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Abstract—Complex VLSI SOCs are manufactured on large
300mm wafers. Individual SOCs can show significant spatial
performance gradients in the order of 10% per 10mm. The
traditional approach to handling this variation in STA tools is
a margin look-up table indexed by the diagonal of the bounding
box around the gates in a timing path. In this paper we propose
a new approach based on the concept of the Center-of-Delay of
a timing path. We justify this new approach theoretically for
linear performance gradients and present experimental data that
shows that the new approach is both safe, and significantly less
pessimistic than the existing method.

Index Terms—static timing analysis, CMOS, variability

I. INTRODUCTION

Manufacturing1 today’s advanced nanometer-scale FinFET
CMOS systems-on-chip (SOC) requires amazing accuracy and
resolution. Foundries are able to integrate many billions of
transistors on a single chip and connect them over many
metal layers, creating systems of amazing complexity and
sophistication that provide the communication infrastructure for
today’s omni-connected society.

Modern SOCs are created on large 300mm wafers in many
dozens of manufacturing steps. To ensure high yield for all
SOCs on a wafer, manufacturing is optimized to maintain tight
control of the material properties and physical device parame-
ters that drive the dynamic performance of digital and analog
circuits: gate length, gate oxide thickness, fin height, threshold
voltage, and interconnect capacitance. Despite a strong focus
on manufacturing uniformity of these parameters across entire
wafers, performance measurements show significant dynamic
performance gradients (see [1] and later in this paper). Digital
circuit designers who want to ensure robust yield for all
locations on a wafer must take spatial performance variation
into consideration.

Spatial performance variation has plagued CMOS manufac-
turing already since early 2000s [2]–[6] and the established
industry practice is to account for this variation during Static
Timing Analysis (STA). Although a few Statistical STA (SSTA)
based approaches to this problem have been proposed initially
[7], [8], a simple margining scheme driven by the length of
diagonal of the bounding-box around the gates of a timing path

1It would be more appropriate to use the term ”Machinefacturing” for the
high precision ”machine”-pulation of matter and materials that the foundries
do. Human touch is completely forbidden.

[9]–[11] was adopted by the industry and remains dominant to
this day.

In this paper we argue that the bounding-box based approach
is often unnecessarily pessimistic, thus causing over-design and
degradation of PPA. As an alternative, we propose an approach
based on the novel concept of the Center-of-Delay of a timing
path. We provide theoretical justification of the new approach
and demonstrate its effectiveness empirically.

This paper is structured as follows: after providing the neces-
sary background and motivation in Section II, we introduce the
new approach and prove its theoretical soundness in Section III.
In Section IV we present the results of our experimental study.
We conclude by outlining some of the directions for future
work in Section V.

II. BACKGROUND AND MOTIVATION

We assume that the reader is familiar with the basic concepts
of semiconductor design and manufacturing, as well as basic
understanding of Static Timing Analysis (STA).

A. Spatial performance gradient

As highlighted in Section I, despite a strong focus on unifor-
mity of process parameters across entire wafers, performance
measurements of manufactured silicon show significant perfor-
mance gradients. Figure 1 shows a wafer diagram with digital
supply voltage data that maintains constant performance for the
slowest location on SOCs placed across the wafer, averaged
over multiple manufactured wafers. Higher supply voltage
implies slower silicon and vice versa. We see a performance
profile that resembles a Mexican hat with a slower center (VDD
up to 0.67V), a faster ring (VDD reduced down to 0.61V),
and a slow outer rim (VDD increases up to 0.66V). Looking
for the steepest voltage gradient, we find a case with 0.05V
difference for a pair of SOCs that are touching at their corners
in the North-West section of the rim. This voltage differential
translates to a relative dynamic spatial performance change of
about 10% over a distance of 10mm. For SOCs with a die size
of 10× 10mm2 in the process used to manufacture the wafers
this translates to about 2.5 sigma of global variation in a single
die when the gradient aligns with the diagonal of the SOC.

Although the impact of spatial variation can be significant,
further analysis of the wafer map in Figure 1 shows that large
spatial performance gradients are in fact infrequent. Therefore,
it is important that a spatial margin model does not increase
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Fig. 1. Voltage distribution on a FinFET wafer to maintain constant perfor-
mance. Higher voltage (red) corresponds to slower silicon.

Fig. 2. Launch- and capture clock path cell placement examples with
spatial gradient concern. Large sensitivity (left) and small sensitivity (right).
Performance gradient is represented by background color, bounding-boxes are
drawn in red.

the power or area of a design substantially to only recover a
fairly small number of chips per wafer.

B. Bounding-box based margining

The bounding-box based spatial margining methodology has
been described first in the literature circa 2009 [9], [10], but
to our knowledge had already been a “folk-knowledge” in the
design industry by then. In this methodology a STA tool is
provided with a table that represents timing derate, i.e. cell
or net delay multiple, as a function of a distance on chip. A
separate table is given for early and late, cell and net derates.
A fragment of a distance derate table is shown in Figure 3.

Fig. 3. Example distance derate table (fragment).

For a given timing path, the STA tool computes the coordi-
nates of the smallest rectangle that encloses all of the devices
of the path starting from the CRP common point – this is the
so-called bounding-box of the timing path, see Figure 2. The
length of the diagonal of the bounding-box is the quantity that
is used to look up the timing derates from the late (resp. early)

distance derate tables to derate the delays of devices on launch
(resp. capture) segments of the timing path. A similar operation
is performed for nets to create margin for RC delays – note that
the bounding-box for nets can be different from that for cells.

It is beneficial now to highlight the following subtlety.
Consider a chip subjected to some spatial performance gradient.
Clearly two topologically identical timing paths in different
parts of the chip are likely to have different timing slack. Yet,
since the diagonals of bounding-boxes for these paths are equal,
both paths will be subjected to the same distance-based timing
derate. This illustrates that distance-based derating is applied
in order to margin for difference in performance shift of launch
vs capture segments of a path, rather than a global performance
shift due to spatial gradient. The latter is accounted in practice
via corner library models.

With the above in mind, consider a chip with a linear
performance gradient with faster devices in the top-left corner
and slower devices in the bottom-right corner. Figure 2 shows
two timing paths with tight hold time constraints and long
divergent clock paths. On the left, the spatial performance
gradient can introduce significant skew because clock paths are
placed far from each other, with the launch path tracking along
the faster sides of the bounding-box while the capture tracks
along the slower bottom and right edges. On the right, launch
and capture clock paths track each other closely and so the
clock skew sensitivity to spatial gradients on a wafer will be
small. Yet, both timing paths have exactly the same bounding-
box, and hence will be subjected to the same distance derate.

This example demonstrates that the bounding-box based
margining methodology is agnostic to the detailed placement
of cells on the timing paths and therefore can be unnecessarily
pessimistic.

Furthermore, even the task of translating the performance
gradients measured on manufactured silicon into spatial de-
rate values for the bounding-box model poses a challenge.
As demonstrated above, the required margin depends on the
specific placement of the gates on the launch and capture
paths. Although a theoretical worst case, with the launch delay
concentrated in the fastest corner of the box and the capture
delay concentrated in the slowest corner, can be constructed
this would be a rather unrealistic scenario given the fact that
the launch and capture paths originate from the common launch
point, and both terminate at the common capture point2. Thus in
practice distance derate tables are frequently adjusted in an ad-
hoc manner to reduce the artificial pessimism imposed by the
bounding-box model. Clearly such adjustments cannot be done
correctly since the required margin depends on path topology.

These fundamental deficiencies of bounding-box based spa-
tial margining motivates the development of the novel, Center-
of-Delay based methodology, described in the remainder of this
paper.

2For larger distances the implementation of the clock distribution network
typically uses repeaters which make the theoretical worst case configuration
still more unlikely.
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III. CENTER-OF-DELAY

The Center-Of-Delay (COD) calculation of a timing path
uses the well-known equations of the center-of-gravity calcula-
tion of distributed weights. Cell delays replace weights in the
locations of the individual cells. We will formally prove below
that the delay of a distributed timing path on a linear gradient
performance derating plane can be calculated by adding the
underated cell delays and multiplying them with a fixed derate
from the location of the center-of-delay of the path. This
property dramatically simplifies the calculation of the timing
slack shift between launch and capture paths in STA in the
presence of linear spatial gradients.

A. Definition

A timing graph (P,A) is a directed acyclic graph with a set
of nodes P that represents pins or ports, and a set of edges A
that represents timing arcs, i.e. either cell library arcs or nets, in
the circuit. For clarity of presentation, in this paper we assume
that each timing arc a ∈ A is associated with a unique nominal
delay value τa and that net arcs have zero delay. For a path
π = (a1, . . . , an) in a timing graph, we will write τπ to denote
the delay of π, i.e. the sum of delays τai of the timing arcs in
π.

We assume that the die is 2D and for each pin p ∈ P , (xp, yp)
is its x and y coordinates on the die with respect to some origin
(e.g. bottom-left corner of the die). For a timing arc a = (p, q)
the coordinates (xa, ya) of a are taken to be (

xp+xq

2 ,
yp+yq

2 ).
The COD is calculated by accumulating delay-moments xa ·

τa, ya · τa in x and y direction over the path, and then dividing
the moment sums by the accumulated path delay:

Definition 1. Let π = (a1, . . . , an) be a path in a timing graph.
The center-of-delay (COD) of π, denoted as Cπ , is a point
(x, y) on a die defined as:

Cπ =

(∑
a∈π xaτa

τπ
,

∑
a∈π yaτa

τπ

)
. (1)

Example 1. Consider the example circuit depicted in Figure 4.
The launch path has 4 buffers with delay 1ns at coordinates
(1mm, 1mm), . . . , (1mm, 4mm). Thus, the COD of the launch
path is located at coordinate ((1mm·1ns+1mm·1ns+1mm·
1ns + 1mm · 1ns)/4ns, (1mm · 1ns + 2mm · 1ns + 3mm ·
1ns+4mm·1ns)/4ns) = (1mm, 2.5mm). Similarly, the COD
of the capture path is located at (4mm, 1.5mm).

The key property of COD is that in the presence of a linear
spatial performance gradient, the delay of a timing path can
be computed exactly based on the delay of the path at the
location of COD. In the rest of this sub-section we formalize
this statement and prove its correctness.

To capture the impact of spatial gradient on delay of timing
arcs, we will use a linear spatial gradient function G(x, y) =
gxx+gyy+1 to represent the timing derate, i.e. delay multiple,
for the nominal delay of a timing arc at coordinates (x, y). That
is, the derated delay of arc a, denoted by τ ′a, is computed as

τ ′a = G(xa, ya) · τa = (gxxa + gyya + 1) · τa. (2)

Fig. 4. The running example for the paper. Assume that nominal delay of
every buffer is 1ns, and the rest of elements (nets and cells) have delay of 0.
Distance units are mm.

For a path π we will denote by τ ′π the derated delay of π, i.e.
the sum

∑
a∈π τ

′
a.

Note that points on the plane with spacial derate equal to d
define a line gxx + gyy + (1 − d) = 0, and in particular, the
line gxx+gyy = 0 through origin (0, 0) is the line with spatial
derate equal to 1. The terms gx and gy represent the x and y
components of the gradient vector.

Example 2. Consider again the circuit in Figure 4. Assume that
the gradient function is defined as G(x, y) = 1+0.01∗ y. This
corresponds to 1% per 1mm derate in the direction of y-axis,
with derate 1.0 line coinciding with the x-axis. Considering the
launch path, the buffer at coordinate (1mm, 1mm) has delay
of 1.01ns, the buffer at (1mm, 2mm) has delay of 1.02ns,
etc. Thus, the derated delay τ ′L of the launch path is 1.01ns+
1.02ns + 1.03ns + 1.04ns = 4.10ns. Similarly, the derated
delay τ ′C of the capture path is 1.00ns + 1.00ns + 1.02ns +
1.04ns = 4.06ns

Now, the main fact of this sub-section can be stated as
follows:

Theorem 1. Let π be a timing path with center-of-delay Cπ

and G(x, y) be a linear spatial gradient function. Then,

τ ′π = G(xCπ , yCπ ) · τπ (3)

That is, the derated delay of timing path π equals its nominal
delay derated at location of Cπ .

Proof. From (2) for an arc a ∈ π, we have the derated delay
of a as τ ′a = (gxxa + gyya + 1)τa. Then, the derated delay of
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π is

τ ′π =
∑
a∈π

τ ′a =
∑
a∈π

(gxxa + gyya + 1)τa

=
∑
a∈π

gxxaτa +
∑
a∈π

gyyaτa +
∑
a∈π

τa.

Dividing and multiplying the latter by τπ and distributing the
division we have

τ ′π =

(∑
a∈π gxxaτa

τπ
+

∑
a∈π gyyaτa

τπ
+

∑
a∈π τa

τπ

)
· τπ

=

(
gx

∑
a∈π xaτa

τπ
+ gy

∑
a∈π yaτa

τπ
+ 1

)
· τπ.

Recall from (1) that
∑

a∈π xaτa
τπ

is exactly the x-coordinate xCπ

of COD of π, and similarly for
∑

a∈π yaτa
τπ

= yCπ
. Therefore,

taking into account the definition of G(x, y), we have

τ ′π = (gxxCπ
+ gyyCπ

+ 1) · τπ = G(xCπ
, yCπ

) · τπ.

Example 3. Referring to the circuit in Figure 4, assume again
that the gradient function is defined as G(x, y) = 1+0.01 ∗ y.
From Example 1 we know that COD of the launch path is
located at (1mm, 2.5mm) – the derate at this location is 1 +
0.01∗2.5 = 1.025. Since the nominal delay of the path is 4ns,
using Theorem 1 we compute the derated delay of the path as
1.025∗4ns = 4.10ns, that is, equal to the derated delay of this
path we computed in Example 2. Similarly, COD of the capture
path is at (4mm, 1.5mm). The derate at this location is 1.015,
giving the derated delay of the capture path 1.015 ∗ 4ns =
4.06ns – again, the value we computed in Example 2.

Theorem 1 implies that instead of calculating actual path
delays over a large set of possible gradient directions to de-
termine the worst-case slack shift we can immediately identify
the worst gradient direction from the direction of the vector
from launch path COD to capture path COD. Furthermore, the
worst case difference in the derating values for the two paths
equals to the distance between their CODs multiplied by the
magnitude of the gradient.

These considerations suggest that it is the distance between
CODs of launch and capture paths that should determine the
amount of spatial margin in STA.

B. Application of COD to spatial derating in STA

In this work we propose to reuse the margin lookup and
derating mechanism of the existing diagonal-of-bounding-box
method in STA tools, but use the distance of CODs between
non-common launch and capture paths to look up the corre-
sponding derating margin values.

The data in the derating tables will have to be adjusted to
reflect the change in derating methodology. As explained in
Section II-B, due to inherent indiscriminate pessimism imposed
by the bounding-box method, distance derate tables are fre-
quently adjusted in a heuristic manner to reduce the pessimism
artificially. Our experimental data (Section IV) shows that the

distance between CODs of launch and capture paths is in
general significantly smaller than the diagonal of the bounding
box around the paths. Therefore for the COD derating tables
the derating values vs. distance can be taken directly from the
measured spatial performance shift data, without any additional
manipulation. Pessimism reduction is now provided by the
explicit consideration of gate locations in the COD calculation.
Furthermore, the worst-case placement of clock path delays
in opposite corners of the bounding box would be correctly
captured in our methodology, as opposed to being potentially
optimistic due to the ad-hoc manipulation of bounding-box
derates.

In addition, a practical methodology for COD-based spatial
derating should take into account the following observations:

• Hold time violations are the primary concern created by
spatial performance gradients in digital designs. If long
clock insertion delays are implemented on regions of the
SOC with significant differences in performance, there
may be hold time failures on short data paths where
the launch clock propagates substantially faster than the
capture clock (see Fig. 2, left). If manufacturing is ma-
ture and well within the SPICE corners, setup violations
are unlikely unless other margin deficiencies exist (e.g.
underestimation of IR drop).

• The corner-focused STA analysis does not reflect the
actual silicon with performance gradients accurately. To
align reality and spatial margin models as much as pos-
sible, it makes sense to consider that if a strong gradient
occurs on a chip with slow silicon we should assume that
the gradient will lead to a speed-up. On the other hand,
in case of a strong gradient with the fast silicon model
the gradient should lead to slowdown. These assumptions
will ensure that performance modeling overall stays inside
the SPICE corners. These assumptions can be captured in
different early and late derating tables for a spatial margin
model.

Keeping the performance inside the library corners, and with
hold time violations as the primary concern, the following
derating schemes appear best aligned with silicon reality to
identify endpoints with significant spatial variation hold margin
exposure:

1) Slow corner analysis: Speed-up of the launch path
relative to the library corner model is the fundamental
concern. This can be captured by assuming that the COD
of the capture path is exactly at the slow library modeling
corner, and distance of COD indexed derating values
smaller than one are prepared in the early derating tables.
Based on the data discussed at the beginning of this
paper a spatial derate of 0.9 for a distance of CODs of
10mm can be justified. For distances larger than 10mm
a less than linear reduction of the margin derate appears
appropriate as the data does not show sustained gradients
of 10%/10mm over significantly longer distances.

2) Fast corner analysis: An analysis with a fast corner
library can model the hold margin concern by assuming
that the COD of the launch path is at the fast library
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TABLE I
COMPARISON OF DISTANCE-DERATING METRICS DERIVED USING COD VS BOUNDING-BOX (BBOX) METHODOLOGY.

Design Analysis Die diagonal Hold analysis Setup analysis
corner (mm) COD distance BBOX diagonal BBOX/ COD distance BBOX diagonal BBOX/

avg / max (mm) avg / max (mm) COD avg / max (mm) avg / max (mm) COD
design-1 SS 5.732 0.246 / 1.123 0.663 / 2.703 2.7x 0.926 / 2.138 2.038 / 3.753 2.2x
design-2 FF 16.127 0.105 / 2.134 0.458 / 5.663 4.4x 0.470 / 2.861 1.900 / 6.492 4.0x
design-3a SS 9.143 0.010 / 0.212 0.035 / 0.628 3.5x 0.061 / 2.068 0.208 / 3.531 3.4x
design-3b TT 9.143 0.050 / 2.628 0.342 / 5.977 6.8x 0.292 / 5.020 0.629 / 7.601 2.2x
design-4 SS 11.773 0.007 / 0.133 0.027 / 0.348 3.9x 0.062 / 0.812 0.246 / 2.103 3.9x
design-5 FF 21.092 4.402 / 12.595 12.141 / 20.062 2.8x 4.068 / 16.708 15.578/ 19.771 3.8x
design-6 SS 9.866 0.207 / 1.420 1.630 / 6.619 7.9x 0.434 / 1.888 1.289 / 4.142 2.9x

characterization corner (i.e. early analysis uses a derate
of exactly 1.0), and populating the late analysis derating
table with values above 1.0 to model the slowdown of
the capture clock. For a distance of 10mm, the late
derating table would contain a value of 1.1 to model
the 10% slowdown that was observed in silicon for this
distance. Larger distances should again see a less than
linear increase of the derate values to reflect the spatial
variation that was observed for longer distances.

3) Typical corner analysis: If designers model a timing
scenario that targets the typical device model it makes
sense to split the derating values between both the early
and late side of the analysis evenly. For a distance of
10mm the early derating table would contain a value of
0.95 while the late derating table sets a value of 1.05.

IV. EXPERIMENTAL STUDY

To evaluate the ideas presented in this paper we performed
an experimental study with the following objectives. For one,
we wanted to quantify the reduction of distances used to index
derates in our COD-based derating scheme vs. the currently
Dominant bounding-box based methodology on realistic timing
paths in modern SOCs. Consequently, we were interested in the
impact of the reduction of the distances on the timing slack,
assuming a gradient with a known magnitude. Finally, we were
interested in affirming theoretical claims of Section III.

To this end we altered a commercial timer to enable (i)
calculation of COD and application of COD-based timing
derates in path-based analysis (PBA) and (ii) simulation of
the physical spatial performance gradient given a user-provided
gradient vector during PBA. The latter capability allows us to
obtain “golden” data by rotating the simulated gradient plane
and recording the impact of various gradient directions on the
slack of timing paths.

In order to study the performance of the new technique on
real-world designs, we selected a set of industrial IP blocks
configured for STA flow that included bounding-box based
spatial gradient derating. The blocks had die diagonals in the
range of 5mm-21mm, covered different analysis, and one of the
blocks was available in two modes. While the evaluation was
primarily focused on hold analysis (for the reasons explained
in Section III-B), for completeness we also collected the data
for setup analysis3. Note that data-path delay is included in

3The COD-based derating methodology for setup analysis can be derived
analogously to hold following Section III-B.

both setup and hold analysis. For each of the designs and hold
/ setup combination, we collected the worst nominal – that is,
un-derated – slack path to 10000 endpoints. For each path we
then computed: (i) the distance between launch and capture
CODs, (ii) the diagonal of bounding-box, (iii) the slacks of
the path with cell delays derated based on the COD distance
and based on the bounding-box diagonal, and (iv) performed
a simulation to obtain the “golden” slack and confirm that it is
properly bounded by both the COD and BBOX derived slacks.

The main finding of our study is presented in Table I, where
we collated and contrasted the average and maximum distance
between launch and capture CODs versus the corresponding
metrics derived from bounding-box diagonals. We observe that
average COD distance is significantly smaller than diagonal of
bounding-box – this holds true across all analysis corners and
both the setup and hold analysis. It is also important to note
that even in the outlier cases, i.e. with maximum distances,
COD distances are still significantly smaller than bounding-box
diagonals. The top two plots in Figure 5 provide a graphical
view into the magnitude of reduction in distance metrics in
COD based methodology compared to the traditional bounding-
box method on two example designs.

To evaluate the impact of the reduction in distance metrics on
timing, we also compared the corresponding slack data. As the
comparison of the absolute value of slacks is not particularly
meaningful without taking into account the nominal slack, we
opted to compare the slack margin – the difference between
the derated and the nominal slacks. The bottom two plots in
Figure 5 demonstrate the impact of COD based derating on
slack margin graphically, while Table II presents the summary
statistics comparing both the absolute and the relative slack
margin values for COD and bounding-box methodologies,
where relative slack margin is computed as percentage of
absolute slack margin with respect to path arrival time4.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a novel methodology for spatial
performance gradient margining in STA, based on the concept
of the Center-of-Delay (COD) of a timing path. We demon-
strated both theoretically and experimentally that the proposed
approach is superior to the established bounding-box derating
methodology due its ability to take the path topology into
account and therefore remove unnecessary blanket pessimism
present in the current practice.

4Designs with relative slack margin < 1% in BBOX are not shown.
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Fig. 5. Scatter plots comparing the distance and the slack margin of COD-based versus bounding-box based margining.

TABLE II
COMPARISON OF SLACK MARGINS COMPUTED USING COD VS BOUNDING-BOX (BBOX) METHODOLOGY.

Design Hold analysis Setup analysis
Abs. margin avg / max (ns) Rel. margin avg / max (%) Abs. margin avg / max (ns) Rel. margin avg / max (%)

COD BOX COD BBOX COD BOX COD BBOX
design-1 0.002 / 0.012 0.004 / 0.027 0.14 / 0.67 0.38 / 1.53 0.005 / 0.012 0.010 / 0.021 0.12 / 0.31 0.26 / 0.63
design-2 0.001 / 0.038 0.005 / 0.114 0.05 / 1.10 0.23 / 2.95 0.010 / 0.091 0.038 / 0.212 0.31 / 1.84 1.21 / 4.30
design-3b <0.001 / 0.107 0.004 / 0.244 0.03 / 1.31 0.17 / 2.99 0.012 / 0.619 0.026 / 1.133 0.25 / 4.45 0.53 / 6.51
design-5 0.063 / 0.226 0.226 / 0.518 2.88 / 6.83 7.61 / 13.6 0.228 / 3.938 1.002 / 14.92 3.67 / 16.5 13.1 / 19.5
design-6 0.006 / 0.069 0.050 / 0.326 0.11 / 0.77 0.89 / 3.63 0.006 / 0.042 0.019 / 0.105 0.09 / 0.49 0.26 / 1.20

Our work opens a number of interesting research and en-
gineering directions. For instance, in this paper we mostly
glanced over the implementation details of the integration of
COD-based methodology in an industrial-strength timer. Al-
though path-based analysis does not pose particular challenge,
the efficient implementation of COD-based derating in graph-
based analysis (GBA) will be a subject of future work. Another
line of research is the extension of the ideas presented in this
paper to practical non-linear gradients, such as those arising
from temperature and voltage variations.
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