
Mobile Accelerator Exploiting Sparsity of Multi-Heads, Lines,
and Blocks in Transformers in Computer Vision
Eunji Kwon

Electrical Engineering
POSTECH

Pohang, Korea
eunjikwon@postech.ac.kr

Haena Song
Electrical Engineering

POSTECH
Pohang, Korea

hnsong@postech.ac.kr

Jihye Park
Electrical Engineering

POSTECH
Pohang, Korea

jihyepark@postech.ac.kr

Seokhyeong Kang
Electrical Engineering

POSTECH
Pohang, Korea

shkang@postech.ac.kr

Abstract—It is difficult to employ transformer models for computer
vision in mobile devices due to their memory- and computation-intensive
properties. Accordingly, there is ongoing research on various methods
for compressing transformer models, such as pruning. However, general
computing platforms such as central processing units (CPUs) and
graphics processing units (GPUs) are not energy-efficient to accelerate
the pruned model due to their structured sparsity. This paper proposes a
low-power accelerator for transformers with various sizes of structured
sparsity induced by pruning with different granularity. In this study, we
can accelerate a transformer that has been pruned in a head-wise, line-
wise, or block-wise manner. We developed a head scheduling algorithm
to support head-wise skip operations and resolve the processing engine
(PE) load imbalance problem caused by different number of operations in
one head. Moreover, we implemented a sparse general matrix-to-matrix
multiplication (sparse GEMM) module that supports line-wise and block-
wise skipping. As a result, when compared with a mobile GPU and mobile
CPU respectively, our proposed accelerator achieved 6.1× and 13.6×
improvements in energy efficiency for the detection transformer (DETR)
model and achieved approximately 2.6× and 7.9× improvements in the
energy efficiency on average for the vision transformer (ViT) models.

Index Terms—Energy-efficient Transformer Accelerator, Vision Trans-
former Optimization

I. INTRODUCTION

Transformers have been actively utilized in computer vision for
image classification, object detection, and semantic segmentation
beyond the natural language processing (NLP) field. In object de-
tection tasks, the detection transformer (DETR) [1] can achieve a
higher mean average-precision (mAP) and frames-per-second (FPS),
with only 41M parameters, than conventional model [2] based on
convolutional neural networks (CNNs) with 166M parameters.

GPUs are commonly used for transformer computations, as most
of their operations comprise matrix multiplications. There is a general
misconception that transformer operations are specialized to GPU and
that no more dedicated accelerators are required.

However, there are two main limitations that make general-purpose
computing platforms insufficient for transformer acceleration. First,
CPUs and GPUs simultaneously perform other tasks and deep learn-
ing applications. When their resources are shared by numerous back-
ground or foreground tasks, the CPU and GPU workloads increase,
and the performance is significantly degraded. In mobile devices,
most always-on deep learning tasks require constant performance,
regardless of other tasks, rather than requiring excessively high levels
of throughput.

Second, CPUs and GPUs are limited in their capability to ac-
celerate optimized transformers with various sparsity. Conventional
transformer’s memory and computationally intensive properties do
not readily allow for implementation on mobile devices due to
their limited resources. Hence, various pruning strategies have been
employed to lighten transformer models. However, reducing the

This research was supported by Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by the Ministry of
Education (2022R1A6A3A13063601) and was supported by National R&D
Program through the National Research Foundation of Korea (NRF) funded
by Ministry of Science and ICT (2022M3H4A1A04096496).

number of parameters and operations does not necessarily lead to
a proportional throughput. The unstructured or structured sparsity
of the pruned model degrades parallelism. This makes it difficult to
achieve the expected performance improvement.

To resolve these issues, dedicated hardware (HW) solutions were
implemented with specialized pruning methods. Representative prun-
ing techniques of transformers can be commonly classified into layer
pruning [3], head pruning [4]–[7], line pruning (patch and dimension)
[7]–[9], and block pruning [12] [13] depending on whether coarse-
grained or fine-grained granularity is used. Previous studies demon-
strated that such pruning methods can successfully reduce a large
number of parameters and operations while minimizing the accuracy
loss. For example, the vision transformer (ViT)-B16 model, which
was pruned by 50% in heads and patches, demonstrated a reduction in
FLOPs by 40.08%, 44.19%, and 42.08% based on cifar10, cifar100,
and ImageNet, respectively, within an accuracy loss of 1% [7].

After pruning with different granularity (e.g., head, line, and
block), the models exhibit sparsity with different sizes and in different
regions. For example, line pruning generates the same number of
consecutive zero weights as the row or column sizes of the weight
matrices, whereas block pruning generates the same number of zero
weights as the block size. This results in heterogeneous transformer
layers [10], because each transformer layer exhibits a different
number of heads in multi-head self-attention (MSA), and the number
of operations of single-head attention (SHA) varied among heads.
This reduces the utilization of processing engines (PE) and gradually
leads to PE load-balancing issues.

In previous studies on pruning methodology, a reduction in the
number of multiple parameters and FLOPs was achieved with a neg-
ligible loss of accuracy. However, limited research was conducted on
methods to increase the speed and energy efficiency of transformers
with limited computing resources. Motivated by this, we propose a
head scheduling algorithm and mobile accelerator exploiting various
sparsity: i) head-wise sparsity, ii) line-wise sparsity, and iii) block-
wise sparsity. The main contributions of this study are as follows:

• We propose a head scheduling algorithm for two objectives:
i) to skip unnecessary head operations, and ii) to resolve the
load imbalance problem of SHA PEs that operate in parallel.
The head scheduling algorithm linearly reduced the latency of
the MSA in proportion to the head-wise pruning ratio. Without
head-wise pruning, the latency was reduced by 10.21% when
performing line-wise pruning by 70% on the ViT-Base due to
the PE load balancing effect.

• We implement a mobile transformer accelerator that can skip
the head-wise, line-wise, and block-wise operations. We propose
a sparse GEMM to reduce latency by exploiting the row-wise
sparsity of inputs, column-wise sparsity of weights, and block-
wise sparsity of both of them. Our sparse GEMM can reduce the
latency of matrix multiplication by 58.95% when the line-wise
sparsity is 75% compared to FFT-IFFT PE used in [12]).

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

TABLE I: Qualitative comparison with previous studies on transformer Accelerators.

A3 [11]
(HPCA 2020)

FTRANS [12]
(ISLPED 2020)

SpAtten [4]
(HPCA 2021)

SALO [14]
(DAC 2022)

Proposed
Accelerator

Application Field NLP NLP NLP NLP, Vision Vision

Transformer
Optimization Method

Unstructured Sparsity

Block-Circulant
Matrix

(BCM)-based
Compression

Coarse-grained
Structured Sparsity

(Head, Token)

Sparse Attention Mechanism
(Sparse Window /
Dilated Window)

Coarse- and Fine-grained
Structured Sparsity
(Head, Line, Block)

Specialty of
SW/HW Implementation

Greedy Approximate
Attention

FFT-IFFT
PE

Algorithm-Architecture
Codesign

Data Scheduler
(Data Splitting / Reordering)

Head Scheduling Algorithm,
Sparse GEMM PE

Hardware
Platform

ASIC / Verilog FPGA (VCU 118)
Vivado HLS

ASIC / Verilog ASIC/ Chisel FPGA (ZCU 104)
Vivado HLS

• We analyze the trade-off between accuracy and various pruning
ratios (head and line) of the transformers: i) DETR [1] for object
detection and ii) ViT [15] [16] for image classification. As a
result, accuracy loss was minimized by pruning with different
granularity, which means that HW is needed to support various
sparsity. Using the proposed accelerator, the energy efficiency of
the DETR is 6.1× and 13.6× higher than mobile GPU and CPU
within 3.7 average precision (AP50) drop. The average energy
efficiencies of the ViT models (ViT-Tiny, ViT-Small, and ViT-
Base) were 2.6× and 7.9× higher than mobile GPU and CPU
within a 2% accuracy loss.

The remainder of this paper is organized as follows: Section
II reviews related studies and Section III presents the proposed
head-wise, line-wise, and block-wise skipping methods. Section IV
presents the overall architecture of the proposed accelerator, which
includes SHA PEs. Section V presents the experimental setup and
results and Section VI concludes this paper.

II. PRELIMINARY

A. Background of Transformer

The transformer encoder comprises multiple encoder layers stacked
in series [17]. The encoder layers consist of MSA and a feed-
forward neural network (FFN). The decoder has multiple decoder
layers consisting of MSA, multi-head cross attention (MCA), and
FFN. The multi-head attention (MHA) (Eq. (1)) including MSA and
MCA, is the result of concatenating the total number of H single-head
attentions (SHA) (Eq. (2)).

MultiHead(Q,K, V) = Concat(head1, ..., headH)WO (1)

headi = Attention(QW i
Q,KW i

K , V W i
V) (2)

Attention(Qi,Ki, Vi) = Softmax(QiK
T
i /

√
dk)Vi (3)

In SHA, the query vector (Qi), key vector (Ki), and value vector
(Vi) are generated by multiplying the input query (Q), key (K), value
(V), and trainable weights W i

Q, W i
K , and W i

V , respectively. After
embedding, scaled-dot product attention (SDP attention) is performed
to determine the extent to which a given feature is closely related to
other features (Eq. (3)).

In this paper, the representative object detection (DETR [1]) and
image classification (ViT [15] [16]) models were selected and tested
to demonstrate the generality of the proposed method. DETR used
both the transformer encoder and decoder structures. The decoder
layers of the model received several object queries as initial inputs
and utilized the encoded information. In ViT, the image was cut into
patches and is utilized as the input of the encoder of the transformer,
which is similar to creating an image in the form of a word sequence.

B. Transformer Accelerator

Recently, several types of research have been conducted to accel-
erate optimized transformers. Accordingly, transformer accelerators
can be classified based on the optimization method of transformer

Fig. 1: Various types of sparsity in transformer: (Type A) line-wise sparsity,
(Type B) block-wise sparsity, and (Type C) head-wise sparsity.

models. TABLE I represents a qualitative comparison with previous
studies on transformer accelerators. Ham et al. [11] approximated
attention mechanisms by selecting important key elements to solve
the computational cost of the attention, but the accelerator used
unstructured sparsity and required additional logic for computing
the important candidate selection. Li et al. [12] reduced memory
usage by compressing the model parameters into a block-circulant
matrix (BCM) and proposed FTRANS accelerator to reduce com-
putations by replacing general matrix multiplication operations with
fast Fourier transform (FFT) operations. However, they applied BCM
compression only to FFN. Moreover, it is difficult to use on mobile
devices due to its high power consumption. Wang et al. [4] proposed
a software-hardware (SW-HW) co-design framework for pruned
transformers. Wang et al. [4] focused on the compression techniques
for the cascade head and token pruning of a transformer and its
HW accelerator, SpAtten. However, they only performed coarse-
grained pruning of the transformer models, so their sparsity ratio
was relatively low. Shen et al. [14] proposed an accelerator for sparse
attention mechanisms, such as sparse-window attention and dilated-
window attention, to solve the problem that the computation amount
of the attention mechanism exhibits a quadratic with the sequence
length. However, it is difficult to apply this approach to vanilla
attention mechanisms, as the hardware is specific to several sparse
attention models.

C. Sparsity Types Exploited by Proposed Method

Fig. 1 presents the different types of the sparsity of the transformer
model in the proposed accelerator. We defined three types of sparsity
in this paper: line-wise, block-wise, and head-wise sparsity. Patch or
token pruning leads to row-wise sparsity of the inputs (Type A-1).

Fig. 2: Head scheduling algorithm for two objectives: i) to skip unnecessary head operations (STEPS 1-2) and ii) to resolve the load imbalance problem of
several SHA PEs operating in parallel (STEPS 3-5).

Column or dimension pruning of SHA leads to column-wise sparsity
of the weights (Type A-2). Dimension pruning of the transformer
model leads to column-wise sparsity of the inputs and row-wise
sparsity of the weights (Type A-3). Block pruning induces block-wise
sparsity (Type B). Moreover, zero inputs generated through SoftMax
or ReLU activation function in the transformer operation can be
clustered to form block-wise sparsity. Head pruning induces head-
wise sparsity (Type C), i.e., all weights constituting a single head in
MSA are zero. FTRANS [12] accelerator exploits Type B sparsity
and SpAtten [4] architecture exploits Type A-1 and C sparsity. The
proposed accelerator exploits all types of sparsity in transformers.

The proposed accelerator can reduce the number of operations in
matrix multiplication (input [M×N] and weight [N×O]) by fully
exploiting sparsity, as shown in Fig. 1. Without sparsity, the number
of multiplications is M ·N ·O. With three types of line-wise sparsity,
we can skip the number of multiplications by Lrow·N ·O, Lcol·M ·N ,
and Lcr·M ·O. With block-wise sparsity, we can skip the number of
multiplications by M ·O·T ·Btile, where T is the matrix tiling size
and Btile is the number of zero blocks in the operations required
for one output tile matrix. With head-wise sparsity, the entire matrix
multiplication can be skipped.

III. PROPOSED SKIPPING METHODS

A. Head-wise Skipping and Head Shuffling

When computing resources are sufficient such as GPUs, MHA
can be calculated simultaneously. On the other hand, all multi-
heads cannot be operated in parallel in resource-constrained devices.
Therefore, we complete the MHA operations by placing several SHA
PEs and by reusing the engines and concatenating the results of SHA;
it would improve the latency as the head-wise pruning ratio increases,
unlike GPUs.

In addition, the remaining heads after head-wise pruning have
different workloads due to additional line and block pruning. The
problem of an unbalanced workload occurs in the SHA when the
PEs operate in parallel. Therefore, we propose a new dataflow that
operates SHA by mixing the head order and grouping the remaining
heads with a similar number of operations. A simple but effective
proposed algorithm is essential to operate transformers in edge
devices efficiently.

Fig. 2 presents the head scheduling algorithm for two objectives: i)
to skip unnecessary head operations (Steps (1)-(2)) and ii) to solve the
load imbalance problem with two SHA processing engines operating
in parallel (Steps (3)-(5)). In Step (1), the pruned heads in all layers
are identified, and the zero weights constituting a single-head are
removed, such that unnecessary head operations can be skipped.
In Step (2), the remaining weights stored behind the pruned heads
are pulled for dense weight scheduling. In Step (3), we check the
row-wise and column-wise sparsity of the matrices. Thereafter, we

TABLE II: Parameter descriptions in transformer models.

Symbol Name Description of the Parameters in Transformer
H The number of heads in multi-head attention

S, SD Input sequence length of the transformer’s encoder and decoder
dmodel Embedding dimension of the transformer model

ds Embedding dimension of single-head attention, ds = dmodel / H
dffn Hidden dimension of feed-forward neural network

obtain the number of operations required per head in one layer by
utilizing line-wise and block-wise sparsity. We consider the table in
Fig. 1 when computing the computational overhead. In Step (4),
sparse matrices are converted into dense matrices by removing all
the zero lines that do not require operations to save memory storage.
Moreover, we generate a zero-line mask that contains whether each
line is to be skipped. In Step (5), we shuffle the order of the head
operations by grouping two heads with similar operations among the
heads in one encoder layer. More precisely, when sorting two pairs
in descending order by the number of operations, the paired heads
are distributed among the two SHA PEs.

A head scheduling index is generated using the abovementioned
head scheduling algorithm. When processing the MHA, the HW is
configured to skip the computation of SHA by storing all elements
of the attention value as zero if the head number is not included
in the head scheduling index (e.g., H2 and H4). The HW executes
SHA in order using two SHA PEs in accordance with shuffled head
operations and stores them in the appropriate memory location.

B. Line-wise Skipping and Block-wise Skipping
We propose the sparse general matrix-to-matrix multiplication

(sparse GEMM) as shown in Fig. 3 to implement line-wise and
block-wise skipping methods. When implementing the sparse GEMM
that multiplies matrix A [M×N] and matrix B [N×O], and exports
matrix C [M×O], we check the row-wise sparsity of matrix A and
column-wise sparsity of matrix B. Given that, all elements in the i th

row of the input matrix A are zero, then all elements in the i th row of
the output matrix C are zeros. If the j th column of the input matrix B
is zero-line, then the j th column of the output matrix C is zero-line.

We generate the dense-scheduled data and zero-line mask by using
the proposed head scheduling algorithm and put them as the inputs
of the proposed sparse GEMM. The sparse GEMM performs matrix
multiplication with the obtained dense matrices A′ [(M -α)×N] and
B ′ [N×(O-β)] based on tiling. In exceptions where the size of the
input matrix is not a multiple of the tiling size, the module performs
tiled matrix multiplication at the end by filling the remainder of the
tiled matrix with zero values (e.g. A4 and A8 in Fig. 3-2), and does
not store them in the output matrix. To apply block-wise skipping,
the proposed HW is implemented to verify in real time whether the
tiled matrix is the zero tile and skip the multiplications of the tiled
matrices that contain a zero tile.

Fig. 3: Explanation of the proposed GEMM module. Row-wise or column-wise sparse matrices are converted into dense matrices in advance to support
line-wise skipping. The HW refers to index bits equal to the row and column sizes, to store which lines are non-zero lines. The GEMM module performs
matrix multiplication based on tiling strategy. The proposed module can skip matrix multiplications, which include zero-tile to support block-wise skipping.

TABLE III: FPGA resource utilization, power and throughput reports of the
accelerators for DETR, ViT-Tiny, ViT-Small, and ViT-Base. Except for the
ViT-Tiny model, two SHA PEs were placed in the proposed accelerator.

Resource
Utilization

Available
Resource

DETR
185MHz

ViT-T
185MHz

ViT-S
100MHz

ViT-B
100MHz

BRAM18K [%] 624 74 80 58 93
DSP [%] 1728 25 23 19 19
FF [%] 460800 18 24 16 16

LUT [%] 230400 69 87 31 64
LUTRAM [%] 96 33 55 61 36

SHA PE / # Head 2 / 8 3 / 3 2 / 6 2 / 12
Total Power [W] 6.09 7.33 4.66 4.62
PL Power [W] 3.35 4.56 1.92 1.88

Throughput [GOP/s] 36.1 12.0 16.2 20.9

Finally, the dense-matrix is converted to sparse-matrix to complete
the operation, which returns the zero data excluded from the operation
to the appropriate locations. However, the aforementioned post-
processing requires buffer of the same size as the dense output
matrix C ′ [(M -α)×(O-β)]. Instead, we calculate the output index
in advance and immediately store the output in appropriate locations
without being stored in the buffer to eliminate the buffer overhead
required for the dense matrix. In particular, patch pruning in the input
image can increase row-wise sparsity, and column pruning of weights
can increase column-wise sparsity; when using the sparse GEMM,
the latency improvement increases as the sparsity increases.

IV. HARDWARE IMPLEMENTATION

A. Single-Head Attention (SHA) Processing Engine (PE)

In Fig. 4, the GEMM outputs the result of the matrix multiplication
of matrix A and matrix B, (A×B), whereas SDP attention outputs the
result of the scaled-dot product attention, (A×BT /C). In particular,
SDP attention performs the matrix multiplication of matrix A and
matrix BT directly without transposing matrix B to reduce the
overhead of the matrix transposition. In the proposed GEMM and
SDP attention modules, the parts that load data into the tile buffer,
the computation part, and the part that stores the final output tile
in the memory are fully-pipelined. We designed SoftMax modules
to reduce the computational overhead by transforming the SoftMax
equation as follows [18]:

SoftMax(xi) = exp(xi − xmax − ln(
∑N

j=1
exp(xj − xmax))) (4)

B. Dataflow of the Proposed Accelerator

Fig. 4 illustrates the dataflow of the encoder layer in ViT-Base
as an example. We used the double buffering method in all steps in

which the HW module processes the data of the one buffer, whereas
the input channel stores the data in the other buffer, which is required
for following the HW module. All input and weight data are loaded
through AXI direct memory access (DMA) without passing through
the processing system (PS).

STEPS (1-4). In MSA, the concatenated matrix is generated by
performing the same number of SHA operations as the total number
of remaining heads (Hr = H - # of pruned heads). If there is no
single-head index in the head scheduling index, then the operation of
this SHA is skipped and the attention value, which is the output of
the SHA, is filled with zero instead. Based on the order in which the
heads are shuffled for each layer, the operation is performed using
two SHA PEs in the appropriate order, and obtained two attention
values are stored in an proper location.

In the SHA PE, the embedding vector of the query (Qi), key (Ki),
and value (Vi) are generated by performing matrix multiplications of
the input query (Q), input key (K), and input value (V), respectively,
with each weight (WQ, WK , WV) in Steps (A-D). In Steps (D-
F), the SDP attention performs scaled-dot product attention (Eq.
(3)) to generate attention score matrix QKi. The GEMM outputs
attention value Ai by performing matrix multiplication of attention
distribution, which is the output after SoftMax, and value vector Vi.
Consequently, two attention values are created in parallel because
there are two SHA PEs in the accelerator. The accelerator repeats
Steps (A-F) four times (Hr / # of SHA PEs).

STEP (5). Thereafter, the GEMM module performs matrix multi-
plication between the concatenated matrix, AO , and the weight matrix
WO to complete the multi-head attention matrix.

STEPS (6-9). Two additional GEMM modules are used in
FFN. When the operations of MSA and FFN are completed, the
Add&Norm module adds the previous input to the output and
normalizes it.

V. EXPERIMENTS

A. Experimental Setup

1) Pruning Method: We conducted an experiment using DETR
and ViT models to demonstrate that the latency can be decreased
while minimizing accuracy loss after pruning with different granular-
ity (head and line). In head pruning, the number of heads was even for
each layer after pruning, given that two SHA PEs were placed in the
proposed transformer accelerator. In addition, the column weights in
MSA and the row and column weights in FFN were pruned depending
on the importance of the weights using importance scores [19]. In the
ViT-Tiny, only line pruning of MSA and FFN was applied because
the model has three heads.

Fig. 4: Dataflow of transformer engine in the proposed accelerator.

2) Synthesis Report of the Proposed Accelerators: TABLE III
lists the synthesis results of the proposed HW in Vivado high-level
synthesis (HLS). We synthesized the HW for the DETR and ViT
models on a Xilinx ZCU104 FPGA board. The HW accelerators for
the DETR and ViT-Tiny were synthesized at 185MHz to determine
achievable latency improvement for the similar amount of power
consumption of the mobile GPU and CPU; Mobile GPU (NVIDIA
Jetson Nano) and CPU (ARM Cortex A57) consumed an average
of 7W when running transformer models. The power consumption
represented by the PS was approximately 2.7W; thus, the proposed
programmable logic (PL) is appropriate for implementation on low-
power embedded devices.

B. Experimental Results of Proposed Methods

1) Results of Head Scheduling Algorithm: The head scheduling
algorithm reduced the latency in two parts: 1) head-wise skipping
and 2) head shuffling. Latency reduction in MSA due to head-wise
skipping was linearly reduced in proportion to the number of pruned
heads. Additionally, head shuffling was found to reduce latency by
10.2% on average with 70% line pruning of the ViT-Base (Fig. 5-a).

2) Comparison with FTRANS: The TABLE IV shows a compar-
ison between our proposed accelerator and the FTRANS accelerator
[12]. Compared to the FTRANS, the power efficiency of the proposed
one was improved by 55.8%, and the throughput per DSP was
improved by 3.2 times. It was complex to conduct a direct comparison
between the proposed and the previously developed hardware, given
that the target FPGA boards and transformer models were different.
Therefore, we compared the latency between the sparse GEMM
with the line pruning and FFT-IFFT PE with the BCM compression
method used by FTRANS. We conducted an experiment to confirm
the decrease in the latency of the matrix multiplication with respect
to the line-wise sparsity ratio (Fig. 5-b). FTRANS applied BCM
compression with the block size of 8, which indicates that the number
of parameters in the weights was compressed into 1/8, only to the
FFN whereas we applied column pruning by 75% to the FFN. As
a result, the latency of the proposed GEMM decreased by 58.95%
when compared with the FFT-IFFT PE.

C. End-to-End Results of Latency and Energy Efficiency

Fig. 6 represents the results of the AP and average recall (AR)
of the DETR and the accuracy results of the ViT-Base for various
head and line pruning ratios. The accuracy drop was nearly negligible
in line pruning, whereas it gradually increased as head pruning ratio

Fig. 5: (a) Latency reduction by head shuffling. (b) Latency comparison
between the proposed GEMM and FFT-IFFT PE in FTRANS [12].

TABLE IV: Comparison between the proposed accelerator and FTRANS
[12].

Proposed Accelerator FTRANS [12]
Target Model DETR (Vision) BERT (NLP)

Throughput [GOP/s] 36 170
PL Power [W] 3.4 25

Power Efficiency [GOP/s·W] 10.6 6.8
Throughput / DSP 0.083 0.026

Throughput / kLUT 0.226 0.377

increased. Even if the same multi-head dimension remained after head
and line pruning in MSA, the accuracy drop would be smaller for a
higher number of heads, such that SHA would be further performed.
Based on the experimental results, it is necessary to reduce more
parameters by pruning with different granularity. This proves the need
for the proposed HW to be capable of supporting various sparsity.

Fig. 6: (a) The results of average precision (AP) and average recall (AR)
of the DETR with respect to different pruning ratios. n refers to the number
of object queries in ARn. (b) The trade-off between the accuracy and the
reduction in the number of parameters of the ViT-Base with respect to different
pruning ratios (head pruning in MSA and line pruning in MSA and FFN.)

Fig. 7: (a) Normalized latency and (b) energy efficiency (FPS/total power
[FPS/W]) comparison of the DETR, ViT-Tiny, ViT-Small, and ViT-Base with
general computing platforms, namely, a mobile GPU (NVIDIA Jetson Nano)
and mobile CPU (ARM Cortex A57 quad cores.)

We measured the latency of the DETR based on 50% head and
75% line pruning ratios and the latency of the ViT-Small and ViT-
Base based on 70% head and 75% line pruning ratios; we applied only
line pruning on the ViT-Tiny. In the case of the DETR, the proposed
HW was nearly 5.3×, 11.9× faster than the mobile GPU and CPU,
respectively, while maintaining less than five AP50 drops. In the case
of the ViT-Tiny, ViT-Small, and ViT-Base, the proposed accelerator
achieved approximately 2.0× and 6.5× on average faster than the

GPU and CPU, respectively, while maintaining the accuracy loss of
the three models within 2%. Additionally, the energy efficiency of the
accelerator was 6.1× and 13.6× higher in DETR, and the average
energy efficiency of the accelerator for ViT models was 2.6× and
7.9× higher in the GPU and CPU, respectively.

VI. CONCLUSION

After pruning, transformers exhibit various types of sparsity: i)
head-wise sparsity, ii) line-wise sparsity, and iii) block-wise sparsity.
This paper proposes a general-purpose accelerator that can skip the
head-wise, line-wise, and block-wise operations of the model. First,
a head scheduling algorithm is proposed for head-wise skipping.
Second, sparse GEMM is proposed for line-wise and block-wise
skipping. The energy efficiency of transformer models was improved
with heterogeneous dimensions per layer or sparse structures created
by pruning with different granularity. Consequently, the proposed
accelerator demonstrated a superior improvement in latency and
energy-efficiency when compared with general computing platforms.

REFERENCES

[1] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers”, European conference on computer
vision (ECCV), 2020, pp. 213-229.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “ Faster r-cnn: Towards real-time
object detection with region proposal networks”, Advances in neural information
processing systems (NeurIPS), 2015, 28.

[3] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on demand with
structured dropout”, arXiv preprint arXiv:1909.11556, 2019.

[4] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention architecture
with cascade token and head pruning”, IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021, pp. 97-110.

[5] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned”, arXiv
preprint arXiv:1905.09418, 2019.

[6] P. Michel, O. Levy, and G. Neubig, “Are sixteen heads really better than one?”,
Advances in neural information processing systems (NeurIPS), 2019, 32.

[7] Z. Song, Y. Xu, Z. He, L. Jiang, N. Jing, and X.Liang, “CP-ViT: Cascade
Vision Transformer Pruning via Progressive Sparsity Prediction”, arXiv preprint
arXiv:2203.04570, 2022.

[8] J. Mao, H. Yang, A. Li, H. Li, and Y. Chen, “Tprune: Efficient transformer pruning
for mobile devices”, ACM Transactions on Cyber-Physical Systems, 2021, 5(3),
pp. 1-22.

[9] K. Murray, J. Kinnison, T. Q. Nguyen, W. Scheirer, and D. Chiang, “Auto-sizing
the transformer network: Improving speed, efficiency, and performance for low-
resource machine translation”, arXiv preprint arXiv:1910.06717, 2019.

[10] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “ Hat: Hardware-
aware transformers for efficient natural language processing”, arXiv preprint
arXiv:2005.1418, 2020.

[11] T. J. Ham, S.J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song and D. K. Jeong, “A3:
Accelerating attention mechanisms in neural networks with approximation”, IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
2020, pp.328-341.

[12] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, and C. Ding et al., “Ftrans: energy-
efficient acceleration of transformers using fpga”, Proceedings of the ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED), 2020,
pp. 175-180.

[13] H. Peng, S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, and C. Ding et al.,
“Accelerating transformer-based deep learning models on fpgas using column
balanced block pruning”, International Symposium on Quality Electronic Design
(ISQED), 2021, pp. 142-148.

[14] G. Shen, J. Zhao, Q. Chen, J. Leng, C. Li, and M. Guo, “SALO: an efficient spatial
accelerator enabling hybrid sparse attention mechanisms for long sequences”,
Design Automation Conference (DAC), 2022, pp. 571-576.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
T., and N. Houlsby et al., “An image is worth 16x16 words: Transformers for
image recognition at scale”, arXiv preprint arXiv:2010.11929, 2020.

[16] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoriet, and L. Beyer, “How
to train your vit? data, augmentation, and regularization in vision transformers”,
arXiv preprint arXiv:2016.10270, 2021.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, and
I. Polosukhin et al., “Attention is all you need”, Advances in neural information
processing systems (NeurIPS), 2017, 30.

[18] S. Lu, M. Wang, S. Liang, J. Lin, and Z. Wang, “Hardware accelerator for multi-
head attention and position-wise feed-forward in the transformer”, International
System-on Chip Conference (SOCC), 2020, pp. 84-89.

[19] M. Zhu, Y. Tang, and K. Han, “Vision transformer pruning”, arXiv preprint
arXiv:2104.08500, 2021.

[20] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang and Y. Liang, “Sanger: A co-
design framework for enabling sparse attention using reconfigurable architecture.”,
International Symposium on Microarchitecture., 2021, pp. 977-991.

	Select a link below
	Return to Previous View
	Return to Main Menu

