 2nd-order PBD, i.e., ∆u1

f⊕∆u2
f⊕∆2

u1u2
f , as one. Then,

an approximate PBD is computed as follows:2

∆̂nf=∆nu1 ·∆nu2 ·∆̂u1f+∆nu1 ·∆nu2 ·∆̂u2f+∆nu1 ·∆nu2, (6)

where ∆̂nf is the approximate PBD of f w.r.t. n, and ∆̂u1
f

and ∆̂u2
f are the approximate PBDs of f w.r.t. the fanouts

u1 and u2, respectively. For the special case where n = f , we
define ∆̂ff = 1.

By the definition of Eq. (6), an approximate PBD circuit can
be constructed as follows. Initially, the node to compute ∆̂ff
is set as a constant 1. Then, each node n in the CEM V is
traversed in a reverse topological order, and the corresponding
node to compute ∆̂nf is added according to Eq. (6). Fig. 3(b)
gives an example of building a node to compute ∆̂nf . Assume
n has two fanouts, t1 and t2, whose functions are t1 = n⊕ s1
and t2 = ns2, respectively. By Eq. (1), we have ∆nt1 = 1
and ∆nt2 = s2. Then, by Eq. (6), we further have
∆̂nf=∆nt1∆nt2∆̂t1f+∆nt1∆nt2∆̂t2f+∆nt1∆nt2=s2∆̂t1f+s2,

and its actual implementation is shown in the right part of
Fig. 3(b). Compared to the exact PBD circuit, the approximate
PBD circuit does not need to copy the TFOs of a node
n. Instead, ∆̂nf only depends on the approximate PBDs of
n’s fanouts. Therefore, an approximate PBD circuit is much
smaller and more practical than an exact PBD circuit.

Although ∆̂nf does not equal ∆nf , it can be proved that
if ∆̂nf = 0, then ∆nf = 0, i.e., ∆̂nf = 0 implies ∆nf = 0.
By this property, we further deduce the following theorem.

Theorem 2. A LAC Cn,g is valid if (n⊕ g)∆̂nf ≡ 0.

Theorem 2 can be easily proved by discussing two possible
cases: 1) n ⊕ g = 0 and 2) ∆̂nf = 0. Its detailed proof is
omitted. Based on Theorem 2, we can approximately check the
validity of each LAC by checking whether (n⊕g)∆̂nf ≡ 0. If
it is true, then the LAC is valid. Otherwise, the LAC’s validity
is unknown, and conservatively, we treat the LAC as invalid.

3) Circuit Combining Exact and Approximate PBDs: Al-
though an approximate PBD circuit is smaller than an exact
PBD circuit, it is also less accurate. To improve the accuracy,
we further propose a circuit combining exact and approximate
PBD computation. In this circuit, exact and approximate
PBD computation is applied to nodes with more and fewer
fanouts, respectively. The reason is that a node with more
fanouts would have more terms containing non-first-order
PBDs discarded during the approximation from Eq. (5) to
Eq. (6). Thus, the approximate PBD for a node with many
fanouts suffers from a significant error compared to the exact
PBD. Therefore, for nodes with more fanouts, exact PBDs are

2In the general case where n has k (k ≥ 1) fanouts, we similarly set all
the Shannon cofactors containing non-first-order PBD terms as one to get the
approximate PBD.

computed to guarantee accuracy, while for nodes with fewer
fanouts, approximate PBDs are used for efficiency.

In practice, we decide the PBD computation mode for each
node in the current approximate circuit Ĝ as follows. For each
output of Ĝ, we compute the exact PBD. For each internal (i.e.,
non-input and non-output) node, its PBD computation mode is
decided by a parameter P ∈ [0, 100]. Specifically, the top P%
internal nodes with the most fanouts use exact PBDs, while
the rest (100 − P)% use approximate PBDs. With the PBD
computation mode decided, the PBD circuit for each internal
node of Ĝ is constructed in a reverse topological order.

IV. ALS FLOW BASED ON MECALS

This section presents an ALS flow based on MECALS,
shown in Algorithm 1. The inputs are an exact circuit G, a
maximum error bound B, and a percentage of nodes using
exact PBDs, P . Its output is an approximate circuit Ĝ that
satisfies the error constraint. The flow initializes the current
approximate circuit Ĝ with the exact circuit G (Line 1) and
then approximates the circuit iteratively (Lines 2–11).

Algorithm 1: MECALS-based ALS procedure.
Input: exact circuit G, maximum error bound B, percentage

of nodes using exact PBDs, P ;
Output: approximate circuit Ĝ;

1 current approximate circuit Ĝ← G;
2 while true do
3 V ← BuildCurrentErrorMiter(G, Ĝ,B);
4 Gp ← BuildPBDCircuit(Ĝ, V, P);
5 Obtain the set of candidate LACs C in Ĝ;
6 Ge ← BuildErrorCheckCircuit(V,Gp,C);
7 SATSweeping(Ge);
8 foreach LAC Cni,gij ∈ C do
9 hij ← validity signal of Cni,gij in Ge;

10 if hij ≡ 0 then ApplyLAC(Ĝ, Cni,gij); break;
11 if Ĝ is not modified then break;
12 return Ĝ;

In each iteration, Line 3 builds a CEM V to check the
maximum error of Ĝ. Based on the circuit V , Line 4 further
constructs a PBD circuit Gp that combines exact and approxi-
mate PBDs by the method described in Section III-D3. Then,
Line 5 obtains the set of candidate LACs C in Ĝ. Two kinds
of LACs, the constant LAC [3] and the SASIMI LAC [6],
are considered in our implementation. Next, Line 6 builds
a maximum error checking circuit Ge as shown in Fig. 2,
and Line 7 performs SAT sweeping on Ge. After that, Line 8
visits each LAC Cni,gij , and Line 9 obtains the corresponding
validity signal hij from Ge. Once a valid LAC Cni,gij is met,
i.e., the corresponding hij is identically 0, Line 10 applies
the LAC to Ĝ and skips the rest LACs. Then, the flow
continues with the next iteration. The flow terminates until
the approximate circuit Ĝ is not modified, which means that
there are no valid LACs (Line 11). Finally, Line 12 returns the
approximate circuit Ĝ.

It is worth mentioning that the order of evaluating candidate
LACs (Lines 8–10) affects the synthesis quality. In our imple-
mentation, the candidate LACs are sorted by two keys. The
primary key is the LAC type: the constant LACs are evaluated

!

!

before the SASIMI LACs. The reason is that by replacing
a node n by 0 or 1, we can perform constant propagation to
reduce circuit area significantly. The secondary key is the logic
level of the node that a candidate LAC approximates. In other
words, if a candidate LAC approximates a node with a smaller
logic level, then it is considered first. It is because a node with
a smaller logic level has a larger TFO cone, and approximating
it may bring more area saving.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results. We
implement MECALS and the MECALS-based ALS flow in
C++ and test them on a single core of an AMD 4800H
processor with 32GB RAM. Currently, our flow works on an
AND-inverter graph-based representation of circuit, although it
also supports other circuit representations. Our flow integrates
ABC [17], a SOTA logic synthesis and verification system. It
utilizes various ABC commands, including “amap” for map-
ping circuits with the Nangate 45nm library [18], “stime” for
measuring the area and delay of mapped circuits, and “ifraig”
for SAT sweeping. Tested benchmarks are listed in Table I,
whose columns show circuit names, PI/PO/gate numbers, area,
and delay. They are exact circuits, including those used in
MUSCAT [5], a SOTA method proposed recently, some BACS
benchmarks [19], adders, and multipliers.

TABLE I. BENCHMARK CIRCUITS. AREA (resp. DELAY) IS IN µm2 (resp.
ps). “*”: USED IN MUSCAT [5]; “+”: FROM BACS [19].

Name #I/#O/#Gate Area Delay Name #I/#O/#Gate Area Delay

absdiff*+ 16/8/80 87.3 416.3 buttfly+ 32/34/187 170.5 1008.2
add8* 16/9/41 42 359.9 mac+ 12/8/91 92.8 595.9
add32*+ 64/33/190 184.6 1843.3 mult8* 16/16/422 435.4 1255.2
add128 256/129/907 933.4 960.2 mult16+ 32/32/1528 1418.8 1981.5
binsqrd* 16/18/1047 1052.3 1526.8 mult32 64/64/5819 5723.3 1873.5

A. Accuracy-Efficiency Tradeoff of MECALS
This section studies the accuracy-efficiency tradeoff of

MECALS. We compare it with a SAT-based exact maximum
error checking method (called exact method in short), which
is used in many previous works [10], [12], [14]. The exact
method checks the validity of LACs one by one. It applies
each LAC into the current approximate circuit Ĝ and obtains
a new approximate circuit Gnew. Then, an error miter for Gnew
is constructed and converted into a SAT instance. After that,
a SAT solver is called to check the validity.

Notably, the maximum error checking problem is a binary
classification problem that divides candidate LACs in Ĝ into
valid and invalid LACs. Therefore, the accuracy of MECALS
can be evaluated by two standard metrics for binary classifiers,
precision and recall, defined as follows:

precision = TP/(TP + FP), recall = TP/(TP + FN),

where TP (true positive) is the number of LACs checked
as valid by both MECALS and the exact method, FP (false
positive) is the number of LACs checked as valid by MECALS
but invalid by the exact method, and FN (false negative) is the
number of LACs checked as invalid by MECALS but valid by
the exact method. We prefer higher precision and recall, and
as a perfect classifier, the precision and recall of the exact
method are both 1.

0

15

30

45

60

75

90

10%

25%

40%

55%

70%

85%

100%

P=0 P=20 P=40 P=60 P=80 P=100

A
cc

el
er

a
ti

o
n

 r
a
te

R
ec

a
ll

P, percentage of nodes using exact PBDs

add8_recall absdiff_recall mac_recall
add8_accel. absdiff_accel. mac_accel.

Fig. 4. Recall and acceleration rate versus P , the percentage of nodes using
exact PBDs. The WCE bound is 16.

We compare MECALS with the exact method on three
benchmarks, absdiff, add8, and mac, under a WCE bound of
16. Only the first three iterations of our proposed ALS flow
(Algorithm 1) are considered, and TP, FP, and FN are counted
in these iterations.

The first observation is that FP is always 0, and the precision
is always 1. Thus, no LACs are checked as valid by MECALS
but invalid by the exact method. This observation is consistent
with Theorem 2, which guarantees that each valid LAC found
by MECALS can be applied to simplify the circuit without
violating the error constraint.

Then, we analyze the relationship between recall of
MECALS and P , the percentage of nodes using exact PBDs
(see Section III-D3). Fig. 4 plots recall versus P . We can see
that when P ≥ 40, the recall for each circuit is almost 100%,
implying that MECALS can detect almost the same set of valid
LACs as the exact method. Furthermore, as P increases, recall
increases for all benchmarks and approaches 1. However, for
circuit mac, when P = 100 (i.e., all nodes use exact PBDs),
recall is not exactly 1. This implies that FN ̸= 0, i.e., some
LACs are found as invalid by MECALS but valid by the exact
method. In other words, even using exact PBDs (P = 100),
MECALS cannot detect all valid LACs. This is because the
ABC command “ifraig”, as a resource-limited SAT-sweeping
method, does not detect all functional equivalence cases in the
maximum error checking circuit (see Section III-C).

Fig. 4 also plots the acceleration rate, defined as the runtime
of the exact method over that of MECALS, versus P . We
can see that the acceleration rate decreases with P , which is
expected. Compared to the exact method, MECALS acceler-
ates by 7∼61× for different P ’s on different circuits. The
experiment also shows the effectiveness of combining exact
and approximate PBDs. For some P < 100 (e.g., P = 40),
they can achieve almost the same accuracy as P = 100, which
corresponds to only using exact PBDs, while being much
faster.

B. Synthesis Quality
In this section, we first compare the proposed ALS flow

based on MECALS with MUSCAT [5] (a SOTA method
proposed recently) under the WCE constraint. Tested bench-
marks are listed in Table I. For the benchmarks also tested
by MUSCAT, the selected WCE bounds are exactly the same
as those used in MUSCAT. Actually, there are tens of WCE
bounds for each benchmark, and each bound is tested in this
experiment. Since there are many configurations in MUSCAT
that produce approximate circuits of different qualities, we

!

!

select the best one from the MUSCAT paper so that the largest
area saving is achieved. For the benchmarks not tested by
MUSCAT [5], we choose four different WCE bounds accord-
ing to the PO number O, i.e., 2⌊O/8⌋, 2⌊O/4⌋, 2⌊3O/8⌋ and
2⌊O/2⌋. Additionally, different P values are chosen according
to the circuit size. From Fig. 4, recall is almost 100% when
P = 40. Thus, we choose P = 40 for all the circuits except
the large ones, i.e., binsqrd, add128, mult16, and mult32. To
reduce runtime of larger circuits, P is set as 4 for binsqrd,
add128, and mult16, and 0.4 for mult32.

TABLE II. COMPARISON OF MECALS-BASED FLOW WITH MUSCAT.
N/A: UNABLE TO OBTAIN APPROXIMATE CIRCUITS IN 24 HOURS. A BOLD
ENTRY MEANS THAT MECALS-BASED FLOW OUTPERFORMS MUSCAT.

Circuit Mean area saving Mean delay saving Runtime/s

MUSCAT MECALS MUSCAT MECALS MUSCAT MECALS

absdiff 47.0% 67.6% 26.6% 42.5% 67 3
add8 55.9% 58.9% 45.2% 53.3% 15 1
add32 40.3% 47.7% 45.8% 28.4% 29 611

binsqrd 9.8% 27.0% 5.5% 8.2% 31546 791
buttfly 15.1% 24.0% 4.4% 17.7% 8 51
mac 10.0% 32.2% 5.7% 13.9% 3 8

mult8 61.5% 75.8% 38.7% 53.3% 7380 1548
Mean of
the above 34.2% 47.6% 24.6% 31.0% 5578 431

add128 N/A 26.1% N/A 4.2% >24h 17581
mult16 N/A 14.7% N/A 10.8% >24h 4526
mult32 N/A 11.9% N/A 2.7% >24h 44512

Area (resp. Delay) saving, defined as the reduced area (resp.
delay) of the approximate circuit over the area (resp. delay) of
the exact circuit, is used to evaluate the approximate designs.
Apparently, we prefer larger area and delay savings. We obtain
average area saving, average delay saving, and average runtime
over all the tested WCE bounds for each circuit. As shown
in Table II, MUSCAT cannot generate approximate designs
for add128, mult16, and mult32 within 24 hours, while our
method can deal with all of them. Compared with MUSCAT,
on average, our method saves more area and delay with a
relative improvement of 39.2% and 26.0%, respectively, and
accelerates by 13×. Notably, our method always reduces more
area than MUSCAT, and reduces more delay on all benchmarks
except add32. This improvement is due to the ability of
MECALS to handle complex LACs like SASIMI LAC, which
are not supported in MUSCAT.

Moreover, we also approximate several adders and multipli-
ers under the MaxSE constraint to show the wide applicability
of our method. Since MUSCAT does not test the MaxSE
constraint, our flow is compared with the truncating-based
method, which sets some least significant bits of an exact
circuit to 0. For each benchmark, we generate 5 different
truncating circuits and measure their MaxSE normalized to
the maximum possible square error (2O − 1)2, where O is the
PO number. The number of truncation bits and the normalized
MaxSEs are shown in Fig. 5. Then, we apply MECALS-based
flow to generate approximate designs using the MaxSEs of the
truncating circuits as the error bounds. As shown in Fig. 5, our
flow always saves more area and delay than the truncating-
based method. In most cases, both area and delay savings
of a circuit produced by our flow increase with the MaxSE.
Notably, for mult16, our flow reduces area and delay by 47%

4e-6 3e-5 2e-4 9e-4 4e-3

(a) add8: normalized MaxSE

0

25

50

S
a
v
in

g
 r

a
ti

o
 (

%
) 1 2 3 4 5

#truncation bits

3e-18 8e-16 2e-13 6e-11 1e-8

(b) add32: normalized MaxSE

0

50
Truncation

Area

Delay

4 8 12 16 20
#truncation bits

MECALS

Area

Delay

2e-9 5e-8 9e-7 2e-5 2e-4

(c) mult8: normalized MaxSE

20

40

S
a
v
in

g
 r

a
ti

o
 (

%
) 2 4 6 8 10

#truncation bits

1e-17 4e-15 9e-13 2e-10 6e-8

(d) mult16: normalized MaxSE

0

20

40

4 8 12 16 20
#truncation bits

Fig. 5. Comparison between MECALS-based flow and truncating-based
method under the MaxSE constraint.

and 31% under a normalized MaxSE of no more than 6×10−8.

VI. CONCLUSION

This paper proposes MECALS, a maximum error checking
technique for approximate logic synthesis. It relies on an error
model with PBDs and fast error checking with SAT sweeping.
We also design an efficient ALS flow based on MECALS. The
experimental results show that our flow improves the quality
of ALS significantly and accelerates ALS dramatically.

REFERENCES
[1] J. Han and M. Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.
[2] I. Scarabottolo et al., “Approximate logic synthesis: A survey,” Pro-

ceedings of the IEEE, vol. 108, no. 12, pp. 2195–2213, 2020.
[3] D. Shin and S. K. Gupta, “A new circuit simplification method for

error tolerant applications,” in DATE, 2011, pp. 1–6.
[4] I. Scarabottolo et al., “A formal framework for maximum error

estimation in approximate logic synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 4, pp. 840–853, 2022.

[5] L. Witschen et al., “MUSCAT: MUS-based circuit approximation
technique,” in DATE, 2022, pp. 1–6.

[6] S. Venkataramani et al., “Substitute-and-simplify: A unified design
paradigm for approximate and quality configurable circuits,” in DATE,
2013, pp. 1367–1372.

[7] Y. Wu et al., “An efficient method for multi-level approximate logic
synthesis under error rate constraint,” in DAC, 2016, pp. 1–6.

[8] S. Hashemi et al., “BLASYS: Approximate logic synthesis using
boolean matrix factorization,” in DAC, 2018, pp. 1–6.

[9] C. Meng et al., “ALSRAC: Approximate logic synthesis by resubsti-
tution with approximate care set,” in DAC, 2020, pp. 1–6.

[10] A. Chandrasekharan et al., “Approximation-aware rewriting of AIGs
for error tolerant applications,” in ICCAD, 2016, pp. 1–8.

[11] J. Schlachter et al., “Design and applications of approximate circuits by
gate-level pruning,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 25, no. 5, pp. 1694–1702, 2017.

[12] M. Češka et al., “Approximating complex arithmetic circuits with
formal error guarantees: 32-bit multipliers accomplished,” in ICCAD,
2017, pp. 416–423.

[13] I. Scarabottolo et al., “Circuit carving: A methodology for the design
of approximate hardware,” in DATE, 2018, pp. 545–550.

[14] R. Venkatesan et al., “MACACO: Modeling and analysis of circuits
for approximate computing,” in ICCAD, 2011, pp. 667–673.

[15] A. C. Chiang et al., “Path sensitization, partial Boolean difference, and
automated fault diagnosis,” IEEE Transactions on Computers, vol. 100,
no. 2, pp. 189–195, 1972.

[16] Q. Zhu et al., “SAT sweeping with local observability don’t-cares,” in
Advanced Techniques in Logic Synthesis, Optimizations and Applica-
tions, Springer, 2011, pp. 129–148.

[17] A. Mishchenko et al., ABC: A system for sequential synthesis and
verification, http://people.eecs.berkeley.edu/~alanmi/abc/, 2022.

[18] Nangate, Inc., Nangate 45nm open cell library, https://si2.org/open-
cell-library/, 2022.

[19] Brown University Scale Lab, BACS: Benchmarks for approximate
circuit synthesis, https://github.com/scale-lab/BACS, 2022.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

