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Abstract—Recent point cloud recognition (PCR) tasks tend to
utilize deep neural network (DNN) for better accuracy. Still, the
computational intensity of DNN makes them far from real-time
processing, given the fast-increasing number of points that need
to be processed. Because the point cloud represents 3D-shaped
discrete objects in the physical world using a mass of points, the
points tend for an uneven distribution in the view space that
exposes strong clustering possibility and local pairs’ similarities.
Based on this observation, this paper proposes PRADA, an
algorithm-architecture co-design that can accelerate PCR while
reserving its accuracy. We propose dynamic approximation, which
can approximate and eliminate the similar local pairs’ computa-
tions and recover their results by copying key local pairs’ features
for PCR speedup without losing accuracy. For accuracy good, we
further propose an advanced re-clustering technique to maximize
the similarity between local pairs. For performance good, we
then propose a PRADA architecture that can be built on any
conventional DNN accelerator to dynamically approximate the
similarity and skip the redundant DNN computation with memory
accesses at the same time. Our experiments on a wide variety of
datasets show that PRADA averagely achieves 4.2×, 4.9×, 7.1×,
and 12.2× speedup over Mesorasi, V100 GPU, 1080TI GPU, and
Xeon CPU with negligible accuracy loss.

I. INTRODUCTION

Point cloud recognition (PCR) plays a key role in a wide
range of applications, such as autonomous driving and robotics.
An input point cloud is a collection of points that can represent
3D-shaped discrete objects with points covering the object’s
surface, as shown in Fig. 1(a). To recognize the points, the clas-
sic PCR algorithm works as in Fig. 1(b), and it contains three
steps: 1) farthest point sampling (FPS), 2) neighbor search, and
3) feature computation. First, FPS picks the most representative
points—centroid points, i.e., P1. Next, the neighbor search
operation selects multiple neighbor points for each centroid
point, like P3, and then concatenates with centroid point to
form in local pairs, i.e., (P1, P3), (P1, P6). Finally, the feature
computation applies a DNN on the local pairs to obtain the
feature results. Note that forming the local pairs is an important
step to PCR accuracy because it can recognize fine-grained
patterns in complex scenes. As a result, PointNet++ [10] can
achieve remarkable accuracy improvement compared to its
predecessor PointNet [9], which does not focus on local pairs.

However, given a large amount of local pairs, the per local
pair DNN processing in PointNet++ makes it hard for real-
time PCR. Aiming for faster speed, Mesorasi [5] tries to
reduce the workload by not fully processing every local pair.
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As illustrated in Fig. 1(b), it applies the feature computation
on each input point individually, such as P1, P2, rather than
on each local pair, i.e., (P1, P3), which brings significant
performance improvement but at the cost of notable accuracy
loss up to 7.8%.

The point cloud oftentimes represents discrete objects, so
the points tend for an uneven distribution in the view space
that manifests a strong clustering possibility. So, one neighbor
point is likely to be accessed more than once in different local
pairs, which inherently causes redundant computations in the
following DNN. Based on this observation, we present PRADA,
a hardware-software co-design framework. PRADA avoids the
drawbacks of Mesorasi and PointNet++ by reserving the im-
portant local pairs while reducing the redundant computations.

To enable PRADA, we offer the dynamic approximation
method that first detects the similar local pairs containing the
same neighbor point and then approximates them equivalent.
The dynamic approximation only needs to compute one of them
to save redundant DNN computations. We further propose an
advanced re-clustering technique that re-clusters the centroid
points to constrain the approximation space. Overall, approx-
imating the local pairs in the same cluster will speed up the
DNN computation without hurting the PCR accuracy.

The second question is how to dynamically detect and ap-
proximate the local pairs considering they are produced online.
We further design an end-to-end PRADA architecture. It equips
a lightweight approximation engine to identify the redundancy
and reconstruct the feature result. The approximation engine
contains a joint dual buffer structure, which can simultaneously
eliminate redundant computations and memory accesses.

Different from the conventional PCR algorithms [9], [10],
[5], PRADA keeps the important local pairs that can reserve
the DNN accuracy, and dynamically approximates the similar
local pairs that can accelerate the DNN processing. In contrast,
conventional schemes such as Mesorasi only support static
input-point-wise approximation which hurts accuracy. Besides,
PRADA is hardware friendly and can support diverse point-
based PCR algorithms by the end-to-end design. Moreover,
PRADA offers an efficient accelerator design with a tightly
coupled algorithm for PCR workloads.

II. BACKGROUND AND MOTIVATION

A. NN-based PCR Algorithm
The PCR algorithm consists of multiple layers, and each

layer repeatedly transforms an input point cloud to an output
point cloud by FPS, neighbor search, and feature computa-
tion operations. The most time-consuming feature computation
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Fig. 1: An overview of point cloud recognition.

operation contains four steps—aggregation, concat, DNN, and
reduction using notations listed in Table I.

The aggregation and concat operations are responsible for
generating the local pairs in the form of input vectors. Specif-
ically, the aggregation calculates the coordinate difference
between the neighbor point Pi and its centroid point Pj by
calculating Ci-Cj . Then the input feature Fi of Pi is concate-
nated with Ci-Cj to form the input vector Ii,j = {Ci−Cj , Fi}.
The input vectors construct the local pair matrix (LPMatrix)
and wait for subsequent DNN, which typically applies a multi-
layer perceptron (MLP). Next, the MLP is executed on the
input vectors and acquires the feature results to form an output
feature matrix (OFMatrix). During the feature computation, the
input vectors in LPMatrix share the same MLP. In the end,
a reduction operation reduces the OFMatrix to a new output
matrix, which becomes the output point cloud.

B. Motivation of PRADA

As depicted in Fig. 1(a), the points gather in clusters, which
leads to repeated accesses to the neighbor points in the local
pairs. In Fig. 1(b), P3 appears three times in local pairs
(P1, P3), (P2, P3), and (P4, P3). Fig. 2 quantifies the cumu-
lative probability for a number of accesses of neighbor points
in three datasets—ModelNet40, ShapeNet, and S3DIS [14],
[2], [1], where 82%, 66% and 80% neighbor points have
been searched more than four times, respectively. Recalling the
aggregation and concat operations, such repeated accesses in
neighbor points will appear as the same input feature in input
vectors, creating massive similar input vectors in LPMatrix. In
other words, we can approximate the similar input vectors to
skip their corresponding MLP computations.

To reduce the accuracy loss by such approximation, we can
exploit the spatial distribution of the centroid points by re-
clustering them into e clusters and only approximate the input
vectors in a limited approximation space. It works because the
PCR accuracy is less sensitive to the positions of the centroid
points. We then report the inter- and intra-cluster distance
in Fig. 3, where the x-axis is the number of clusters. From
Fig. 3(a), the inter-cluster distance is quite large. Instead, in
Fig. 3(b), the intra-cluster distance is small, sharply decreasing
with the increasing number of clusters. This implies that
centroid points gather in clusters and can serve as a hint to
partition the input vectors. With a proper number of clusters,
we can reduce the massive redundancy in input vectors within
each cluster while retaining accuracy.

TABLE I: Notations.
Fi the input feature of point Pi

Ci the coordinate of point Pi

Ci,j the average coordinate of Pi and Pj

Ii,j the input vector containing Ci-Cj and Fi

M() the feature result
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Fig. 3: Cluster distance analysis.

III. PRADA ALGORITHM

The central idea of PRADA algorithm is to approximate the
similar input vectors in LPMatrix dynamically. PRADA intro-
duces back-end dynamic approximation that can eliminate
the expensive feature computation by easily reconstructing their
feature results. To avoid hurting the PCR accuracy, PRADA
provides the front-end advanced re-clustering to re-cluster
the centroid points.

A. The Back-end Dynamic Approximation

Dynamic Approximation. Given an input vector in LP-
Matrix contains the coordinate difference Ct − Ci and input
feature Ft, where Ft often accounts for a larger portion (up to
a 512-dimension vector in PointNet++ [10]) than the coordinate
difference Ct − Ci (a 3-dimension tuple). We can see that the
input vectors containing the same feature are highly likely to
be similar. We approximate them to make them equal once we
dynamically detect the same feature.

Supposing point Pt is a neighbor of the centroid points Pi

and Pj , their feature results after the MLP computation should
be M(It,i) = M({Ct-Ci,Ft}) and M(It,j) = M({Ct-Cj ,Ft}) .
If we detect the features in two input vectors are both Ft,
we approximate them as M({Ct-Ci,j ,Ft}), where Ci,j is the
average coordinate of Pi and Pj if they are adjacent in 3D
space with Ci-Cj → 0. As a result, the feature computations
of M (It,j) can be eliminated. In other words, the approximation
makes It,i and It,j the same and only compute M({Ct-Ci,j ,Ft})
once for acceleration. We regard It,i as the reference input
vector for It,j for later feature reconstruction.
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Fig. 4: PCR workflow with PRADA algorithm.

Feature Reconstruction. After the dynamic approximation,
the MLP only operates on a small subset of the input vectors
rather than the whole LPMatrix. To reconstruct the final OF-
Matrix, we will first locate the reference input vector and then
retrieve its feature result to fill the OFMatrix. For example, we
copy M(It,i) to the slot of M(It,j) in OFMatrix by referencing
It,i for It,j .

B. The Front-end Advanced Re-clustering

The dynamic approximation has minimal impact on accuracy
only on the condition that the two centroid points are close to
each other. For example, as in Fig. 1(b), centroid points P1

and P4 both have a neighbor P3. But I3,1 and I3,4 are far
from identical because P1 is far from P4, so the accuracy may
significantly degrade if we approximate I3,1 and I3,4. Therefore,
we propose to re-cluster the centroid points to constrain the
approximation space.

During the FPS operation, the earlier selected centroid points
are more representative than the later points [10]. Hence, we
propose that in FPS, the order of how centroid points are
selected can guide the centroid point re-clustering. Specifically,
we first use the earlier selected e centroid points as the centers
of e clusters. Next, we only have to calculate the distances
between the unselected centroid points and e cluster centers
and then throw the unselected points to e centers one by
one. Fortunately, the neighbor search operation has already
calculated the distances between all points and centroid points.
As a result, we can directly leverage the distances calculated in
the neighbor search operation to guide the re-clustering process.
Afterwards, to ensure the difference between the approximated
input vectors in a cluster as little as possible, we calculate
the average coordinate of each cluster to replace the original
coordinates of the centroid points in the cluster.

In conclusion, the proposed re-clustering technique reuses
the results produced during the FPS and neighbor search to
re-cluster centroid points without extra computing overhead.

C. PCR Example with PRADA Algorithm

Fig. 4 uses one layer to show how PCR works when inserting
the proposed PRADA algorithm. This layer has 9 input points.
After executing the FPS operation, 4 representative centroid
points are selected. Next, each centroid point undergoes the
neighbor search, and each gets 3 neighbor points. Then the
feature computation operation generates the final OFMatrix.

During the feature computation, aggregation and concat oper-
ation first generates the LPMatrix by calculating the coordinate
differences such as C3-C1 and concatenating feature F3. Next,
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the PRADA algorithm is inserted into the feature computation.
In PRADA, we first apply the front-end advanced re-clustering
and generate cluster information. For instance, we get the
centroid point indices (P1, P2) and (P4, P6), which respectively
belong to the first and second clusters. And we calculate
the average coordinates C1,2 and C4,6 of the two clusters.
Afterwards, we execute the back-end dynamic approximation
to make the input vectors that are in the same cluster equivalent
by substituting the coordinates of the centroid points P1 and
P2, C1 and C2, with the average coordinate C1,2. Then, the
12 × 6 LPMatrix can be compressed by squeezing the same
input vectors out. Consequently, the output feature can be
efficiently computed by feeding the squeezed 8 × 6 LPMatrix
into MLP so as to obtain an 8 × 128 OFMatrix, where 128
is the output feature dimension. In the end, we reconstruct the
12× 128 OFMatrix in a copy-and-paste manner. For example,
we reconstruct M({C3-C2,F3}) by copying M({C3-C1,2,F3}).
In this example, we lower the computation complexity of MLP
by reducing the input vectors from 12 to 8.

IV. PROPOSED ARCHITECTURE

The proposed PRADA architecture is sketched in Fig. 5. It
consists of front-end (data preparation) and back-end (PRADA
algorithm execution). The front-end consists of a cluster buffer
and neighbor buffer, which prepares the cluster, centroid index,
and neighbor index by communicating with DRAM. The back-
end mainly includes an approximation engine for dynamically
approximating the input vectors, an MLP engine for calculating
the output features of points, and the associated control logic.

A. The Back-end Approximation Engine

1) An Intuitive Solution: Because PRADA saves the feature
computations by dynamic approximation and feature recon-
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struction, it is importance to reuse the computed feature results
as much as possible. So, an intuitive architecture is to apply a
cache in the approximation engine with the following steps.

1) In each step, each neighbor point probes the cache. The
cache will regard the neighbor index as a tag to check if there
exists any similar input vector that has already been calculated
before. If the cache hits, the corresponding feature computation
can be skipped, and the feature result in the hit entry will be
directly written back to reconstruct the OFMatrix.

2) If the cache misses, the feature computation works as
normal without any savings, and the corresponding feature
results will be stored in the cache for later reuse.

A better cache should identify all the similarities by storing
all features in one cluster on-chip. However, the feature result
is too large in size to hold all of them (up to 96KByte in
PointNet++ [10]) in the cache.

2) Joint Dual Buffer Structure: Instead, we should imme-
diately consume the feature results instead of storing them
on-chip once the MLP engine generates the feature results.
Consequently, we propose the joint dual buffer, including the
result buffer and computed cache, to substitute the intuitive
cache as illustrated in Fig. 6. The result buffer records the
position of the feature result in the output buffer in the MLP
engine. The computed cache records the neighbor index if it has
been calculated before. In this way, an entry in the computed
cache will serve as a reference point that helps PRADA to
identify the similarity dynamically.

Fig. 7 illustrates how to build the joint dual buffer. We
assume two centroid points P1 and P2 are in the same cluster
after advanced re-clustering. And each point has three neighbor
points P3, P6, P7 and P3, P6, P8.

In step 1-3, because P3, P6, P7 to centroid P1 first appear in
the computed cache, these input vectors I3,1, I6,1, I7,1 will be
computed by MLP engine. The feature results will be stored in
the 1st, 2nd, 3rd positions in the output buffer. The computed
cache stores 3, 6, and 7 as tags, and the result buffer holds 1,
2, and 3 as output buffer positions.

In step 4, P3 comes again belonging to another centroid point
P2, the feature will be approximated, and whose results will be
reconstructed. The computed cache will capture P3’s recurrence

and use “1” indicating the output buffer position to fill the result
buffer at the 4th entry because the DRAM address increments
linearly to the incoming points.

In step 6, because P8 first appears, the computed cache and
result buffer act similarly to steps 1-3.

After the MLP computation, the result buffer then guides
the feature reconstruction of OFMatrix and writes it back to
DRAM with the assistance of the output buffer in the MLP
engine. As shown in Fig. 8, the output buffer in MLP engine
now holds four feature results whose neighbor points are P3,
P6, P7, P8. The result buffer will read them out in order as
recorded in the “Buffer Pos” field and write them back in a
DRAM burst operation.

The computed cache can capture all the similarities with
enough entries and record the indices instead of data to shrink
its size. The result buffer streamlines the DRAM accesses
with awareness of the dynamic approximation opportunity.
In PRADA architecture, they succeed in eliminating all the
unnecessary computation and memory accesses by working
together with minimum on-chip storage. Although they take
sequential steps in filling their entries, the time can totally
overlap with the time-consuming MLP computation.

V. EXPERIMENTAL METHODOLOGY

A. Validation on Accuracy

We evaluate our PRADA algorithm by applying Pytorch [8]
framework. The datasets we used are: 1) ModelNet40 [14]; 2)
ShapeNet [2]; 3) S3DIS [1], which are well-acknowledged in
various point cloud algorithms. And we compare the accuracy
of PRADA with PointNet++ [10] (denote as “baseline” in the
figures) and Mesorasi [5].

B. Modeling Accelerator Architecture

To evaluate the performance of PRADA, we developed
a cycle-accurate performance model with 256 GB/s HBM2
bandwidth. The design is implemented in RTL and synthesized
by Synopsys Design Compiler to get the area and power
consumption under 45nm technology, with a design frequency
at 500MHz. We use CACTI [7] to model the SRAM and
DRAM. The total area of the PRADA architecture is 5.2 mm2,
and the MLP engine takes up most of the area. Concretely, the
computed cache and result buffer in the approximation engine
take 2KByte. And the neighbor buffer and cluster buffer cost
1KByte and 2KByte. Lastly, the MLP engine consists of a
16× 32 MAC array and 98 KByte on-chip buffer.

We compare PRADA architecture with modern hardware
platforms, including server GPUs (NVIDIA Tesla V100 PCIe
32GB, NVIDIA GTX 1080 Ti), server CPU (Intel(R) Xeon(R)
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CPU E5-2609 v4 @ 1.7GHz). We also compare to the state-of-
the-art point cloud accelerators Mesorasi [5] and PointAcc [6].

VI. EXPERIMENTAL RESULTS

A. Accuracy

Fig. 9 compares our PRADA to the baseline PointNet++ and
Mesorasi on three datasets. For ModelNet40 dataset, PRADA
can match the baseline’s accuracy with a loss of less than
0.9%. Moreover, PRADA has an accuracy loss of less than
0.8% for ShapeNet and S3DIS datasets. PRADA may incur
accuracy loss for some cases, e.g., the dataset that contains
a mass of objects in the environment, so the advanced re-
clustering operation cannot precisely cluster the centroid points.
Fig. 9 also compares the accuracy of Mesorasi and ours. We can
see that PRADA is 0.4% better than Mesorasi for ModelNet40
dataset. In particular, PRADA is 1.3% better for S3DIS dataset
as the S3DIS dataset is more complicated, and Mesorasi cannot
handle it by roughly applying NN on raw points. The accuracy
degradation implies its straightforward solution is unacceptable,
particularly in intricate benchmarks. In contrast, PRADA re-
serves the accuracy with improved performance.

B. Performance Results

Fig. 10 shows the speedup of PRADA over Mesorasi, V100
GPU, 1080TI GPU, and Xeon CPU on three tasks. Since the
benefit of our scheme has a close relationship with the number
of approximated input vectors and the number of centroid
points in one cluster, the performance of our scheme varies
across different benchmarks for balancing accuracy and perfor-
mance. For example, for ModelNet40 dataset, PRADA achieves
nearly 4.9×, 6.2×, 8.9×, and 15.4× speedup over Mesorasi,
V100 GPU, 1080TI GPU, and Xeon CPU. And averagely,
PRADA can achieve 4.2×, 4.9×, 7.1×, and 12.2× speedup
over Mesorasi, V100 GPU, 1080TI GPU, and Xeon CPU. This
is because: 1) PRADA can reduce a significant number of input
vectors passing through the large MLP computations. It greatly

TABLE II: Comparison with existing PCR accelerators.

Mesorasi PointAcc PRADA PRADA+
PointAcc

Acceleration
Technique

Software+
Hardware Hardware Software+

Hardware
Software+
Hardware

Technology 16nm 40nm 45nm 45nm
Effective

Throughput 512GOP/s 922GOP/s 2.2TOP/s 4.4TOP/s

simplifies the processing for the approximated input vectors
with a much reduced reconstruction operation; 2) PRADA
architecture introduces an approximation engine that captures
the similarities while eliminating all the unnecessary memory
accesses; 3) Mesorasi can only accelerate the first layer as the
accumulated non-linearity MLP introduces severe accuracy loss
if deploying it to all layers; 4) The limited matrix size make
GPU underutilized while PRADA processes 16×32 operations
in parallel so that PRADA is easy to be fully utilized.

Fig. 11 shows the energy efficiency results. Overall, PRADA
is 6.0×, 7.0×, 10.9×, and 15.7× better than Mesorasi, V100
GPU, 1080TI GPU, and Xeon CPU respectively. Energy sav-
ings come from our specialized PRADA architecture, which
can reduce unnecessary input vectors access from/to the off-
chip memory and on-chip buffers.

Table II compares PRADA with the state-of-the-art PCR
accelerators Mesorasi [5] and PointAcc [6]. Mesorasi applies a
delayed-aggregation that only works in the first layer, leading
to a relatively low computation saving. PointAcc is a pure
hardware accelerator for PCR. Since PointAcc supports the
FPS and neighbor search by designing the specialized module,
PointAcc can improve the performance. Overall, it can achieve
1.8× speedup over Mesorasi. Moreover, PRADA achieves 4.2×
speedup compared to Mesorasi because PRADA applies a
novel dynamic approximation that greatly reduces the input
vectors being executed by the large MLP computations. Last
but not least, PRADA is orthogonal to PointAcc so that
we can distribute the FPS and neighbor search operations
into PointAcc while performing the feature computation with
the dynamic approximation in PRADA architecture. In this
way, PRADA+PointAcc can significantly improve the perfor-
mance by 8.6× compared to Mesorasi. Specifically, assum-
ing under 500MHz and 512 MACs (16 × 32), Mesorasi’s
throughput is 512GFLOPS. Since PointAcc, PRADA, and
PRADA+PointAcc respectively have 1.8×, 4.2× and 8.6×
geomean speedup respectively, their effective throughput are
1.8 × 512 = 922GFLOPS, 4.2 × 512 = 2.2TFLOPS, and
8.6× 512 = 4.4TFLOPS.

C. Detailed Analysis

1) Exploring the number of centroid points in one clus-
ter (C).: Fig. 12(a) and (b) explore the impact of the number
of centroid points in one cluster (C) on accuracy and speedup
over 1080TI GPU on the three datasets. The label “PRADA-
C2” represents two centroid points in one cluster. From the plot,
we find that the accuracy suffers more loss at larger C. Too
many centroid points may result in inaccurate approximation.
On the other hand, the performance improves with a larger
number of centroid points in one cluster. This is understandable
because the more centroid points are, the more likely we
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Fig. 12: Accuracy and speedup of PRADA by varying the
number of centroid points in one cluster C.
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Fig. 13: Speedup and accuracy loss of Mesorasi and PRADA
by varying the number of input points.

can leverage the advantage of our scheme for speeding up.
Specifically, we find that PRADA can maintain the accuracy
when C = 8 on ModelNet40 and ShapeNet datasets, while
C = 4 on S3DIS dataset, because S3DIS is more complicated,
so smaller re-clustering should be used to lean for accuracy.
Fortunately, the re-clustering can be dynamically adjusted in
PRADA architecture.

2) Exploring the number of input points.: Fig. 13 compares
the speedup over 1080TI GPU and accuracy loss of PRADA
and Mesorasi [5] in S3DIS dataset by varying the number
of input points. “PRADA-4096” denotes the number of input
points is 4096 for PRADA method. From the plot, we can
see that as the number of input points increases, the speedup
of Mesorasi remains while the accuracy loss becomes higher.
This is because Mesorasi roughly operates on the entire raw
input points and ignores the key features of local pairs. On the
contrary, PRADA is good at handling a larger input point cloud
by dynamically approximating the local pairs, given that there
can be more adjacent centroid points with shorter distance for
approximation. This benefits both accuracy and performance.

VII. RELATED WORKS

Point Cloud Recognition. Recently, PCR has received
tremendous interest from the research groups. There are two
major categories. One is to explore the data representation for
high accuracy, such as voxelization [14] and raw points [9],
[10]. However, such techniques require a large amount of
computing time.

Other is to search for a new way to improve the efficiency of
PCR. For example, Mesorasi [5] statically applies DNN on raw
input points so that it can avoid executing feature computation
on local pairs with massive redundancy. But Mesorasi has two
drawbacks: 1) once the input points are too much, Mesorasi
cannot achieve considerable speedup; 2) Mesorasi sacrifices the
PCR accuracy because it ignores the local structures.

DNN Accelerators. In the last few years, various DNN
accelerators [4], [12], [11], [13] are proposed. For example,
Diannao series [4] introduce multiple NN accelerators by
integrating a large on-chip eDRAM. Since reducing DRAM
accesses is important to performance, PRADA architecture also
benefits from these designs.

In fact, DNNs are hard to fit the on-chip memory, researchers
such as Eyeriss [3] explores dataflow to improve data reuse.
PRADA can work with the dataflow optimization. PRADA
steps forward by closely interacting with the algorithm, and
leverages the MAC array as an efficient infrastructure for
dynamic approximation.

VIII. CONCLUSION

This paper first offers a new PRADA algorithm to dy-
namically approximate the input vectors based on the same
features and same clusters characteristics for neighbor and
centroid points respectively. Moreover, we propose the PRADA
architecture to efficiently implement the proposed PRADA
algorithm. Our evaluation shows that the proposed PRADA
scheme outperforms other similar schemes in performance and
accuracy.
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