2023 Design, Automation & Test in Europe Conference (DATE 2023)

FAGC: Free Space Fragmentation Aware GC Scheme
based on Observations of Energy Consumption

Lihua Yang!2, Zhipeng Tan', Fang Wang!, Yang Xiao!, Wei Zhang?, Biao He3
! Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System
Engineering Research Center of Data Storage Systems and Technology, Ministry of Education of China
School of Computer Science and Technology, Huazhong University of Science and Technology
2 College of Science and Technology, National University of Defense Technology, China
3 Huawei Technology Co., Ltd, China
yanglihua@nudt.edu.cn, {tanzhipeng, wangfang, menguozi} @hust.edu.cn, weizhang@nudt.edu.cn, hebiao6@huawei.com

Abstract—Smartphones are everyday necessities with limited
power supply. Charging a smartphone twice a day or more
affects user experience. Flash friendly file system (F2FS) is a
widely-used log-structured file system for smartphones. Free space
fragmentation of F2FS consists of invalid blocks mainly causing
performance degradation. F2FS reclaims invalid blocks by garbage
collection (GC). We explore the energy consumption of GC and
the effect of GC on reducing free space fragments. We observe the
energy consumption of one background GC is large but its effect
on reducing free space fragments is limited. These motivate us to
improve the energy efficiency of GC. We reassess how much free
space is a free space fragment based on data analysis, use the free
space fragmentation factor to measure the degree of free space
fragmentation quickly. We suggest the free space fragmentation
aware GC scheme (FAGC) that optimizes the selection for victim
segments and the migration for valid blocks. Experiments on
real platform show that FAGC reduces GC count by 82.68%
and 74.51% respectively than traditional F2FS and the latest
GC optimization of F2FS, ATGC. FAGC reduces the energy
consumption by 164.37 J and 100.64 J compared to traditional
F2FS and ATGC respectively for a synthetic benchmark.

I. INTRODUCTION

Smartphones provide limited battery power due to portability.
Charging a smartphone twice a day or more affects user
experience. In the past decade, researchers have focused on
exploring the energy consumption model of a smartphone
and proposing optimization schemes based on usage scenarios.
Flash friendly file system (F2FS) [1] is a widely-used file
system for smartphones. However, there is little research to
understand its energy consumption characteristics.

When the continuous free space of file system is exhausted,
there is a large amount of free space fragments. F2FS
triggers garbage collection (GC) to obtain free segments or
uses threaded logging write scheme to overwrite free space
fragments that causes fragmentation of newly written files
directly [2]. We observe the energy consumption of one
background (BG) GC is relatively large and the effect of
BGGC on reducing free space fragments is limited. It is better
to reduce GC count and make each GC reduce free space

This work was supported in part by NSFC (U22A2027, 61832020),
Foundation of State Key Lab of HPC (202101-03), Natural Science Foun-
dation of Hunan Province (2021JJ40692), the research project of NUDT
(ZK20-09), Foundation Enhancement Project (2022-JCJQ-JJ-0318). Zhipeng
Tan is the corresponding author (tanzhipeng@hust.edu.cn).

fragments as much as possible. We recommend improving the
energy efficiency of GC recycling invalid data.

We propose a GC scheme that is aware of the degree
of free space fragmentation. We reassess the size of a free
space fragment based on data analysis, design the free space
fragmentation factor (f) to measure the degree of free space
fragmentation, and propose FAGC scheme. We modify the
algorithm for selecting victim segments that trades off among
segment utilization, age, and free space fragmentation. FAGC
migrates valid blocks using threaded logging writes. Experimen-
tal results show that the GC count of FAGC is 82.68% lower
than that of traditional F2FS and 74.51% lower than that of the
latest GC optimization scheme of F2FS, ATGC (Age-Threshold
based Garbage Collection) [3]. Compared to traditional F2FS
and ATGC, FAGC reduces the energy consumption by 164.37
J and 100.64 J for a synthetic benchmark, respectively.

II. DESIGN OF FAGC

We use our developed energy consumption measurement
system based on Kirin 9000 [4] to understand the energy
consumption of F2FS. The energy consumption of one BGGC
cannot be ignored that the minimum energy consumption of
BGGC we measured is 102.79 m]. The battery capacity of a
mid-end smartphone is 3,000 mAh and the smartphone battery
voltage in industry is commonly 3.8 V. A battery can provide
41,040 J when fully charged. Assuming that the smartphone
with full power can be used for 24 hours, it consumes 475 mJ
per second. If adding 1,000 BGGCs per hour, the standby time
is shortened by 1.36 hours. The energy consumption of GC
is relatively large and the number of GCs should be reduced
under the premise that system works normally. However, we
observe that the effect of energy-intensive BGGC on reducing
free space fragments is limited based on changes in the number
of free space fragments.

Reassessment of free space fragments. How to distinguish
between free space and free space fragment becomes a key
issue in selecting victim segments. Since most I/O requests in
smartphones are small, a relatively large free space fragment
can satisfy most I/O requests that should be regarded as
available free space. According to the traditional definition
of free space fragmentation, only when the free space is

978-3-9819263-7-8/DATE23/© 2023 EDAA

completely contiguous is there no fragmentation. In order
to ensure the continuity of free space, GC of F2FS will be
aggressive, resulting in large GC overheads.

We define the free space less than 128 KB as a free space
fragment. This is because (1) 128 KB is the default size for
readahead in Linux kernel. Pre-read data can be placed in the
free space of 128 KB and a read request can be satisfied by one
I/O instead of being split into multiple I/O requests. (2) We find
read and write I/Os less than or equal to 128 KB account for
85% and 87%, respectively, by analyzing applications traces.

Measurement of free space fragmentation. We design the
free space fragmentation factor (f) to measure the degree of
free space fragmentation. It is calculated by valid_map in
segment information table where bit 1 indicates valid data.
The threshold for a free space fragment (128 KB) divided
by the size of a block (4 KB), the threshold value is 32.
There are X consecutive zeros in the bitmap, denoted as X
(X <32). Assuming that there are n fragments in a segment,
=X %’ the larger f is, the more fragmented. Since
floating-point arithmetic is not recommended in the kernel, we
make f an integer via f = Z?:l X% x 126 x 127. Multiplying
by 127 is to get distinct integers and enlarging by 126 is to
distinguish free space fragments of different sizes quickly.

Design of FAGC. FAGC how to work is shown in Algo-
rithm 1. The age_weight is 40, the f_weight is the same as
age_werght. The larger age, f, and u, the smaller the migration
cost according to cost = UINT_MAX — (age + f + u) is.
UINT_MAX is the largest unsigned integer. Age, f, and u are
all normalized that migration cost will not tend to be affected
by a single factor. We select the segment with more serious free
space fragmentation with the f of a segment. When migrating
valid blocks, FAGC selects the target segment with a similar age
to the victim segment and migrates valid blocks to the target
segment via threaded logging writes. FAGC writes invalid
or free blocks in the target segment one by one. Different
from traditional F2FS and ATGC, FAGC selects segments with
severe free space fragmentation. FAGC only performs GC on
critical segments that greatly affect performance to reduce GCs
and minimizes fragmentation per GC.

III. EVALUATION OF FAGC

Li et al. propose a multi-level threshold synchronous write
technology and a high-frequency detection background segment
cleaning (MWHEFB) to reduce GC overheads [5]. The latest
ATGC [3] proposed by the Linux community optimizes F2FS
GC. We use them and traditional F2FS as comparison schemes.
Traditional F2FS and MWHEFB are deployed in Linux kernel
4.9.76, ATGC and FAGC are deployed in Linux kernel 5.4.147.

We imitate the evaluation method of ATGC [3] and write
7,000 dirty segments of three types respectively. The f of
segments type A is small while that of type B is large, and
the number of valid blocks on segments A and B is the same.
Segments of type C are target segments where valid blocks of
segments A and B are migrated to. The proportion of invalid
data for this synthetic benchmark is 55.53%. The number of
GCs, valid blocks migrated, and free space fragments, and

Algorithm 1 FAGC scheme

Input: max_mtime, mtime, total_time, vblocks, f, max_f,
min_f, segno, age_weight, f_weight, min_cost, oldest_age,
the number of iterations iter <— 0, the threshold of candidate
segment to look for, dirty_threshold

Output: the victim segment number min_segno

1: while iter < dirty_threshold do
2: Calculate the age of the candidate segment, age <— 10000 X
maz_mtime—mtime age_weight;

total_time

3: Calculatethe free space that can be obtained after migrating the
segment, u < 10000 x 312=rblocks » (100 — age_weight —
f_weight);

4: Adjust f of the victim candidate segment, f < 10000 x
m X f_weight;

5: Calculate the migration cost, cost + UINT_MAX — (age +

f+u);

6: Increase the number of iterations, iter + +;

7: if cost < min_cost or (cost == min_cost and age >
oldest_age) then

8: Update the minimum migration cost, min_cost <— cost;

9: Update the max age, oldest_age < age;

10: Update the victim segment number with the least migration

cost, min_segno < segno ;
11: end if

12: end while

13: Select the segment with the same age as the victim segment as
the target segment;

14: Migrate valid blocks on the victim segment to the target segment
through threaded logging writes;

TABLE I: GC and free space fragmentation

Scheme | GC count Valid blocks # of free space fragments Capacity (MB)
F2FS 1,934 450,790 3,187 64.65
MWHEFB| 2,105 479,288 3,010 62.29
ATGC 1,314 296,956 3,045 62.78
FAGC 335 77,434 3,282 63.71

the capacity of free space fragments are shown in Table I
FAGC reduces the number of GCs by 82.68% and 74.51% than
traditional F2FS and ATGC, respectively. The number of valid
blocks migrated by FAGC is reduced by 82.82% and 73.92%
correspondingly. FAGC still cleans up free space fragments
despite its GC reduction. Each GC in FAGC selects the segment
with severe free space fragmentation and reduces the free space
fragmentation. We take the minimum energy consumption of
BGGC we measured, 102.79 mJ per BGGC. Traditional F2FS,
MWHEFB, ATGC, and FAGC consume 198.8 J, 216.37 J, 135.07
J, and 34.43 J, respectively. FAGC consumes 164.37 J and
100.64 J less than traditional F2FS and ATGC to complete
this synthetic benchmark, respectively. FAGC eliminates the
need to recycle some segments that meet BGGC valid blocks
and age requirements because recycling these segments cannot
reduce free space fragments.

REFERENCES

[1] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2fs: A new file system for flash
storage,” in 13th USENIX Conference on File and Storage Technologies
(FAST), pp. 273-286, 2015.

[2] L. Yang, F. Wang, Z. Tan, et al., “Ars: Reducing f2fs fragmentation for
smartphones using decision trees,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1061-1066, 2020.

[3] C. Yu, “f2fs: support age threshold based garbage collection,” 2021.

[4] L. Huawei Technologies Co., “Kirin 9000,” 2022.

[5] Q. Li, A. Deng, et al., “Optimizing fragmentation and segment cleaning
for cps based storage devices,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC), pp. 242-249, 2019.

	Select a link below
	Return to Previous View
	Return to Main Menu

