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Abstract—Routability prediction can forecast the locations where design
rule violations occur without routing and thus can speed up the design
iterations by skipping the time-consuming routing tasks. This paper
investigated (i) how to predict the routability on a continuous value and
(ii) how to improve the prediction accuracy for the minority samples. We
propose a deep hierarchical classification and regression (HCR) model
that can detect hotspots with the number of violations. The hierarchical
inference flow can prevent the model from overfitting to the majority
samples in imbalanced data. In addition, we introduce a training method
for the proposed HCR model that uses Bayesian optimization to find the
ideal modeling parameters quickly and incorporates transfer learning for
the regression model. We achieved an R2 score of 0.71 for the regression
and increased the F1 score in the binary classification by 94% compared
to previous work [6].

I. INTRODUCTION

The miscorrelation between placement and routing in advanced
technology nodes has increased due to complex design rules and higher
cell density [1]. The incorrect planning of the routing resources during
placement results in more design iterations to obtain a routable design.
However, the design turn-around time (TAT) required for routability
optimization is now negligible, as the routing runtime on advanced
nodes takes up to several weeks.

Routability prediction is one of the techniques to reduce design TAT.
For example, the routability optimization techniques, such as inserting
whitespace [2] or generating spacing rules for placement [3], utilize
the routability predictor that forecasts the locations of design rule
violation (DRV) without the routing. The predicted DRV information
is also used to optimize the cost parameters in global routing [4].
Those collaborations between the predictor and optimizer reduce the
time-consuming routing process, making the design loop smaller.

Recent studies have used machine learning (ML) to train models
from big data because routability modeling suffers from the black-
box characteristics and noise of place and route (P&R) tools due to
stacking heuristics. Previous works [5]-[7] predicted routability using
a pixel-wise binary classification model that detects where DRV has
occurred inside a grid cell (Geell). Although violations tend to cluster
in poor routability, previous works annotated labels using only two
classes (hotspot or non-hotspot), regardless of the number of DRVs
within the Gceell. This binary classification model cannot identify the
routability of Geell with a continuous value. Sophisticated routability
optimization requires both where the hotspot is located and how many
DRVs exist within the hotspot, but previous work has focused only
on violation detection.

Another challenge is the data imbalance problem. Data obtained
from real-world observations do not have an ideal uniform distribution
and show a skewed distribution toward specific observation values [8].
Most ML algorithms are based on a balanced dataset, and the model
will be biased toward the majority classes if a data imbalance exists.
In the physical design, hotspots are extremely rare compared to non-
hotspots because they are observed when the router does not find a
feasible solution. Therefore, it is difficult to obtain high predictive
accuracy if general ML techniques are applied to imbalanced data.

In this study, we investigated (i) how to predict the routability on a
continuous value and (ii) how to improve the prediction accuracy for
the minority samples.
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Fig. 1. Routability prediction flow using the HCR model.
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II. PROPOSED METHODS

We define the routability prediction as a pixel-wise regression
problem. For accurate regression in the imbalanced data, we propose
a deep hierarchical classification and regression (HCR) model that
detects DRV hotspots with the number of DRVs. The hierarchical
structure can reduce the regression error caused by the data imbalance
problem by filtering out the majority samples from the classification
in advance [9]. We also introduce a training method of the proposed
HCR model that (i) searches modeling parameters using the Bayesian
optimization (BO) algorithm for the classification model and (ii) trains
the regression model using transfer learning only for the data classified
as hotspots.

A. Hierarchical Inference Flow

Figure 1 shows the overall routability prediction flow using the
HCR model. The model consists of a classification model f(x;61)
and a regression model f(x;62). Both models share the same network
architecture but have different weight parameters (61, 62), and take a
clipped image c(z,y) as the input x. The clip image c(,,) represents a
set of Geell features {D(y—w,y—w)>" " > P(as+w,y+w)} as far as the
distance w around (z,y). The output of the classification model
is converted into a probability of being hotspot using the sigmoid
function §(x). The probability is transformed into an output class
M(s,y) TEPresenting hotspot or non-hotspot through a step function
u(x) € {0,1}, where u(x) is one if x is larger than 0.5, and zero
otherwise. The output of the regression model with parameter 02
is defined as 0(,,) = f(x;602). The regression output is masked
when the output class is hotspot. The final prediction is given by
V(a,y) = V(z,y) " M(z,y)- At last, we construct a DRV heat map using
the final prediction for every (x,y) coordinate.

B. Training Method

We propose a training method for the proposed HCR model.
Figure 2 shows the overall training procedure, which consists of two
steps: (i) modeling parameter search for the classification model and
(ii) transfer learning for the regression model.

1) Modeling parameter search: The performance of the binary
classification model can vary significantly depending on the data
configuration and hyper-parameters owing to the data-imbalance prob-
lem. Because humans take extensive time to find the optimal hyper-
parameters with the data configuration manually, we use automation
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Fig. 2. Training method for the HCR model.

to quickly find the modeling parameters that satisfy the target perfor-
mance using the BO algorithm [10]. The BO algorithm aims to find the
optimal solution that maximizes the value of the objective function and
is usually used in cases where it takes a long time to find a solution or
in black-box applications. It is more efficient than manually searching
for a combination of hyper-parameters and data configurations. Since
the F1 score can evaluate the predictive performance of a minority
class in an imbalanced binary classification, we set the F1 score as
the objective function on the validation dataset. The parameters include
the grid size (g), window size (w), size of output channel (C;), number
of neurons (F};), and learning rate (Ir) with the optimizer. We used
the binary cross entropy as a loss function and applied 5-fold cross
validation for the training. The number of epochs for each fold was
set to 20.

2) Transfer learning: The regression model has the same network
architecture as the classification model. We initialized the weight
parameter of the regression model 6- as the weight parameter 6; and
switched the training dataset to the hotspor data. This is called transfer
learning, a method for delivering the knowledge of a pre-trained model
to partially related tasks with minimal retraining [11]. The regression
model can quickly converge to the hotspot class. We set the number
of epochs to 10 to prevent overfitting and used the root mean square
error (RMSE) as the loss function.

III. EXPERIMENTAL RESULTS
A. Design of Experiments

We used artificial designs for training and real-world designs for all
tests. The training dataset consisted of 50 artificial circuits generated
using ANG [12], and the test dataset used five OpenCores circuits [13].
We created 180 layouts for each circuit by sweeping the layout
utilization, aspect ratio, top routing layer, and P&R clock period using
a commercial P&R tool [14]. The training dataset consisted of 9000
layouts, and the test dataset consisted of 900 layouts. All designs used
in the experiment were created using Intel 22nm technology libraries.

We explored the modeling parameters using a BO algorithm and
selected the top five models by sorting them according to a score
function. We evaluated the model performance as the average score
for the five models. This evaluation method shows that the proposed
model and training method provide robust results for data with a long-
tail distribution without requiring an ML expert.

B. Evaluations for the HCR Model

We evaluated the predictive performance of the HCR model: regres-
sion performance using R2 and Pearson; classification performance
using Accuracy and F1. In the regression performance, the R2 and
Pearson for the test dataset were 0.70 and 0.71, respectively. The
hierarchical inference flow helps filter out false alarms regarding poor
routability from the regression results, enabling us to obtain robust
regression performance even in imbalanced data. We also measured
the classification performance by labeling the final prediction value;
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Fig. 3. An example of the routability prediction using the HCR model for a
test design (Nova, utilization 0.9, aspect ratio 1.0, top layer m6, P&R clock
2.6 ns). The x and y axes represent the Geell grid coordinates.

the class is hotspot if ¥, ) = DRV, and non-hotspot otherwise.
Compared to the classification alone, the Accuracy and F1 scores
increased by 0.03 and 0.11 for the test dataset. We also compared
these results with those of previous studies [6], [7]. The HCR model
has a 94% higher performance for F1 than [6]. This result means that
the HCR model classifies the minority class well.

TABLE I
COMPARISON OF THE EVALUATION METRICS WITH PREVIOUS WORKS
Previous works Ours
Metric FCN [6] J-Net [7] HCR
Accuracy | 0.94 (1.0) | 0.93 (0.99) | 0.98 (1.04)
Recall 0.29 (1.0) | 0.35(1.23) | 0.79 (2.76)
Precision | 0.76 (1.0) | 0.67 (0.88) | 0.85 (1.11)
F1 0.42 (1.0) | 0.46 (1.11) | 0.81 (1.94)
R2 NA NA 0.71
Correl NA NA 0.70

IV. CONCLUSION

We proposed a routability prediction method using an HCR model.
This model consists of a binary classification model and a regression
model. The hierarchical structure improves the predictive performance
for imbalanced data. We also proposed a training method for the
HCR model, which optimizes the modeling parameters to maximize
the classification performance and trains the regression model using
transfer learning. We proved that this training method performs well,
even for imbalanced datasets with a long-tail distribution. Compared
to a previous study [6], we increased the classification performance
by 4% in Accuracy and 94% in F1.
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