
WCET Analysis of Shared Caches in Multi-Core
Architectures using Event-Arrival Curves

Thilo L. Fischer
Institute of Embedded Systems

Hamburg University of Technology
Hamburg, Germany

thilo.leon.fischer@tuhh.de

Heiko Falk
Institute of Embedded Systems

Hamburg University of Technology
Hamburg, Germany
heiko.falk@tuhh.de

Abstract—We propose a novel analysis approach for shared
LRU caches to classify accesses as definitive cache hits or potential
misses. In this approach inter-core cache interference is modelled
as an event stream. Thus, by analyzing the timing between
subsequent accesses to a particular cache block, it is possible
to bound the inter-core interference. This perspective allows us to
classify accesses as cache hits or potential misses using a data-flow
analysis. We compare the performance of the presented approach
to a partitioning of the shared cache.

Index Terms—shared cache, WCET analysis, multi-core

I. INTRODUCTION

In a multi-core system, tasks are subject to inter-core in-
terference due to the concurrent execution of multiple tasks.
Specifically, data stored in a shared cache may be evicted by
interfering memory accesses. As a consequence of multiple
tasks competing for cache space, the worst-case execution time
(WCET) is negatively impacted. To derive safe estimations of
a task’s WCET, the inter-core interference has to be taken into
account. The standard method [1] of accounting for shared
cache interference is to assume that all conflicting cache
blocks may be accessed at any time by an interfering task.
This is obviously pessimistic. An alternative approach is to
eliminate inter-core interference by isolating tasks from each
other. This can be achieved by locking the contents of the
cache or by partitioning the cache to enforce isolation [2].
Another approach is to bypass the shared cache for requests on
infrequently used data to avoid altering the cache’s contents [3].
However, implementing such approaches requires hardware or
software support and, in the case of cache partitioning, reduces
the maximal cache size available to each task. Thus, to fully
benefit from the presence of shared caches without restrictions
on cache usage, a detailed analysis of inter-core interference is
required.

We propose a novel analysis approach for inter-core in-
terference on set-associative shared caches using the LRU
replacement policy. To quantify inter-core interference, we view
cache accesses issued by each core as an event stream. Thus,
we can examine the inter-arrival time of cache access events.
This perspective essentially induces a time-to-live (TTL) for
information stored in the shared cache. The TTL of a cache
block corresponds to the time frame in which interfering tasks
can not issue a sufficient number of conflicting accesses to

cause its eviction. Consequently, if a block is accessed before
its TTL has expired, the access will result in a cache hit.

The key contributions of this paper are:
• We describe a novel perspective on inter-core interference

for shared caches by interpreting cache accesses as event
streams.

• We provide a cache hit classification criterion for shared
caches accessed via a TDMA bus based on event-arrival
curves.

• The technique is scalable and attains WCET performance
similar to a partitioned cache.

II. EVENT-ARRIVAL CURVE PERSPECTIVE

The system architecture considered in this paper consists of
multiple cores with private caches, which are connected to a
shared cache via a TDMA bus. The associativity of the shared
cache is denoted by A. Each core processes a single task τ ∈ T.
We quantify inter-task interference by determining the event-
arrival curves for cache access events which may evict data
from the cache. The number of accesses to pair-wise different
cache blocks issued from task τ ∈ T during a time frame of
∆t cycles is denoted by the event-arrival curve ητ : N → N.
Deriving the curve ητ (∆t) from a given control-flow graph
involves finding the path containing the maximal number of
interfering accesses with duration ≤ ∆t. This problem can
be solved using an IPET model. Due to space constraints, the
full model is not included here. It is then possible to compute
the interference caused by a task during a single TDMA slot
(consisting of S cycles) by evaluating ητ (S). We can thus make
the following observation:

Observation 1. The cumulative interference a task τ ex-
periences over the course of j TDMA slots is bounded by
γτ : N→ N:

γτ (j) = j ·
∑
φ6=τ

ηφ(S) (1)

Note that this is a generalization of way-based cache parti-
tioning. For the purpose of cache hit classifications, the reduced
associativity in an equally partitioned cache can be represented
using a constant interference function:

γPartτ =
∑
φ 6=τ

A
|T|

=
|T| − 1

|T|
· A (2)

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

III. CACHE HIT CLASSIFICATION

We now construct a cache hit classification criterion for LRU
caches based on the duration (and thus the number of interfering
TDMA slots) between accesses to the same cache block. The
eviction distance ξ of a cache block is the minimal number
of interfering accesses to cause its eviction. We call a path π
between two subsequent accesses to the same cache block with
ξ(π) > 0 a potential-hit path.

To capture the inter-task interference along a potential-
hit path π, the maximal number of TDMA slots granted to
interfering tasks during its execution has to be determined. The
path duration δ(π) can be derived from a WCET analysis. Note
that δ(π) depends on the initial TDMA offset of π computed
during the WCET analysis. For a different initial offset, the
path duration may diverge from δ(π). However, this divergence
is limited to |T| · S cycles due to the offset relocation Lemma
from Kelter et al. [4]. These considerations give rise to an upper
limit:

Lemma 1. While executing a path π, the number of TDMA
slots granted to an interfering core is limited by:

J(π) =

⌊
δ(π) + |T| · S + (S − 1)

|T| · S

⌋
(3)

Combining Lemma 1 and the cumulative interference func-
tion γτ (1) allows us to construct an always-hit classification
criterion.

Theorem 1. An access will always result in a cache hit if it may
only be reached by traversing potential-hit paths π satisfying:

γτ (J(π)) < ξ(π) (4)

It is now possible to check whether a particular cache access
will result in a cache-hit. The paths leading to an access have to
be analyzed to determine whether condition (4) holds. This can
be done using a data-flow analysis. The formal definition of the
data-flow analysis is not shown here due to space constraints.

IV. EVALUATION

We evaluated the performance of the presented analysis
approach using the WCC compiler [5]. We considered 10 dual-
core and 10 quad-core systems. For each system, we randomly
assigned a task from the EEMBC AutoBench 1.1 suite [6]
to each core. The access timings for an L1-Hit/L2-Hit/L2-
Miss were set to 1/8/20. The L1 cache was 512 bytes, direct-
mapped, and block size of 16 bytes. The L2 cache was 4KB
to 16KB, 8-way (dual-core) / 16-way (quad-core) associative,
and block size of 32 bytes. The TDMA slots were 80 cycles
long. The evaluations were conducted on an Intel Xeon Server
containing 46 cores at 3.2GHz. All analyses were configured
to only use a single processor core. Creating the ILPs from
Section II and solving them took only 6 minutes on average
for quad-core systems. The DFA to classify accesses took < 1
second for every system. We compared the computed WCET
values to an equally partitioned cache. The results are shown
in Fig. 1. The y-axis shows the relative WCET using a shared
cache compared to the partitioning. The WCET is evaluated for

2C
-4K

B

2C
-8K

B

2C
-16

KB

4C
-4K

B

4C
-8K

B

4C
-16

KB

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Relative WCET

Fig. 1. Relative WCET using the event-arrival curve based classification in
relation to a partitioned cache.

each task and grouped for each system configuration. It can be
seen that the performance of a shared cache analyzed using
event-arrival curves tracks closely to the partitioned cache.
For dual-core systems the median for all configurations is
only 1.04. Overall, for quad-core systems the median WCET
is 1.11. Notably, sharing the cache instead of partitioning it
yielded WCET reductions of up to 26%. In that case, leveraging
the timing information of cache access patterns allowed the
analysis to classify 28% more accesses as cache hits than for
the partitioned cache configuration.

V. CONCLUSION

We presented a novel analysis approach to quantify inter-
core interference on shared caches using the LRU replacement
policy in multi-core architectures. By leveraging timing infor-
mation and the properties of TDMA arbitration, we formulated
a cache hit classification criterion for accesses to the shared
cache. The evaluation showed that the event-arrival perspec-
tive reduced the unpredictability inherent to shared caches.
Additional experiments could be done to further evaluate the
performance of the analysis. In future work, the technique
could be applied to more complex systems, e.g. multiple tasks
being scheduled to run on each core or different bus arbitration
techniques.

REFERENCES

[1] Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra,
“Timing Analysis of Concurrent Programs Running on Shared Cache
Multi-Cores,” Real-Time Systems, vol. 48, no. 6, pp. 638–680, 2012.

[2] V. Suhendra and T. Mitra, “Exploring Locking & Partitioning for Pre-
dictable Shared Caches on Multi-Cores,” in Proc. of DAC, 2008, pp. 300–
303.

[3] D. Hardy, T. Piquet, and I. Puaut, “Using Bypass to Tighten WCET
Estimates for Multi-Core Processors with Shared Instruction Caches,” in
Proc. of RTSS, 2009, pp. 68–77.

[4] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury,
“Static Analysis of Multi-Core TDMA Resource Arbitration Delays,” Real-
Time Systems, vol. 50, no. 2, pp. 185–229, 2014.

[5] H. Falk and P. Lokuciejewski, “A Compiler Framework for the Reduction
of Worst-Case Execution Times,” Real-Time Systems, vol. 46, no. 2, pp.
251–300, 2010.

[6] The Embedded Microprocessor Benchmark Consortium. About the
EEMBC AutoBench™ Performance Benchmark Suite. Accessed 2022-
07-05. [Online]. Available: https://www.eembc.org/autobench/

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

