
Liveness-Aware Checkpointing of Arrays for
Efficient Intermittent Computing

Youngbin Kim, Yoojin Lim and Chaedeok Lim*
yb.kim@etri.re.kr, yoojin.lim@etri.re.kr, cdlim@etri.re.kr

Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea

Abstract—Intermittent computing enables computing under
environments that may experience frequent and unpredictable
power failures, such as energy harvesting systems. It relies on
checkpointing to preserve computing progress between power
cycles, which often incurs significant overhead due to energy-
expensive writes to Non-Volatile Memory (NVM). In this paper, we
present LACT (Liveness-Aware CheckpoinTing), as an approach
to reducing the size of checkpointed data by exploiting the
liveness of memory objects: excluding dead memory objects from
checkpointing does not affect the correctness of the program.
Especially, LACT can analyze the liveness of arrays, which take
up most of the memory space but are not analyzable by existing
methods for detecting the liveness of scalar objects. Using the
liveness information of arrays, LACT determines the minimized
checkpoint range for the arrays at compile time without any
runtime addition. Our evaluation shows that LACT achieves an
additional reduction of checkpointed data size of 37.8% on average
over the existing state-of-the-art technique. Also, our experiments
on a real energy harvesting environment show that LACT can
reduce the execution time of applications by 27.7% on average.

Index Terms—intermittent computing, liveness analysis

I. INTRODUCTION

Energy harvesting systems perform computing relying on the
energy collected from the environment, enabling battery-less
computing systems. They are known to have several advantages
over battery-powered platforms, including long lifetime, ease of
maintenance, and less environmental impacts [1], [2]; thus, they
have been adopted widely in application domains such as the
Internet of Things devices, sensors, and wearables [3]–[5].

Meanwhile, power gathered from an environment is often
unstable [6] and insufficient to provide energy for continuous
computing. As a result, the computing system may experience
power failure at any time of its execution. Computing in such
an environment, known as intermittent computing, requires a
mechanism to make a program progress even under unpre-
dictable and frequent power failures.

To preserve computing progress between power cycles, in-
termittent systems rely on checkpoint and recovery. Along with
traditional volatile components (i.e., memory and registers),
they are equipped with Non-Volatile Memory (NVM), which
can retain data during power-offs. Intermittent system regularly
saves its volatile states into NVM during execution (check-
point). Once power fails and the energy storage is recharged

This work was supported by IITP grant funded by the Korea government
(MSIT) (No.2021-0-00360, Development of Core Technology for Autonomous
Energy-driven Computing System SW in Power-instable Environment).

*Corresponding author: Chaedeok Lim. Email: cdlim@etri.re.kr

Top of
stack

A
ctive fram

e
Inactive fram

es
Checkpoint

range

Unchanged
(already in

NVM)

(a) No optimization (b) Checkpoint
only modified area

(c) Checkpoint
only live values

Will be
written
(dead)

Arr

Fig. 1: Stack checkpoint size reduction techniques.

again, the system recovers its previous state from the check-
point and resumes the computation (recovery).

Since checkpointing involves a number of energy-expensive
NVM writes, minimizing its cost is critical for efficient inter-
mittent computing. One approach to reducing the checkpoint
size (i.e., the amount of data to checkpoint) is to track and
checkpoint only modified memory areas, instead of checkpoint-
ing the entire memory every time [3], [4], [7], [8]. These works
record memory modifications between subsequent checkpoints
and only checkpoint the changes, as the unmodified areas are
already on NVM. Since tracking every single modification
at run-time incurs considerable overhead, they propose using
different tracking techniques (e.g., hash [7] or in-memory data
structure [4]) and granularities (e.g., from per-value to stack
frames [3], [4], [7]) to maximize the tradeoff between tracking
accuracy and its overhead.

However, although most redundant memory copies can be
eliminated by previous techniques, not all of the modified
memory areas should necessarily be checkpointed. In general,
there exist dead memory areas (i.e., which will not be read
in the future) at the time of checkpointing, and excluding
them from the checkpoint does not affect the correctness of
a program. Such liveness-aware checkpointing can contribute
to further reducing the size of the checkpoint.

Fig 1 shows a comparison between the previous works
and liveness-aware checkpointing, as an example in a stack.
The required checkpoint range is depicted on the right of
each figure representing different techniques. Fig 1b shows a
previous technique [4] that tracks modifications of a stack at
a granularity of stack frame. While it can detect unmodified
stack areas (i.e., inactive frames) and exclude them from the

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

checkpoint, the entire active frame (i.e., the stack frame of the
currently executed function) is checkpointed in this technique.
On the other hand, liveness-aware checkpointing (Fig 1c) can
even optimize the checkpoint of active frame by ignoring dead
values, thus further reduces the required checkpoint size.

In practice, the benefit of liveness-aware checkpointing be-
comes significant especially when it makes (part of) arrays
be excluded, as arrays tend to take up a large portion of the
memory space. The challenge is that, unlike scalar variables or
registers [9], arrays are not atomically modified by a single
instruction. Instead, most arrays are accessed or modified
progressively along with loop iterations. This complicates re-
alizing liveness-aware checkpointing of arrays since it requires
element-wise liveness information [10], [11], which cannot
simply be gathered from the existing scalar-based analysis.

In this paper, we propose LACT (Liveness-Aware Check-
poinTing), a compile time analysis and optimization method
to enable liveness-aware checkpointing of arrays and stack
objects. LACT can detect element-wise dependencies of arrays
at any iteration in the loop, and statically inserts optimized
checkpoint calls without requiring run-time additions. In sum-
mary, this paper makes the following contributions:

• LACT achieves an additional stack checkpoint size reduc-
tion of 37.8% over previous state-of-the-art technique [4].

• LACT is orthogonal to the existing approaches [3], [4],
[7], [8]. When both techniques are applied simultaneously,
stack checkpoint size can be reduced by 52.5%.

• Our evaluation on the energy harvesting environment
demonstrates that LACT can reduce the execution times
of intermittent computing applications by 27.7%.

II. BACKGROUND AND RELATED WORK

A. SRAM-based vs. NVM-based Main Memory

Intermittent systems can be broadly classified as a traditional
system using SRAM for main memory [6], [12]–[15], and
one utilizing NVM as a main memory [1], [9], [16]–[18].
NVM-based architecture can significantly reduce checkpoint
size since it eliminates the need for checkpointing memory; the
registers are the only volatile state. On the other hand, such
benefit comes with a tradeoff: it has its own challenges and
limitations, which include memory inconsistency [9], slow and
power-consuming memory accesses [3], [19], and/or SRAM
power leakage (e.g., for off-the-shelf platforms, it is often
impossible to turn off or remove the SRAM completely).

In this paper, we evaluate the efficiency of LACT on SRAM-
based architecture. However, NVM-based platforms, especially
ones determining checkpoint sites in compile-time [1], can ben-
efit from our liveness analysis since they also need a mechanism
to record memory modifications to avoid inconsistent memory
states [16], [17].

B. Techniques for Reducing Checkpoint Overhead

In SRAM-based intermittent systems, efforts to reduce
checkpoint overheads can be classified into two approaches.
One approach tries to reduce the checkpoint size by copying
only modified memory areas, as introduced in Section I [3], [4],

L1: for i = 1 to n { Arr[i] = foo(i) }
L2: for i = 1 to n { print(Arr[i]) }

(a) Example code consisting of two loops, L1 and L2.

1 10

Write (L1)Read (L2)

i =	k + 1

1 2

(b) Checkpointing Arr in
L1, where i = k + 1.

W WW W W W W W W W𝑓!",$:

R RR R R R R R R R𝑛!",$:

R WR R R R W W W W𝑙!",$,%:

(c) The access vectors computed during
the analysis.

Fig. 2: Example code and analysis steps of LACT.

[7], [8]. The second approach focuses on making the system
execute checkpointing as little as possible. Early approaches
check the energy buffer and execute checkpoints only when
the energy level is low [6]. This scheme is further improved by
the studies that minimize the checkpoint triggers by exploiting
the system’s energy buffer assumptions [1], [13]. On the other
hand, [14], [15] attempt to execute checkpointing based on
interrupts, which are triggered only when the available energy
goes below a threshold.

LACT exploits a different optimization opportunity (i.e., the
liveness of memory objects), so it can be applied along with
most previous techniques. Our evaluation in Section IV shows
that LACT can be applied on top of the existing technique [4]
and achieves considerable additional improvements.

C. Element-wise Liveness Analysis

Element-wise liveness analysis has been studied in the con-
text of optimizing memory allocation [10], [11]. These works
utilize polyhedral analysis to detect the elements becoming
dead during the loop execution. Then they reuse such memory
areas for future iterations to minimize the memory footprint
of the program, especially for large multi-dimensional arrays.
However, these works only consider the liveness of array
elements in a single loop, rather than considering the entire
CFGs, which is mandatory in the context of checkpointing.
LACT analyzes the entire program with a more lightweight
implementation and also includes an analysis to determine the
minimized checkpoint range.

III. LIVENESS-AWARE CHECKPOINTING

A. Motivational Example

Consider a simple program in Fig 2a consisting of two loops,
L1 and L2. In this example, L1 initializes an array of length 10,
and L2 prints its elements. If we want to checkpoint Arr during
the execution of L1, before starting iteration i = k + 1, what
could be the smallest address range that we must checkpoint
while keeping the semantics of the program correct? To answer
this question, we need to know the liveness of each array
element: whether it will be read (i.e., live) or written (i.e., dead)
after the checkpoint execution. We may checkpoint only live
elements and ignore the dead elements, as dead elements will
be overwritten anyway.

!

!

For Arr[k+1:10], we can infer that they are dead and thus
can be excluded from checkpointing, as the remaining iterations
will overwrite them. On the other hand, for Arr[1:k], we
need to consider the access information after L1 to decide
their liveness. In this example, since L2 will load Arr[1]
to Arr[k] to print them, they are live and should be check-
pointed. As a result, the checkpoint range for Arr in loop L1
can be reduced to [1, k], rather than the entire array.

In subsequent sections, we describe our design and approach
to statically analyze the liveness of arrays in a program to
determine minimized checkpoint ranges.

B. Methodology

Our goal is to design a compile-time analysis that enables
minimizing checkpoint size of arrays by computing their live-
ness and saving only live elements. More specifically, we find
a mapping R : (L,A)→ [i, j] where L is a loop, A is an array
in the program, and [i, j] is the minimized checkpoint range
for A that preserves the correctness of the program, when the
checkpoint is executed during L. As in Section III-A, the range
i and j can be either a constant or an expression of k, which
is the induction variable of L (e.g., [1 : k]).

Fig 2b summarizes the discussion about where the liveness
information can be obtained from (Section III-A). As in the
figure, some parts of data dependency can be resolved in the
currently executing loop (2⃝), but others require the access
information after the loop (1⃝) — fundamentally because we
execute checkpointing in the middle of the loop iterations.
Consequently, LACT computes two kinds of access information
for each loop and array in the program: first access vector
(FAV) and next access vector (NAV). The former holds access
information inside the loop (e.g., for 2⃝), and the latter keeps
the access patterns after executing the loop (e.g., for 1⃝).
Section III-C and III-D describe the precise definitions of these
vectors and present our approach to compute them.

Once FAVs and NAVs are computed, exact checkpoint ranges
R can be derived from these vectors. Section III-E describes
the procedure to compute such an optimized checkpoint range.

Finally, we present a liveness-aware checkpointing technique
on scalar stack objects. Since they are typically small in size
compared to arrays, the primary focus in this step is minimizing
the overhead of the optimization, while keeping its benefit
at a reasonable level. Section III-F presents our approach to
implement such optimization in a lightweight manner.

Throughout this section, we assume that checkpoints are
inserted at the header of loops (as in [6]), without loss of
generality. Also, we use the following definitions and notations
to keep the text concise:

Σ Set of operations, equals to {R,W,N}. Each element
represents Read, Write and None, respectively.

Xn A vector of X , of length n. i.e., (X,X, ...,X) ∈ Σn.

C. Finding First Access Vector (FAV)

As an initial step, we compute First Access Vector (FAV),
denoted as fL,A where L is a loop and A is an array in the
program. It is a vector in Σn, where n is the length of A. Here,
ith element of the vector fL,A(i) represents the type of the first

access to A[i] in L. For example, in our example in Fig 2a,
f(L1,Arr) = Wn since the first access to every element of
Arr in L1 is write (Fig 2c also illustrates the resulting vector).
Note that if there exist multiple accesses to an array in the loop,
FAV analysis considers only the first access to each element as
that determines the data dependency.

We utilize an existing analysis called Scalar Evolution
(SCEV) in LLVM [20] to compute FAVs at compile time.
SCEV analyzes the change of variables over iterations of the
loop and represents the results in the form of recurrences [21].
Recurrence consists of the initial value and the update function
(e.g., stride) in its basic form, and also it is possible to operate
on them (e.g., adding two recurrences) to compute the recur-
rences of expressions (i.e., chains of recurrences algebra [21]).

We first find the instructions accessing A in L, and build
access vectors of them using SCEV results. This work only
considers array accesses that have a stride of 1 and leaves more
complex forms for future work. Owing to this assumption, we
can always decide which access instruction precedes another
(e.g., A[k + 1] precedes A[k]) thus FAV can be computed
by merging these access vectors. For array accesses whose
range is too complex or cannot be determined statically (e.g.,
A[foo(i)]), we fill the entire vector with pessimistic as-
sumptions — with R when the access is a load (to make all
elements live), or N when the access is a store (not to mark
any of the elements to be dead).

D. Computing Next Access Vector (NAV)

Next Access Vector (NAV) nL,A is also a vector in Σn, but
it represents the first accesses after finishing L. For example,
in our example in Fig 2b, nL1,Arr = Rn, since after finishing
L1, all elements are read in the subsequent execution in L2
(Depicted as the second vector in Fig 2c).

Computing NAVs involves CFG traversal since 1) there can
exist multiple exiting paths from a loop, and 2) loops may
partially access an array. Algorithm 1 shows our traversal pro-
cedure to find NAVs. Function FINDNAV (line 1) is responsible
for finding nL,A. It sets a vector nav = Nn and repeats
traversing CFG until the liveness of every element is found,
starting from the exit blocks of L (line 2-4). In each iteration,
FINDNEXT returns possible first accesses from the current basic
blocks (line 5), and nav is updated accordingly (line 6).

The actual traversal happens in FINDNEXT (line 5). It finds
every possible first access to A when execution starts from one
of the basic blocks in startBBs. For this purpose, it traverses
down to CFG (line 20) until finding access to A (line 15). Once
such access is found, the access information can be obtained
from pre-computed FAV (line 16-17).

Since there may exist multiple starting blocks and/or control
can diverge during the traversal, FAVs obtained from different
paths should be merged together (line 17). Function MERGE
shows the process of merging an FAV f into a vector v (line
22). As discussed in Section III-C, merges should be done in
a conservative manner: if there exists an element that may be
both read and written, the merged vector should be R (line
23-24) to keep it alive.

!

!

Algorithm 1 Computing Next Access Vector (NAV)

1: function FINDNAV(loop L, array A)
2: nav ← Nn ▷ n: length of A
3: startBBs← exit blocks of L
4: while startBBs ̸= ∅ and ∃N ∈ nav do
5: v, endBBs←FINDNEXT(A, startBBs)
6: navk ← vk for ∀k where navk = N and vk ̸= N
7: startBBs← endBBs
8: return nav
9: function FINDNEXT(array A, startBBs)

10: visited, endBBs← ∅, ∅
11: Push ∀bb ∈ startBBs to stack toV isit
12: v ← Nn ▷ n: length of A
13: while toV isit ̸= ∅ do
14: bb← pop an element from toV isit
15: if bb has access to A then
16: l← loop containing bb
17: v ← MERGE(v, fl,A) ▷ fl,A: FAV for l and A
18: Add bb into endBBs
19: else
20: Add successors of bb into toV isit
21: return v, endBBs

22: function MERGE(v, f)
23: for all k s.t. vk = N do vk ← fk
24: for all k s.t. vk = W and fk = R do vk ← R
25: return v

E. Determining Checkpoint Range

By combining fL,A and nL,A, we can compute a liveness
vector lL,A,k ∈ Σn, which represents element-wise liveness
of A in loop L at iteration k. Fig 2c shows such a pro-
cedure in our example when k = 6. For elements already
has been accessed in L (e.g., Arr[1:5]), nL,A determines
their liveness. In contrast, elements which are not accessed
yet in L (e.g., Arr[6:10]), their liveness can be obtained
from fL,A. Liveness vector lL,A,k determines the minimal
checkpoint range: by checkpointing only live elements (i.e.,
A[r] for lL,A,k(r) = R), checkpoint size can be minimized
while preserving the correctness of the program.

On the other hand, the desired output of our optimization is
slightly different. To minimize the overhead from procedure
calls (e.g., DMA or memory copy), we find the smallest
continuous range [i, j], where A[i : j] contains all live elements
at the time of checkpointing (at iteration k). Let us say v− and
v+ denote the smallest and the largest index of live elements
in vector v. Then, we can derive that i = l−L,A,k and j = l+L,A,k

as it is the minimal range that includes all live elements.
In the subsequent sections, we describe our method to find

l−L,A,k and l+L,A,k from the given fL,A an nL,A. Also, we use
simplified notations for the remaining sections by omitting L
and A from vectors (e.g., f instead of fL,A) since the pair L
and A are invariant in the calculation.

1) Simplifying f and n: Since we consider the accesses
having a stride of 1 (Section III-C), most FAVs are represented
in a simple form — consecutive accesses with optional Ns
around: i.e., NpXqNr, where p + q + r = n and X = R or W .

N 𝑋

0 n

𝑁

𝑝 𝑞
i =	k

1 2 3

(a) At iteration k, FAV can be
divided into three ranges.

1 2 3

𝑓:

𝑛 𝑛𝑙!: 𝑋

𝑛𝑛:

𝑋𝑁 𝑁

(b) computing liveness vector lk
by merging f and n.

Fig. 3: Building liveness vector from FAV and NAV.

We call such vectors read FAV and write FAV when X = R
and X = W , respectively. This form is the basis of our
checkpoint range decision algorithm, and the compile-time only
optimization can be enabled from its simplicity.

However, an exception may happen when the loop L has
multiple instructions accessing to the array A. In this case,
FAVs may not be in the simple form since the first access
to each element can be from different instructions. If this is
the case, we transform f into a simple form and update n
accordingly, as follows.

First, we find header access, an instruction that precedes all
other instructions (Section III-C), and build a new FAV as if it
is the only access instruction in L. Let’s say, for example, the
new FAV is computed as f ′ = NpWq . While some liveness
information can be lost (i.e., for Np) from this simplification,
the loss is minimal since header access precedes all other
instructions. For the lost ranges, we conservatively make them
always checkpointed; to this end, we set the corresponding
ranges in n to R (e.g., n[0 : p] = R). With this transformation,
we can make all FAVs in a simple form while minimizing the
impact on optimization performance.

2) Building Liveness Vector: With the simplified f and n,
liveness vector lk can be derived. Fig 3a shows an example of
f at loop iteration k. In the figure, the index of the first and last
accesses of f are denoted by p and q. Since f is in a simple
form, it is trivial that the range [k, q] is not accessed yet in L.
Therefore, we can divide the ranges into three parts, the one
not accessed yet (2⃝: [k, q]) and the others (1⃝ and 3⃝). As
our example (Fig 2c) implies, lk can be obtained by taking f
(for to-be-accessed range 2⃝) and substituting already accessed
ranges (1⃝ and 3⃝) of it to n. Fig 3b illustrates such process
and the resulting lk.

From the computed lk, we can observe that lk is obtained by
systematically combining f and n. It implies that l−k and l+k ,
the goal of the analysis, may be computed by comparing f and
n only. Indeed, l−k can be derived from a simple comparison
depending on where n− is in (among 1⃝, 2⃝ and 3⃝), without
explicitly computing lk (the same applies to l+k and n+). As a
final step, we discuss each case when f is read FAV and write
FAV, and determine the final optimized range [i, j].

3) Case of Read FAV: Fig 4a shows lk when f consists of
R. Let us first consider the case of l−k . We predict the value of
l−k depending on where n− belongs to. If n− is in 1⃝ (Fig 4b),
it is clear that n− is the first live element of the vector, thus l−k
= n−. On the other hand, Fig 4c shows the case when n− is in
3⃝. As n− is the first live element of n, any elements before

!

!

1 2 3

𝑛 𝑛𝑙!: 𝑅

(a) Illustration of lk when X = R.

𝑙!: 𝑅R

𝑛! 𝑘 𝑞

1 2 3

(b) Case when n− is in 1⃝.

𝑊𝑙!: 𝑅 R

𝑛!𝑘 𝑞

1 2 3

(c) Case when n− is in 3⃝.

If 𝑛! is in: 𝑛! 𝑘 𝑘

If 𝑛" is in: 𝑓" 𝑓" 𝑛" 𝑙#"
𝑙#!

1 2 3

(d) All possible cases of l−k and
l+k , depending on k, f and n.

Fig. 4: Computing the checkpoint interval for Read FAV.

n− cannot be R (denoted in the figure by filling 1⃝ with W).
Therefore, k will be the first R in the vector, thus l−k = k. The
same applies when n− is in 2⃝.

The same approach can be applied to evaluate l+k (not
illustrated). In this case, l+k will be either q (i.e., n+ is in
1⃝ or 2⃝) or n+ (in 3⃝). As a result, l−k and l+k can be

statically determined in all possible cases. Fig 4d summarizes
the result of the computations. In conclusion, the final interval
R(L,A) = [i, j] is:

i =

{
n− (if n− ≤ k)

k (if k < n−)
, j =

{
q (if n+ ≤ q)

n+ (if q < n+)

and also can be further simplified as i = min(n−, k) and j =
max(q, n+). Note that all values of n−, q and n+ are constant
at the time of the analysis. Therefore, j is also constant and
finding i requires at most one comparison at runtime.

4) Case of Write FAV: Fig 5a shows f in case of write FAV.
We only depict the cases when n− and n+ are in 2⃝, since
calculating l−k and l+k is straightforward in the other cases. Fig
5d presents the results when n− and n+ are in 1⃝ or 3⃝.

Fig 5b illustrates the case where n− is in 2⃝, when calcu-
lating l−k . The range 1⃝ is filled with W since no elements are
live before n−. The resulting vector lk implies that, the first
live element should exist in 3⃝, if any. We denote such index
as w, which is the index of the first live element where q < w.
It can be determined immediately since q and the vector n are
already known.

Finally, Fig 5c shows the case where n+ is in 2⃝, when
finding l+k . Similarly, the range 3⃝ is marked as W . In this
case, the last live element l+k should be in the range 1⃝. Let’s
denote such index z. Unlike the other cases, finding a fixed z
at compile time is impossible, as k is not a constant, and n can
be in an arbitrary form. In our implementation, we approximate
z to k, which is always possible since z ≤ k, to avoid run-time
calculation at the cost of a slight loss of accuracy. As a result,
the final interval [i, j] is computed as follows.

i =

{
w (if k ≤ n− < q)

n− (otherwise)
, j =

{
z (if k ≤ n+ < q)

n+ (otherwise)

F. Optimizing Checkpoint of Scalar Stack Objects

Liveness-aware checkpointing can also be applied on scalar
stack objects. LACT performs liveness analysis of stack objects

1 2 3

𝑛 𝑛𝑙!: 𝑊

(a) Illustration of lk when X=W .

𝑊𝑙!: 𝑊 R

𝑛!𝑘 𝑞

1 2 3

𝑤

(b) Case when n− is in 2⃝.

𝑊𝑙!: 𝑊R

𝑛!𝑘 𝑞

1 2 3

𝑧

(c) Case when n+ is in 2⃝.

If 𝑛! is in: 𝑛! 𝑤 𝑛!

If 𝑛" is in: 𝑛" 𝑧 𝑛" 𝑙#"
𝑙#!

1 2 3

(d) All possible cases of l−k and
l+k , depending on k, f and n.

Fig. 5: Computing the checkpoint interval for Write FAV.

based on backward traversal of CFGs. The analysis is done after
register allocation pass since stack frame objects are not fixed
before the register allocation as registers may spill.

To implement liveness aware checkpointing with minimal
overhead, LACT estimates the access frequency of each object
(considering the object size and block frequency) and reorders
them so that frequently accessed objects are moved to top of
stack. Before executing checkpoint, LACT adjusts the stack
pointer to ignore dead objects near top of stack, using single
add instruction. Once the checkpoint is finished, stack pointer
is restored. While it limits the optimizable ranges on stack (i.e.,
consecutive objects from top of stack), it achieves the goal at
fair trade-off in a highly lightweight manner.

IV. EVALUATION

A. Experimental Setup

We extended FreeRTOS, a widely used real-time operating
system, with support for checkpoint and recovery. Our exper-
iments are conducted on a custom-built board featuring ARM
Cortex M4 Core (STM32L496ZGTE) and 1 MB Ferroelectric
RAM (FRAM). For evaluation in a real energy-harvesting en-
vironment (Section IV-C), we set up our environment based on
TI BQ25570EVM energy harvesting board with supercapacitors
and a programmable power supply.

We compare LACT with the stack management approach
of DICE [3], [4], which is recognized as a state-of-the-art
technique. Checkpoints are inserted statically at the headers of
the loops as in [6]. We ported four benchmarks from miBench
benchmark suite [22]. Three benchmarks having arrays (sha,
fft and stringsearch) are the main targets of the evalu-
ation. We include basicmath, which does not have an array,
for evaluating optimization for scalar stack objects.

B. Checkpoint Size Reduction

Fig 6 shows the stack checkpoint sizes of DICE and LACT,
compared to no-optimization case. The bars on the left show
the checkpoint size of DICE, and the blue bars on the right
present the cases when LACT is applied along with DICE. On
average, LACT achieves an additional checkpoint size reduction
of 37.8% over DICE, and the cumulative reduction is 52.5%.
We observe that LACT is also effectively optimizes scalar stack
objects (36.0% reduction on basicmath).

!

!

0.64

0.37

0.96
0.71

0.95

0.49 0.50
0.32

0
0.2
0.4
0.6
0.8
1

DICE +LACT DICE +LACT DICE +LACT DICE +LACT

sha fft stringsearch basicmath

36.0%

26.0%42.2% 48.4%

Fig. 6: Normalized stack checkpoint sizes of DICE and LACT.

While DICE is effective especially for applications with
deep call stack frames (e.g., sha), LACT shows more even
improvements among the benchmarks. This is because most
benchmarks have general patterns that LACT can optimize,
such as array initialization and iterating array members. Also,
some arrays are often used only until the limited points of the
program and not used later. LACT can also optimize such cases
by excluding the arrays from the checkpoint after their last use.

C. Performance on Energy Harvesting Environments

We evaluate LACT on a real energy harvesting environment,
as described in Section IV-A. Supercapacitors equivalent to
118mF are used, and 20mW power is supplied to the energy
harvesting board. We execute each benchmark 50 times under
three cases (no optimization, DICE only, and LACT on top of
DICE) and measure the execution times. Compared to the ex-
perimental designs which periodically inject power failures [9],
[12], our setup is more realistic since the energy consumption
of NVM accesses is also reflected in the result.

Fig 7 shows the distribution of the measured execution times
along with the quartiles and the average (red X mark). Among
the benchmarks having arrays, LACT shows an execution time
reduction of 27.2% compared to DICE, on average. When
DICE and LACT are applied simultaneously, they achieve a
33.8% reduction on the execution time (20.7% and 26.1%,
respectively, when including basicmath).

Although the execution time is affected by various aspects
other than stack checkpoint size (e.g., checkpointing TCB/reg-
isters, recovery mechanism, and hardware initialization), the
checkpoint size still considerably impacts the execution time.
This is because the impact of checkpoint size reduction is
twofold: it not only directly contributes to finishing the program
faster (by reducing the total number of instructions) but also
makes the benchmark executes longer by avoiding energy-
expensive NVM writes, thus consuming less energy.

V. CONCLUSION

This paper presents LACT, a compile-time optimization that
reduces the checkpoint size of arrays in intermittent computing
systems. LACT analyzes the liveness of array elements and
minimizes the required checkpoint range by excluding dead
elements from the checkpoint. Our evaluation shows that LACT
can reduce the required stack checkpoint size by 37.8% on
average, compared to the previous technique. In the experiment
on a real energy harvesting environment, LACT can reduce the
execution times of applications having arrays by 27.7%.

3

3.5

4

4.5

5

5.5

6
sha

0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8

fft

9
10
11
12
13
14
15
16
17

stringsearch

11.5

11.7

11.9

12.1

12.3

12.5

12.7
basicmath(secs)

✕

✕

✕

✕ ✕

✕

✕ ✕

✕

✕

✕
✕

No optimization DICE DICE + LACT

Fig. 7: Execution times measured from 50 samples under a real
energy harvesting environment.

REFERENCES

[1] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-
performance intermittent computation with power failure immunity,” in
RTAS, pp. 40–54, IEEE, 2022.

[2] J. Hester and J. Sorber, “The future of sensing is batteryless, intermittent,
and awesome,” in SenSys, pp. 1–6, 2017.

[3] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola,
“Efficient intermittent computing with differential checkpointing,” in
LCTES, pp. 70–81, 2019.

[4] S. Ahmed, N. A. Bhatti, M. H. Alizai, J. H. Siddiqui, and L. Mottola,
“Fast and energy-efficient state checkpointing for intermittent computing,”
TECS, vol. 19, no. 6, pp. 1–27, 2020.

[5] J. Kwak, H. Kim, and J. Cho, “Icer: An intermittent computing environ-
ment based on a run-time module for energy-harvesting iot devices with
nvram,” Electronics, vol. 10, no. 8, p. 879, 2021.

[6] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on rfid-scale devices,” in ASPLOS, 2011.

[7] F. A. Aouda, K. Marquet, and G. Salagnac, “Incremental checkpointing
of program state to nvram for transiently-powered systems,” in ReCoSoC,
pp. 1–4, IEEE, 2014.

[8] N. Bhatti and L. Mottola, “Efficient state retention for transiently-powered
embedded sensing,” in EWSN, pp. 137–148, 2016.

[9] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in OSDI, pp. 17–32, 2016.

[10] R. Tronçon, M. Bruynooghe, G. Janssens, and F. Catthoor, “Storage size
reduction by in-place mapping of arrays,” in VMCAI, Springer, 2002.

[11] A. Darte, A. Isoard, and T. Yuki, Liveness Analysis in Explicitly-Parallel
Programs. PhD thesis, CNRS; Inria; ENS Lyon, 2016.

[12] V. Kortbeek, K. S. Yildirim, A. Bakar, J. Sorber, J. Hester, and
P. Pawełczak, “Time-sensitive intermittent computing meets legacy soft-
ware,” in ASPLOS, pp. 85–99, 2020.

[13] N. A. Bhatti and L. Mottola, “Harvos: Efficient code instrumentation for
transiently-powered embedded sensing,” in IPSN, IEEE, 2017.

[14] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli,
and L. Benini, “Hibernus: Sustaining computation during intermittent
supply for energy-harvesting systems,” ESL, vol. 7, no. 1, 2014.

[15] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: a self-calibrating
and adaptive system for transiently-powered embedded devices,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 35, no. 12, 2016.

[16] K. Maeng and B. Lucia, “Supporting peripherals in intermittent systems
with just-in-time checkpoints,” in PLDI, pp. 1101–1116, 2019.

[17] K. Maeng and B. Lucia, “Adaptive low-overhead scheduling for periodic
and reactive intermittent execution,” in PLDI, pp. 1005–1021, 2020.

[18] V. Kortbeek, S. Ghosh, J. Hester, S. Campanoni, and P. Pawełczak,
“Wario: efficient code generation for intermittent computing,” in PLDI,
2022.

[19] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
computing: Challenges and opportunities,” SNAPL, 2017.

[20] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO, pp. 75–86, IEEE, 2004.

[21] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of recurrences—a
method to expedite the evaluation of closed-form functions,” in ISSAC,
pp. 242–249, 1994.

[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC, pp. 3–14, IEEE, 2001.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

