

Dynamic Task Remapping for Reliable CNN
Training on ReRAM Crossbars

Chung-Hsuan Tung*, Biresh Kumar Joardar�, Partha Pratim Pande‡, Janardhan Rao Doppa‡, Hai (Helen) Li* and
Krishnendu Chakrabarty§

*Department of ECE, Duke University, Durham, NC 27708, USA. {chunghsuan.tung, hai.li}@duke.edu
�Department of ECE, University of Houston, Houston, TX 77204, USA. bjoardar@central.uh.edu

‡School of EECS, Washington State University, Pullman, WA 99164, USA. {pande, jana.doppa}@wsu.edu
§School of ECEE, Arizona State University, Tempe, AZ 85287, USA. krishnendu.chakrabarty@asu.edu

Abstract—A ReRAM crossbar-based computing system
(RCS) can accelerate CNN training. However, hardware faults
due to manufacturing defects and limited endurance impede the
widespread adoption of RCS. We propose a dynamic task
remapping-based technique for reliable CNN training on faulty
RCS. Experimental results demonstrate that the proposed low-
overhead method incurs only 0.85% accuracy loss on average
while training popular CNNs such as VGGs, ResNets, and
SqueezeNet with the CIFAR-10, CIFAR-100, and SVHN
datasets in the presence of faults.

I. INTRODUCTION
Deep learning (DL) techniques such as convolution neural

networks (CNNs) have been deployed in many domains [1],
[2]. Resistive random-access memory (ReRAM)-based
crossbars can be used to perform high-throughput and energy-
efficient CNN training [3]. However, CNN training on
ReRAM crossbars must consider reliability challenges.
ReRAM cells can be faulty due to fabrication defects; we refer
to the faults arising from these defects as “pre-deployment
faults”. Even if a cell passes manufacturing tests, it can fail
during operation due to the limited write endurance of
ReRAMs [4]. We refer to these faults as “post-deployment
faults.” In the presence of pre- and post-deployment faults,
ReRAM cells can get stuck at a fixed resistance, resulting in
stuck-at-faults (SAFs). SAF impedes model training, leading
to a significant accuracy drop. For instance, ResNet-18 trained
on a ReRAM crossbar-based computing system (RCS) has a
~76% accuracy drop when 0.1% of the cells are faulty [5].
A number of techniques have been presented in the

literature to detect and mitigate the effect of faults in RCS for
DL applications [6]–[9]. These include error correction code
(ECC), weight remapping, and retraining [9]–[12]. However,
these techniques incur high area and performance overheads.
For instance, the AN code-based ECC method introduces
6.3% area overhead [10], requires prior profiling of the
application to develop the correction table, and is effective
only if the number of faults is low [5]. In addition, new (post-
deployment) faults can appear during operation. The AN
code-based method must therefore update its correction table
periodically to address new faults; this can lead to additional
performance overhead. Also, existing solutions often do not
consider the non-uniform spatial distribution of faults, which
can lead to accuracy drop, as we discuss in Section III.A.
In this paper, we present a new fault tolerance solution

based on dynamic task remapping that can address both pre-

and post-deployment faults in RCS. We define “task” as the
computations associated with a CNN layer which are executed
on a ReRAM crossbar and “task remapping” as the remapping
of the stored weights from one crossbar to another. The
proposed solution utilizes a built-in self-test (BIST) technique
to detect SAFs in each crossbar. Utilizing this knowledge of
the fault occurrence, we propose a dynamic task remapping
mechanism to judiciously move the computation from one
crossbar to another. We refer to the proposed solution as
“Remap-D” where “D” represents the dynamic nature of the
remapping. Unlike existing remapping-based schemes (e.g.,
[8], [12]), Remap-D leverages the inherent fault tolerance of
CNNs during training. We show that different portions of
CNN computations have different degree of fault tolerance.
By considering both the ReRAM fault density (defined as the
percentage of ReRAM cells that are faulty in the RCS) and the
CNN fault tolerance, Remap-D outperforms existing methods
in terms of accuracy and performance/area overheads.
The contributions of this paper are as follows. (1) We

show that existing methods are ineffective in protecting CNN
training from a realistic non-uniform spatial distribution of
pre- and post-deployment faults. (2) We propose a BIST-
enabled fault-tolerant CNN training technique for RCS (i.e.,
Remap-D) that relies on dynamic task remapping. (3)
Experimental evaluation shows that Remap-D achieves near-
ideal accuracy in the presence of both pre- and post-
deployment faults. Remap-D achieves 12.5% better accuracy
on average compared to the AN code-based ECC.
The rest of the paper is organized as follows. Section II

reviews related prior work. Section III presents the proposed
method. Experimental results are presented in Section IV.
Finally, Section V concludes the paper.

II. RELATED PRIOR WORK
ReRAM crossbar arrays are natural matrix-vector

multipliers [3], [13], and there is a rich body of work on
ReRAM-based accelerators for CNN training and inferencing
[3], [13], [14]. However, these architectures assume ideal
ReRAM behavior. Prior work has shown that CNN models
incur significant accuracy degradation when they are trained
using faulty ReRAM devices [5], [8], [10]–[12], [15]. Fault
detection methods such as the March test [16] and the sneak-
path test [6] can detect pre-deployment faults but they
introduce high overhead for detecting post-deployment faults.
A low-overhead, online testing method based on changepoint
detection has been proposed [7]. However, this solution is
limited to CNN inferencing and is not applicable for training.
Common fault-mitigation methods include retraining,

remapping, and error correction [8], [11], [12]. However,
retraining requires an already trained model [12] whereas our
goal is to train from scratch. Remapping requires redundant

C.H. Tung, H. Li, and K. Chakrabarty were supported in part by the National
Science Foundation (NSF) under grant number CNS-1955196. P.P. Pande and J.R.
Doppa were supported in part by the NSF under grant number CNS-1955353. J.R.
Doppa was also supported in part by the NSF under grant number OAC-1910213. B.K.
Joardar was supported in part by NSF Grant # 2030859 to the Computing Research
Association for the CIFellows Project.

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

hardware, which leads to higher area overhead [12]. ECC-
based techniques require encoding and repeated decoding of
weights, resulting in high area and performance overheads. A
“free parameter tuning” method to compensate for the impact
of SAF is proposed [11]. However, this method requires prior
profiling to identify “ideal behavior,” which can be costly and
is often not feasible due to difference between CNN
workloads. In [8], the authors proposed an online quiescent-
voltage comparison, followed by neuron reordering.
However, neuron reordering requires solving an NP-hard
problem, which is impractical to implement using ReRAMs.

III. FAULT-TOLERANT TRAINING ON RCS

A. Faults in RCS
In this paper, we focus on permanent faults in ReRAM

cells, which can be modeled as stuck-at-1 (SA1) or stuck-at-0
(SA0) faults and result in write failures. Permanent faults lead
to poor accuracy for both CNN training and inferencing [17].
Permanent faults can arise due to manufacturing defects (pre-
deployment faults). Faults can also appear over time as the
crossbar is utilized [4]. These (post-deployment) faults can be
attributed to the limited write endurance of ReRAMs [4].
Unlike inferencing, CNN training requires multiple weight
updates and repeatedly storing intermediate data such as
activations, both of which involve frequent write operations.
This can result in new faults during the training process.
Overall, both pre- and post-deployment faults can result in
poor accuracy of the trained model [5], [12], [15].
In addition, the distribution of faulty cells is also

important. The majority of the faults tend to be clustered [16].
For instance, almost two-thirds of the faulty cells are clustered
in a given area after fabrication, due to the unstable power
supply during the forming process [16]. Post-deployment
faults can also result in non-uniform fault distribution. During
training, not all crossbars experience an equal number of
writes. Hence, ReRAM crossbars which are written to more
frequently will have more faulty cells than the rest of the RCS.
Existing fault-tolerance methods do not consider such non-
uniform fault distribution scenarios and may not be effective
under these conditions, as we show later in Section IV.C.
Hence, a fault-tolerant solution for CNN training on ReRAMs
must be applicable under non-uniform fault distribution.

B. Fault-aware CNN Training
1) Overall RCS Architecture
Fig. 1 shows the architecture of the ReRAM-based CNN

accelerator adopted in this work [3], [13]. The basic
computation unit is the 128 × 128 ReRAM crossbar array,
which can perform matrix-vector multiplications (MVMs) [3],
[7], [13]. Multiple crossbars are grouped to form an in-situ
multiply-accumulate (IMA) unit. Each ReRAM IMA also
includes a BIST module, input registers, input DACs, sample-
and-hold (S&H) circuits, ADCs, shift-and-add (S&A) circuits,
and output registers. A tile contains multiple IMAs, along with

an eDRAM buffer and other functional units such as circuits
to implement pooling layers and activation functions.
It is well-known that CNN training/inferencing generates

a lot of traffic and requires multicast support [5]. The output
of one crossbar is sent as input to multiple other crossbars,
resulting in the multicast traffic. Moreover, the proposed
remapping strategy (discussed later in Section III.B.4) also
relies on broadcast traffic. Hence, the ReRAM tiles must be
connected by a suitable network-on-chip (NoC) that can
support broadcast/multicast traffic. Mesh NoCs can handle
multicast traffic efficiently [5] and they are easy to design.
However, it has been shown that the hop count and energy can
be further improved in an RCS by using a concentrated mesh
(c-mesh) NoC [13]. A c-mesh NoC connects multiple ReRAM
tiles to a single router. The routers are then connected to each
other in a mesh configuration. This reduces the overall number
of routers in the NoC. Moreover, c-mesh is also able to support
efficient multicast, which is necessary for CNN training.
Hence, we consider a c-mesh NoC in this work.
2) CNN Fault Tolerance
CNN models exhibit some inherent fault tolerance [5].

However, different components of a CNN exhibit varying
levels of fault tolerance. Remap-D considers this information
as a criterion to choose pairs of crossbars for remapping, as
described in Section III.B.4. To identify which tasks of a CNN
are more fault-tolerant, we inject faults in the ReRAM
crossbars associated with specific parts of CNNs and note the
accuracy obtained after training. We investigate the relative
fault tolerance between the forward and backward phases of
CNN training. Our experiments indicate that the backward
phase is consistently less tolerant to faults than the forward
phase. We found that this observation to be true for all the
CNNs and datasets considered in this work. Hence, we need
not repeat these experiments for all CNNs. From these
experiments, we conclude that the effect of faults on the
backward phase is more critical than that on the forward
phase. This is because the backward phase is responsible for
updating the CNN weights through gradient calculation.
Faults in the backward phase result in incorrect gradients,
which get accumulated after each weight update, resulting in
poor accuracy. Our remapping method uses this information
to prioritize the remapping of tasks from crossbars that are
associated with these less fault-tolerant portions of the CNNs.
3) Online Fault Detection with BIST
The fault density information is necessary for Remap-D.

To determine the fault density of a crossbar during CNN
training, we incorporate a low-cost BIST module in each
ReRAM IMA. Existing BIST architectures aim to identify the
type and location of faults for each ReRAM cell, which can be
expensive. However, our remapping solution requires only the
overall fault density information; we do not need precise
information about each cell. This makes our BIST solution
simpler and more area-efficient than conventional BIST. The
BIST module is activated after each epoch to determine the
fault density of each crossbar. Fig. 2(a) shows the components
of the BIST module. The BIST workflow is controlled by a
finite-state machine (BIST controller) and associated BIST
peripherals. Fig. 2(b) lists the states in the BIST controller.
The BIST controller includes an idle state (S0), three states

for testing SA1 faults (S1, S2, S3), and three states for testing
SA0 faults (S4, S5, S6). The logic block contains the state-
transition logic, the output generation logic, and a counter for
controlling the state transitions. To determine the number of

Fig. 1. Illustration of the target RCS architecture.

!

!

SA1 faults in a crossbar array, the BIST controller goes from
state S0 (idle) to state S1 and sets the appropriate values for
“W/R” (write/read) and “T/N” (test/normal); “W_val” (write
value) is set to write logic “0” to all the ReRAM cells. ReRAM
cells are written in a row-by-row manner [18]. Hence, for a
𝑐 × 𝑐 crossbar it will take c cycles to finish writing the entire
crossbar. In our case, the row-by-row write to a ReRAM
crossbar array in the WR_ZERO state takes 128 ReRAM
cycles (since we assume a 128 × 128 sized crossbar) [18].
Next, the BIST controller switches from state S1 to state S2.
In state S2, an input voltage (logic “1”) is applied to the
crossbar input. Since all the cells in the crossbar are set to logic
“0” at this point, the expected fault-free output is also logic
“0” (the output of a ReRAM crossbar is the product between
the input and stored logic values). However, SA1 cells will
result in a non-zero output. The output current reflects the
number of SA1 faults in a column. Read operations for all the
columns in the crossbar are performed in parallel. Hence, the
state machine stays in state S2 for one ReRAM cycle. Next,
for obtaining the fault information, the BIST controller
switches from state S2 to state S3. In state S3, the peripherals
(such as ADC and S&A circuits) process the output to
determine the local fault density; this step takes one ReRAM
cycle as the outputs of the crossbar columns can be processed
with CMOS-based logic and fit in one ReRAM cycle [13].
Overall, SA1 detection takes a total of 130 ReRAM cycles:
128 ReRAM cycles for writing logic “0” to all ReRAM cells,
one ReRAM cycle for applying read voltage, and one ReRAM
cycle for processing crossbar outputs to calculate the local
SA1 fault density. Note that the ReRAM crossbars in the RCS
operate at 10 MHz while the CMOS peripherals operate at 1.2
GHz [13], [18]; hence, one “ReRAM cycle” is 100 ns.
The SA0 fault density of a ReRAM column can be

determined following a similar approach to detecting SA1.
The only difference is the use of the “flip” logic to perform 1’s
complement. After BIST is completed, the BIST controller
returns to state S0 and sets the finish flag. Like detecting SA1,
SA0 detection also requires 130 ReRAM cycles. Overall, the

entire process takes 260 ReRAM cycles, which corresponds
to a negligible performance overhead of 0.13% for CNN
training considering full system evaluation [3], [14]. Note that
although the BIST procedure introduces two additional writes,
they are negligible compared to the total number of writes due
to weight updates in one epoch. Hence, the write operations
due to BIST have minimal effect on cell write endurance.
Also, we have assumed that the CMOS-based peripherals
(such as the BIST module itself, ADC, etc.) are fault-free
because CMOS manufacturing is a mature process, the
devices are likely to be tested thoroughly before being
deployed, and aging is of less concern at lower operating
frequencies (as is the case here).
4) Dynamic Remapping in Remap-D
Existing remapping-based methods either rely on complex

remapping algorithms (e.g., a genetic algorithm for solving
Knapsack problems [8]) that require additional digital co-
processor(s) [8], or they require additional fault-free ReRAM
crossbars [12], which may not be always available. In contrast,
Remap-D does not require additional redundant hardware or
the need to solve NP-hard problems [8]. In Remap-D, we
remap the weights of a faulty crossbar (the corresponding tile
is referred to as “sender”; recall that a tile has multiple
crossbars) with that of another crossbar (its corresponding tile
is referred to as “receiver”). The remapping happens if: (a) the
“receiver” crossbar has a lower fault density than the “sender”
crossbar, and (b) the task mapped on the “receiver” crossbar
is more fault-tolerant than the task on the “sender” crossbar.
To prevent frequent remapping, we carry out remapping only
if the fault density of the sender crossbar exceeds a given
threshold. This threshold can be determined by the user
depending on the application’s accuracy requirement. If the
number of faults in a crossbar is less than the threshold, the
weights mapped on the crossbar will not be remapped.
The remapping procedure is triggered at the end of each

epoch when no computations are being performed and hence
this procedure does not lead to pipeline bubbles/stalls. Before
the weights are updated for the next epoch, the BIST module
for each crossbar array is activated to initiate remapping. Next,
each crossbar determines whether to request remapping based
on the local fault density and the fault tolerance of the mapped
task. The corresponding tiles (i.e., senders) then send a
remapping request. Since the sender tile is unaware of the
status of other tiles in the RCS, the remapping request is
broadcasted to all the remaining tiles. The purpose of this
request is to find a potential receiver tile to remap and alleviate
the impact of faults on model accuracy. If a tile is not a sender,
then it will be categorized as a potential receiver. The receiver
tile will reply to the remapping request if the necessary
conditions for remapping are satisfied. Each sender may
receive multiple responses from potential receiver tiles. The
sender then chooses the receiver based on proximity (i.e., NoC
hop count) for remapping. This is done to avoid long-range
traffic in the NoC, and thereby reduce performance overheads.
Fig. 3 illustrates the overall procedure with a 4 × 4 mesh

NoC: request by broadcast (Fig. 3(a)), responses from
multiple potential receivers (Fig. 3(b)), and the weight
remapping (Fig. 3(c)). We use the XY tree multicast technique
with dimension-ordered routing for efficient broadcast on a c-
mesh based NoC [5]. As shown in Fig. 3(a), multiple senders
(e.g., S1 and S2) broadcast remapping requests to all other on-
chip tiles. The broadcast paths are shown in red and yellow
arrows for the two senders, respectively. Next, due to the non-
uniform fault distribution, multiple tiles may reply to the

 (a) (b)
Fig. 2. (a) The BIST module used in the target RCS. The BIST controller
and associated peripherals are marked in red and thick lines. This figure is
for the illustration purpose only. The signal ‘c’ is the output of a counter that
controls the state transition timings. (b) The states of the BIST controller.

Fig. 3. Illustration of the dynamic remapping method proposed in this work
(S: Sender, R: Receiver). Here, we show the three different steps in the
remapping procedure: (a) the faulty tiles (senders) broadcast remapping
requests to all other tiles, (b) other tiles respond to the senders for potential
remapping, and (c) each sender chooses its nearest responding tile as the
receiver and remaps the weights.

State BIST Action
S0 Idle state

S1 Write logic “0” to
ReRAM cells

S2 Apply read voltage

S3 Read SA1
information

S4 Write logic “1” to
ReRAM cells

S5 Apply read voltage

S6 Read SA0
information

!

!

requests as potential receivers (e.g., R1 to R7). This unicast-
based communication is marked with green arrows. Finally,
the senders (S1 and S2) choose the corresponding receivers
(R1 and R5) based on the physical proximity (measured as hop
count) to exchange their weights. Note that the use of an NoC
enables us to perform multiple remappings in parallel if the
communication paths do not overlap. In Section IV.C, we will
show that the performance overhead of remapping is low.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
Simulation setup: We use PytorX [15] to evaluate CNN

training on the RCS. The RCS simulated on PytorX includes
128 × 128 sized crossbars along with peripherals, such as
ADC, DAC, etc. In PytorX, the faults are simulated by making
the ReRAM cell resistance to be stuck at high or low values.
The PytorX simulations are run on an Nvidia GeForce RTX
3090 GPU with 24 GB memory. To simulate the
communication along the c-mesh NoC, we use the BookSim
simulator [19]. The message injection rates from the ReRAM
crossbars are calculated from the PytorX simulations and are
used as input to the Booksim to inject packets. We modified
Booksim to implement the proposed remapping method (Fig.
3) to obtain the performance overhead introduced by Remap-
D. To calculate the area of the proposed BIST hardware, we
use the NeuroSim simulator [14].
Fault density: We consider both pre- and post-

deployment faults. The fault distribution is non-uniform due
to the clustering of manufacturing defects [16] and unequal
wear out during use. To model such a non-uniform fault
distribution, we assume that 20% of crossbars have a high
density of pre-deployment faults (fault density of 0.4-1%),
while the remaining 80% of crossbars have a low fault density
(0-0.4%) as an example. Note that high pre-deployment fault
densities (beyond 1%) are not realistic from the perspective of
the manufactured chip since the faulty chip can be tested
offline and discarded [6], [16]. The SA0 to SA1 fault density
ratio for pre-deployment faults in RCS is typically 9:1 [11].
For the post-deployment faults, we assume that new faults
occur every epoch. Note that new faults may not appear after
every epoch; our assumption represents a worst-case scenario.
We assume that n% of the crossbars have m% new faulty cells

after each training epoch. We vary m from 0.1% to 1% and n
from 0.1% to 2% to simulate different fault scenarios.
CNN models and datasets: We use VGG-11/16/19 [2],

ResNet-12/18 [1], and SqueezeNet [20] as CNN models to
demonstrate the effectiveness of the proposed method. We
create ResNet-12 by removing 6 convolution layers from
ResNet-18. In all cases, we train these CNNs from scratch in
the presence of different fault configurations. We train each of
these models for 50 epochs using the CIFAR-10 [21] dataset.
We also demonstrate the scalability and effectiveness of our
solution with SVHN [22] and the CIFAR-100 [21] datasets.
Baseline methods: We consider two baseline methods for

comparison. The first method uses the AN code [10]. The
second baseline remaps the weights to fault-free crossbars
based on weight significance [12] (we refer to this solution as
“Remap-WS”; WS indicates “weight significance”). This
method requires an analysis of pre-trained weights and the
availability of redundant ReRAM cells for remapping. In
contrast, Remap-D allows training from scratch without the
need for additional fault-free crossbars.

B. Determining Fault Tolerance and Fault Density
We first evaluate our BIST module using HSpice

simulations. The ReRAM cell behavior in the presence of
faults is modeled following [4]. Fig. 4 shows the output
current after we apply the test inputs to detect SA0 and SA1
faults. Recall that for detecting SA0 faults, the BIST
controller: (a) writes logic “1” to all the ReRAM cells (state
S4 in Fig. 2), followed by (b) applying input voltage (logic
“1”) to all crossbar rows (state S5 in Fig. 2), and finally (c)
reads the crossbar output to determine the SA0 fault density
(state S6 in Fig. 2). SA1 faults are detected using a similar
procedure. Fig. 4 shows how the crossbar output current varies
when the number of faulty ReRAM cells in a column is varied.
For illustration, here we have considered a 4 × 4 sized
crossbar, but the variation of current in the presence of faults
is observed for larger crossbars as well. Fig. 4 shows a positive
correlation between the output current and the number of
faults. For instance, in Fig. 4(a), less current flows to the
output as more cells are stuck at “0” (i.e., open circuit). Hence,
through a calibration step, we can determine the number of
faulty cells in a ReRAM crossbar by observing the output
current after the test inputs are applied by the BIST controller.
We follow a similar BIST procedure for detecting SA1 faults.
ReRAM cells are prone to variations [4]. For instance, the

SA1 resistance of a ReRAM cell can vary between 1.5 KΩ to
3 KΩ while the SA0 resistance can vary between 0.8 MΩ to 3
MΩ [4]. Therefore, we assess the effectiveness of our BIST
module in the presence of these variations. Fig. 4 also shows
the output current as a function of the number of faulty cells
for different SA0 and SA1 resistances. Here, we have
randomly varied the SA0 resistance between 0.8 MΩ to 3 MΩ
and the SA1 resistance between 1.5 KΩ to 2 KΩ, respectively,
to model the ReRAM fault behavior. Fig. 4 clearly shows that
the output current is a reliable indicator of fault density despite
the variation in SA0/SA1 resistance of the ReRAM cell.
Fig. 5 shows the accuracy of the models trained with

CIFAR-10 in the presence of faults. For this experiment, we
inject faults on the crossbars that implement the computation
associated with the forward phase tasks (referred to as
“forward” in Fig. 5) and the backward phase tasks (referred to
as “backward” in Fig. 5). From Fig. 5, we can see that faults
in the backward phase lead to more accuracy loss (up to 45%)
after training. In contrast, faults in the forward phase have a

 (a) (b)

Fig. 4. The magnitude of the crossbar output currents during testing with
respect to the number of (a) SA0, and (b) SA1 faults in a ReRAM column.

0

200

400

600

800

0 1 2 3 4

O
ut
pu

t C
ur
re
nt
 (u

A)

Number of SA0 Faults

Fault-free

0

500

1000

1500

0 1 2 3 4O
ut
pu

t C
ur
re
nt
 (u

A)

Number of SA1 Faults

Fault-free

Fig. 5. Accuracy achieved after training the five CNN models in the
presence of 2% fault density in the forward and backward phases.

0%

20%

40%

60%

80%

100%

VGG11 VGG16 VGG19 ResNet12 ResNet18 SqueezeNet

Ac
cu
ra
cy

Fault-free Forward Backward

!

!

very small impact on the training accuracy. These results show
that the forward phase is more tolerant to faults than the
backward phase. The backward phase is responsible for
generating weight updates through gradient calculation. Faults
in the backward phase result in incorrect gradients, which
eventually causes training to fail. This observation was
consistent across all the considered datasets. Hence, we use
this fault tolerance information to guide our task-remapping
policy. We also performed similar experiments with respect to
the type of layer (convolution versus fully-connected) or the
position of the layer (first few layers versus last few layers) to
identify more inherently fault-tolerant portions of a CNN.
However, we did not observe a consistent trend in fault
tolerance for these cases across all CNNs and datasets. Hence,
we do not consider these cases for Remap-D.

C. Dynamic Remapping-based Fault Tolerance
We next demonstrate the effectiveness of Remap-D in the

presence of both pre- and post-deployment faults. We assume
that 0.5% new post-deployment faults appear on 1% of the
crossbars after every training epoch. Fig. 6 shows the accuracy
achieved by different CNNs in the presence of both pre- and
post-deployment faults using five different fault-tolerant
solutions. As shown in Fig. 6, the AN code-based solution
incurs a 13.41% accuracy loss on average compared to the
fault-free case in the presence of both pre- and post-
deployment faults. This happens because the AN code is
unable to correct erroneous outputs at higher fault densities
[5]. As explained in Section IV.A, the faults are distributed
non-uniformly. Hence, some of the crossbars have a
significantly higher number of faulty cells than the rest. As a
result, the AN code is unable to correct the erroneous outputs
of the crossbars with high fault density, resulting in a
substantial accuracy drop. In addition, the AN code-based
solution incurs 6.3% area overhead [10].
Similar to AN code, static mapping also fails to recover

the lost accuracy in the presence of both pre- and post-
deployment faults as shown in Fig. 6. This happens as the
mapping is static in nature and is performed at 𝑡 = 0. Hence,
static mapping cannot mitigate the effects of post-deployment
faults. This shows the necessity of dynamic remapping
strategies. Remap-WS [12] remaps the top-5% most-
significant weights with faults to fault-free ReRAM columns
to preserve the inferencing accuracy. However, Remap-WS is
targeted for inference, where a set of pre-trained weights are
available. This assumption does not hold true for CNN
training. Fig. 6 shows that Remap-WS leads to a significant
accuracy drop. This happens because it only protects 5% of
the faulty weights, leaving 95% of the faults unaddressed.
Some of these remaining faults can be associated with the less
fault-tolerant phases, which impact training accuracy.
Moreover, the implementation of Remap-WS is associated

with two major challenges: (a) it remaps the data from faulty
crossbars to fault-free crossbars; this requires additional spare
hardware (hence, high area overhead), and (b) it requires a
weight significance classifier to analyze the weights, which
can induce considerable overhead because it must be applied
repeatedly during training.
For a thorough analysis, we also consider a remapping

solution (referred to as Remap-T-n% in Fig. 6) that remaps the
topmost n% important weights to fault-free crossbars. Unlike
Remap-WS, Remap-T-n% preemptively remaps the top n%
important weights in every epoch, irrespective of whether
these weights are mapped to faulty cells or not. We define
weights to be “important” based on the absolute value of
gradients associated with them. As shown in Fig. 6, Remap-
T-n% can recover some of the lost accuracies. However, this
kind of remapping needs at least n% additional spare
hardware. For instance, Remap-T-10% achieves near-ideal
accuracy with 10% area overhead. Hence, such a remapping
strategy is also not practical.
Similar to Remap-T-10%, the proposed remapping-based

solution (“Remap-D” in Fig. 6) is able to achieve near-ideal
accuracy. The weights of the faulty crossbars are remapped to
other crossbars based on the local fault density and fault
tolerance of the phases involved. This prevents significant
accuracy loss after training. We observe only 0.91% accuracy
drop on average for all the CNNs considered using Remap-D.
However, unlike Remap-T-n%, Remap-D does not require
spare fault-free crossbars. It utilizes fault-density and fault-
tolerance information to remap tasks to the already available
crossbars (which may or may not be fault-free); hence, it does
not require additional crossbars. Moreover, Remap-D does not
require the a priori analysis of the weights. Overall, the
proposed solution provides a better accuracy-performance-
area trade-off compared to Remap-T-n%. Remap-D achieves
near-ideal accuracy with relatively lower overhead.
Next, we present the effectiveness of Remap-D under

different post-deployment fault scenarios. Since the
occurrence of post-deployment faults is workload-dependent
and hence unpredictable in general, it is important to study the
effectiveness of Remap-D by varying the number and location
of faults. Fig. 7 shows the results of this experiment. For this
experiment, we inject m% new faults on n% of the available
crossbars after each epoch. In Fig. 7, we examine the
effectiveness of the proposed dynamic remapping method by
varying the values of m and n from 0.1% to 1% and from 0.1%
to 2%, respectively. Here, we consider up to 1% new faults
per epoch as higher post-deployment fault densities are not
realistic. If 1% new faults appear after each epoch, then after
50 epochs of training, we may have a maximum of 50% faulty
ReRAM cells in some crossbars. This fault density is already
too high. If a crossbar has 50% defective cells, the user is
likely to discard the product/crossbar. Hence, we do not
consider more than 1% new faults per epoch.
Fig. 7 shows the accuracy achieved after VGG19 and

ResNet-12 are trained with different fault configurations using
the proposed solution. We observe similar trends with other
CNNs. As shown in Fig. 7, the accuracy drop using Remap-D
is negligible compared to the ideal case. At higher m and n,
the drop in accuracy is higher. However, even in the worst
case where 2% of the crossbars have 1% new faults after each
epoch, Remap-D experiences an accuracy loss of only 2.48%
after 50 epochs of training. Recall that this is a worst-case
scenario that is unlikely to occur. In practice, post-deployment

Fig. 6. Accuracy achieved after training the different CNN models in the
presence of both pre- and post-deployment faults with different fault-tolerant
solutions. “Remap-WS” denotes the remapping method presented in [12].
Remap-T-n% remaps the top n% weights to fault-free crossbars. Our
proposed method is denoted as “Remap-D.” “Static” denotes the cases that
the fault-tolerant mapping is done once at 𝑡 = 0.

60%

70%

80%

90%

VGG11 VGG16 VGG19 ResNet-12 ResNet-18 SqueezeNet

Ac
cu
ra
cy

AN Code Static Remap-WS Remap-T-2%
Remap-T-10% Remap-D Fault-free

!

!

faults will not occur every epoch; hence, the accuracy drop
will be considerably lower than what we report here.
Next, we analyze both the area and timing overheads

introduced by Remap-D. To analyze the performance impact
of Remap-D, we use Booksim [19] to simulate the on-chip
traffic. We modified Booksim to incorporate the different
steps of the remapping process (Fig. 3). We applied the Monte
Carlo method to study the timing overhead for different fault
situations. We did 50 rounds of simulation; in each round, we
injected faults at different locations of the RCS. Our
experiment shows that Remap-D introduces only 0.22%
performance overhead on average and 0.36% in the worst-
case scenario in our experiments. This happens because the
use of an NoC enables multiple sets of communication to
happen in parallel. As a result, we can remap the weights from
multiple faulty crossbars parallelly. To evaluate the area
overhead, we use NeuroSim [14]. NeuroSim provides
analytical area models for a typical RCS; these models have
been calibrated using circuit layouts. We implement the BIST
circuit in NeuroSim. The simulation results show that the
BIST module introduces an area overhead of only 0.61%.
Overall, Remap-D achieves near-ideal accuracy at a negligible
area cost of 0.61% while AN code and Remap-T-10% require
6.3% and 10% area overhead [10], respectively.

D. Scalability
To demonstrate the scalability of Remap-D, Fig. 8 shows

the accuracy with larger and more complex datasets, such as
SVHN and CIFAR-100. Compared to the CIFAR-10 dataset,
which has 10 classes, CIFAR-100 has 100 classes and is more
challenging to learn. The SVHN dataset has more images than
the CIFAR-10 dataset. SVHN represents a significantly
harder, real-world problem (recognizing digits and numbers in
natural scene images). Fig. 8 shows the accuracy achieved
after training on a faulty RCS using Remap-D. Here, we
assume both pre- and post-deployment faults. As shown in
Fig. 8, Remap-D has an average accuracy loss of 1.32% on the
CIFAR-100 dataset, while the models without a fault-
tolerance solution experience an accuracy drop of 33.42% on
average. For the SVHN dataset, Remap-D has an accuracy
drop of at most 0.45% compared to the fault-free case. The
results in Fig. 8 demonstrate that the proposed method is
applicable to more complex CNN datasets as well.

V. CONCLUSION
We have investigated the inherent fault tolerance in

different CNN components and leveraged this to develop a
new remapping-based solution for training. We have also
developed a BIST-based fault detection method to determine
the fault density of crossbars to guide the dynamic remapping
technique. By remapping the less fault-tolerant tasks from
high fault-density crossbars to less faulty ReRAM crossbars,
we can train VGGs/ResNets/SqueezeNet from scratch, which
results in only 0.85% accuracy drop on average. The timing
overheads during training for fault detection and additional
on-chip traffic are 0.13% and 0.35%, respectively. Moreover,
the BIST circuit introduces only 0.61% area overehead; the
additional traffic introduces less than 0.5% power overhead.
The proposed solution enables fault-tolerant CNN training
with negligible area, timing, and power overheads.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in IEEE CVPR, 2016.
[2] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks

for Large-Scale Image Recognition,” in ICLR, 2015.
[3] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for

Deep Learning,” in IEEE HPCA, 2017.
[4] A. Grossi et al., “Resistive RAM Endurance: Array-Level

Characterization and Correction Techniques Targeting Deep Learning
Applications,” IEEE T-ED, vol. 66, pp. 1281–1288, 2019.

[5] B. K. Joardar et al., “Learning to Train CNNs on Faulty ReRAM-based
Manycore Accelerators,” ACM TECS, vol. 20, 2021.

[6] S. Kannan et al., “Sneak-Path Testing of Crossbar-Based Nonvolatile
Random Access Memories,” IEEE Trans Nanotechnol, vol. 12, pp.
413–426, 2013.

[7] M. Liu and K. Chakrabarty, “Online Fault Detection in ReRAM-Based
Computing Systems for Inferencing,” IEEE TVLSI, pp. 1–14, 2022.

[8] L. Xia et al., “Fault-Tolerant Training with On-Line Fault Detection
for RRAM-Based Neural Computing Systems,” in Proc. DAC, 2017.

[9] I. Yeo et al., “Stuck-at-Fault Tolerant Schemes for Memristor Crossbar
Array-Based Neural Networks,” IEEE TED, pp. 2937–2945, 2019.

[10] B. Feinberg et al., “Making Memristive Neural Network Accelerators
Reliable,” in IEEE HPCA, 2018.

[11] G. Jung et al., “Cost- and Dataset-free Stuck-at Fault Mitigation for
ReRAM-based Deep Learning Accelerators,” in DATE, 2021.

[12] C. Liu et al., “Rescuing Memristor-based Neuromorphic Design with
High Defects,” in Proc. DAC, 2017.

[13] A. Shafiee et al., “ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars,” in
ACM/IEEE ISCA, 2016.

[14] P.-Y. Chen et al., “NeuroSim: A Circuit-Level Macro Model for
Benchmarking Neuro-Inspired Architectures in Online Learning,”
IEEE TCAD, vol. 37, pp. 3067–3080, 2018.

[15] Z. He et al., “Noise Injection Adaption: End-to-End ReRAM Crossbar
Non-ideal Effect Adaption for Neural Network Mapping,” in Proc.
DAC, 2019.

[16] C.-Y. Chen et al., “RRAM Defect Modeling and Failure Analysis
Based on March Test and a Novel Squeeze-Search Scheme,” IEEE
Trans. Comput., vol. 64, pp. 180–190, 2015.

[17] L. Xia et al., “Stuck-at Fault Tolerance in RRAM Computing
Systems,” IEEE JETC., vol. 8, pp. 102–115, 2018.

[18] C. Xu et al., “Design Implications of Memristor-Based RRAM Cross-
Point Structures,” in DATE, 2011.

[19] N. Jiang et al., “A Detailed and Flexible Cycle-Accurate Network-on-
Chip Simulator,” in IEEE ISPASS, 2013.

[20] F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size.” arXiv, 2016.

[21] A. Krizhevsky nd G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” technical report, Univ. of Toronto, 2009.

[22] Y. Netzer et al., “Reading Digits in Natural Images with Unsupervised
Feature Learning,” in NIPS Workshop, 2011.

 (a) (b)
Fig. 7. Accuracy of (a) VGG19 and (b) ResNet-12 under different post-
deployment fault scenarios. The parameter n represents the percentage of
new faulty crossbars in the RCS while m represents the percentage of new
faulty cells in these crossbars per epoch.

85%
0% 1%

90%

Ac
cu
ra
cy

mn

1% 0.5%

95%

0%2%

88.5

89

89.5

90

90.5

80%
0% 1%

85%

Ac
cu
ra
cy

mn

1% 0.5%

90%

0%2%

85

85.5

86

86.5

Fig. 8. Accuracy of the trained CNN models in the presence of both pre-
and post-deployment faults with different datasets. The pre- and post-
deployment fault configurations are the same as that of Fig. 6.

0%
20%
40%
60%
80%

100%

VGG16 VGG19 ResNet-18 VGG16 VGG19 ResNet-18

SVHN CIFAR-100

Ac
cu
ra
cy

No Fault Tolerance Remap-D Fault-free

!

!

	Select a link below
	Return to Previous View
	Return to Main Menu

