
Out-of-Step Pipeline for Gather/Scatter Instructions
Yi Ge∗, Katsuhiro Yoda∗, Makiko Ito∗, Toshiyuki Ichiba∗, Takahide Yoshikawa∗, Ryota Shioya† and Masahiro Goshima‡

∗ Fujitsu Ltd.
Tokyo, Japan

Email: katsu-t@fujitsu.com

† The University of Tokyo
Tokyo, Japan

Email: shioya@ci.i.u-tokyo.ac.jp

‡ National Institute of Informatics
Tokyo, Japan

Email: goshima@nii.ac.jp

Abstract—Wider SIMD units suffer from low scalability of
gather/scatter instructions that appear in sparse matrix calcula-
tions. We address this problem with an out-of-step pipeline which
tolerates bank conflicts of a multibank L1D by allowing element
operations of SIMD instructions to proceed out of step with each
other. We evaluated it with a sparse matrix-vector product kernel
for matrices from HPCG and SuiteSparse Matrix Collection. The
results show that, for the SIMD width of 1024 bit, it achieves 1.91
times improvement over a model of a conventional pipeline.

I. Introduction

Demands for sparse matrix calculation have been increasing.
Examples are given as follows: NVIDIA implemented the
Sparse Tensor Core for sparse matrix in AI workloads. Graph
processing also requires large sparse matrices for large graphs.
The work that won the 2021 ACM Gordon Bell Special Prize
for HPC-Based COVID-19 Research simulates aerosolized
droplet with a linear system in a large sparse matrix. The
HPCG benchmark was developed to reflect the characteristics
of these programs [1]. HPCG solves a linear system in a large
sparse matrix by the CG method. HPCG is now one of the
three categories of TOP500 along with HPL (HP Linpack).

A wider SIMD unit contributes greatly to dense but little
to sparse matrix calculations, which is typically seen in the
TOP500 results of the Supercomputer Fugaku. Though it won
the first ranks in HPL/HPCG in 2021, the efficiencies were as
high as 82.3% for HPL but as low as 3.0% for HPCG.

We found that the cause of this low efficiency is a scalability
problem of SIMD gather instructions that inevitably appear
in sparse matrix calculation. We address this problem with a
many-bank level-1 data cache (MBL1D), and a newly proposed
out-of-step pipeline which does not reduce the bank conflicts
on MBL1D but tolerates them by allowing element operations
of SIMD instructions to proceed out of step with each other.

II. Out-of-Step Backend Pipeline

Fig.1 shows conceptual block diagrams of conventional in-
step (InS) and our out-of-step (OoS) backend pipelines. Each
of the pipelines has two SIMD pipes of two lanes, and the left
pipe executes gather/scatter instructions to the MBL1D.

a) In-Step Pipeline: The InS pipeline can be considered
as a single pipeline. Between adjacent stages is a single-entry
pipeline register that spans all the lanes. Instructions issued to
the lanes flow through the stages in step with each other.

At the cycle t = t0, in the InS pipeline are SIMD instructions
A, B, and C, each of which has two element operations, such as
A0 and A1. The instruction C depends on the gather instruction
A, and receives the gathered results through the bypass. A0 and

A1 access the same bank, resulting in a bank conflict. In this
situation, no SIMD instructions can proceed while keeping the
InS principle, for the following reasons:

A1 cannot, because it loses in the bank conflict.
B1 cannot, or it will overwrite A1.
C1 cannot, or it will miss the result of A1 through the bypass.

This situation is equivalent to an L1D miss in the sense
that a load target cannot be retrieved at the timing that
the scheduler has assumed. Out-of-order cores generally re-
schedule instructions on an L1D miss, because pipeline stall
is difficult to implement due to heavy load of the write enable
signals to deassert [2]. However, rescheduling on a bank
conflict diminishes the gain of MBL1D, because the bank
conflict rate is extremely higher than the L1D miss rate.

b) Out-of-Step Pipeline: In the OoS pipeline on the right
side of Fig. 1, the single-entry pipeline register immediately
before the execution stages is replaced with small FIFO buffers
for the lanes. In addition, the downstream pipeline registers are
divided for the lanes. As a result, the downstream part of the
lanes from the buffers can independently proceed.

In the OoS pipeline in the figure, the positions of the element
operations are at the cycle t = t0+1. These element operations
can proceed out of step with each other, as follows:

A A1 lost in the bank conflict has remained in the buffer,
and in turn accesses the bank.

B B1 has been stored in the second entry of the buffer
without overwriting A1. B0 accesses another bank in
parallel with A1.

register read register read

bypass

scheduler primary scheduler

𝐵1 𝐵0

𝐴1 𝐴0

𝐶0𝐶1

secondary

schedulers

𝐴0

𝐴1 𝐵0 𝐶0

𝐵1

𝐶1

In-Step (𝑡 = 𝑡0) Out-of-Step (𝑡 = 𝑡0 + 1)

MB L1D

Fig. 1. In-/Out-of-Step backend pipelines.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

C C0 proceeds with the result of A0 which has been passed
through the bypass. C1 waits for the result of A1 in the
buffer for another cycle.

In this way, the FIFO buffers work as the secondary schedulers
for element operations, and the OoS pipeline can proceed on a
bank conflict without pipeline stall or instruction rescheduling.

The area and energy consumption of the secondary sched-
ulers are negligibly small compared with the out-of-order
primary scheduler. Matrix-based control [3] can also be applied
to the secondary schedulers.

III. Evaluation

We evaluated the OoS pipeline with a Sparse Matrix-
Vector product (SpMV) kernel in HPCG for the SELL-C-σ
format [4] on a fully cycle-accurate simulator Onikiri2 [5].
HPCG is designed to have computations and data access
patterns commonly found in scientific applications [1]. In
HPCG, most of the execution time is occupied by SpMV and
SpMV excluding the diagonal elements. Therefore, using the
SpMV kernel in HPCG as the benchmark highlights the effect
of the OoS control for the scientific applications. However,
the matrix in HPCG is regular and easy for MBL1D. Thus,
we also evaluated large sparse matrices from the SuiteSparse
Matrix Collection [6] selected by Kreutzer et al. to evaluate
their SELL-C-σ format [4].

Tab. I shows the parameters of the baseline model. We
evaluated the SIMD widths of v = 8, 16, 32, and found that
the results for the different widths are quite similar. Thus, we
disclose only the result for the width of v = 16 (1024 b).

We evaluated the following four models with different L1D
and pipeline configurations:

NMB Non-MB L1D. A gather instruction occupies the non-
multibank L1D with 2 ports for v/2 cycles.

InS InS pipeline with MBL1D. Instructions that cannot
proceed on a bank conflict, such as A, B, and C in Fig.1
(left), are rescheduled as on an MBL1D miss.

OoS(s) OoS pipeline with MBL1D and the s-entry sec-
ondary schedulers. Instructions are rescheduled not on a
bank conflict but on an MBL1D miss.

FP Full-Port L1D. It is ideal and free from bank conflicts,
but causes L1D misses as with the other models.

Fig. 2 shows a scatter plot of the efficiency versus bank
conflict rate. The efficiency is for the peak performance given
by 2 FMA instructions in 3 cycles required to issue 4 SIMD
load and 2 gather instructions. The bank conflict rate is
measured at the MBL1D bank arbiters of the OoS(∞) model.

TABLE I
Parameters for evaluated models.

ISA
RISC-V RV64IMFD
w/ “V” ext. v0.10

Frontend fetch to dispatch: 6 insns

Primary
Scheduler

int, fp, mem, SIMD, SIMD
mem: 32 μOPs, 2 issue each

Stages
fetch to dispatch: 7, sched: 1,
issue: 2, reg read, WB: 2

Exec Lat int: 1, others: 6

Phy Regs GR, FR, VR: 256 each

Branch Pred gshare

SIMD Width 8, 16, 32 double words

MB-
L1D

Banks 32, 64, 128 (SIMD width ×4)

Ports 1-read/write per bank

Size, etc 128KB 8-way
512B
line

5τ

L2C Size, etc 1MB 8-way 12τ

LLC Size, etc 8MB 16-way 40τ

Main Memory ∞ 200τ

Prefetcher stream-based (L1, L2, LLC)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Efficiency

Bank Conflict Rate

FP
OoS(∞)
OoS(3)
InS
NMB

No clear band struct.

Fig. 2. Efficiency versus bank conflict rate for each matrix.

The efficiency of the NMB model is limited to approximately
0.08 bound by the throughput of gather instructions for the
2 ports of its non-MB L1D. InS and OoS(3) show clear inverse
correlation; while InS is sensitive, OoS(3) tolerates higher bank
conflict rates. Three matrices show lower efficiency for their
rates even for FP, because these matrices do not have clear
band structure and the prefetchers do not efficiently work.

We evaluated the efficiency of OoS(s) for the secondary
scheduler sizes s = 2, 3, . . . , 7,∞. The efficiency of OoS(3) is
close to that of OoS(∞) for all the matrices. A buffer full state
is harmful only if frequent full states in a lane make other lanes
idle via stall of instruction issuing. The efficiency of OoS(∞)
free from this situation is determined simply by the throughput
of MBL1D for the bank conflict patterns. This is almost true
for OoS(3) whose efficiency is close to that of OoS(∞). We
can conclude that the OoS control with the 3-entry secondary
schedulers makes full use of MBL1D for these sparse matrices.

IV. Conclusion
We described the out-of-step pipeline which tolerates bank

conflicts in the many-bank L1D by allowing element opera-
tions of SIMD instructions to proceed out of step with each
other. We evaluated it with a SpMV kernel in HPCG [1] for
the SELL-C-σ format [4] on a fully cycle-accurate simulator
Onikiri2 [5]. A wide variety of matrices are selected from the
SuiteSparse Matrix Collection [6] and HPCG. The results show
that, for the SIMD width of 1024 b/2048 b, it achieves 76.8%/
85.1% efficiency for an ideal model with full-port L1D free
from bank conflicts, and 1.91/1.82 times improvement over a
model of a conventional in-step pipeline.

References
[1] J. Dongarra, M. A. Heroux, and P. Luszczek, “HPCG benchmark: a new

metric for ranking high performance computing systems,” University of
Tennessee, Tech. Rep. ut-eecs-15-736, Jan. 2015.

[2] A. Perais, A. Seznec, P. Michaud, A. Sembrant, and E. Hagersten, “Cost-
effective speculative scheduling in high performance processors,” in Proc.
ISCA, 2015, pp. 247–259.

[3] M. Goshima et al., “A high-speed dynamic instruction scheduling scheme
for superscalar processors,” in Proc. MICRO, 2001, pp. 225 – 236.

[4] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units,” SIAM J.
Scientific Computing, vol. 36, no. 5, pp. C401–C423, 2014.

[5] R. Shioya. Onikiri2. https://github.com/onikiri/onikiri2
[6] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collec-

tion,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Dec. 2011.

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

