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Abstract—A ReRAM crossbar-based computing system 
(RCS) can accelerate CNN training. However, hardware faults 
due to manufacturing defects and limited endurance impede the 
widespread adoption of RCS. We propose a dynamic task 
remapping-based technique for reliable CNN training on faulty 
RCS. Experimental results demonstrate that the proposed low-
overhead method incurs only 0.85% accuracy loss on average 
while training popular CNNs such as VGGs, ResNets, and 
SqueezeNet with the CIFAR-10, CIFAR-100, and SVHN 
datasets in the presence of faults. 

I. INTRODUCTION 
Deep learning (DL) techniques such as convolution neural 

networks (CNNs) have been deployed in many domains [1], 
[2]. Resistive random-access memory (ReRAM)-based 
crossbars can be used to perform high-throughput and energy-
efficient CNN training [3]. However, CNN training on 
ReRAM crossbars must consider reliability challenges. 
ReRAM cells can be faulty due to fabrication defects; we refer 
to the faults arising from these defects as “pre-deployment 
faults”. Even if a cell passes manufacturing tests, it can fail 
during operation due to the limited write endurance of 
ReRAMs [4]. We refer to these faults as “post-deployment 
faults.” In the presence of pre- and post-deployment faults, 
ReRAM cells can get stuck at a fixed resistance, resulting in 
stuck-at-faults (SAFs). SAF impedes model training, leading 
to a significant accuracy drop. For instance, ResNet-18 trained 
on a ReRAM crossbar-based computing system (RCS) has a 
~76% accuracy drop when 0.1% of the cells are faulty [5]. 
A number of techniques have been presented in the 

literature to detect and mitigate the effect of faults in RCS for 
DL applications [6]–[9]. These include error correction code 
(ECC), weight remapping, and retraining [9]–[12]. However, 
these techniques incur high area and performance overheads. 
For instance, the AN code-based ECC method introduces 
6.3% area overhead [10], requires prior profiling of the 
application to develop the correction table, and is effective 
only if the number of faults is low [5]. In addition, new (post-
deployment) faults can appear during operation. The AN 
code-based method must therefore update its correction table 
periodically to address new faults; this can lead to additional 
performance overhead. Also, existing solutions often do not 
consider the non-uniform spatial distribution of faults, which 
can lead to accuracy drop, as we discuss in Section III.A. 
In this paper, we present a new fault tolerance solution 

based on dynamic task remapping that can address both pre- 

and post-deployment faults in RCS. We define “task” as the 
computations associated with a CNN layer which are executed 
on a ReRAM crossbar and “task remapping” as the remapping 
of the stored weights from one crossbar to another. The 
proposed solution utilizes a built-in self-test (BIST) technique 
to detect SAFs in each crossbar. Utilizing this knowledge of 
the fault occurrence, we propose a dynamic task remapping 
mechanism to judiciously move the computation from one 
crossbar to another. We refer to the proposed solution as 
“Remap-D” where “D” represents the dynamic nature of the 
remapping. Unlike existing remapping-based schemes (e.g., 
[8], [12]), Remap-D leverages the inherent fault tolerance of 
CNNs during training. We show that different portions of 
CNN computations have different degree of fault tolerance. 
By considering both the ReRAM fault density (defined as the 
percentage of ReRAM cells that are faulty in the RCS) and the 
CNN fault tolerance, Remap-D outperforms existing methods 
in terms of accuracy and performance/area overheads. 
The contributions of this paper are as follows. (1) We 

show that existing methods are ineffective in protecting CNN 
training from a realistic non-uniform spatial distribution of 
pre- and post-deployment faults. (2) We propose a BIST-
enabled fault-tolerant CNN training technique for RCS (i.e., 
Remap-D) that relies on dynamic task remapping. (3) 
Experimental evaluation shows that Remap-D achieves near-
ideal accuracy in the presence of both pre- and post-
deployment faults. Remap-D achieves 12.5% better accuracy 
on average compared to the AN code-based ECC. 
The rest of the paper is organized as follows. Section II 

reviews related prior work. Section III presents the proposed 
method. Experimental results are presented in Section IV. 
Finally, Section V concludes the paper. 

II. RELATED PRIOR WORK 
ReRAM crossbar arrays are natural matrix-vector 

multipliers [3], [13], and there is a rich body of work on 
ReRAM-based accelerators for CNN training and inferencing 
[3], [13], [14]. However, these architectures assume ideal 
ReRAM behavior. Prior work has shown that CNN models 
incur significant accuracy degradation when they are trained 
using faulty ReRAM devices [5], [8], [10]–[12], [15]. Fault 
detection methods such as the March test [16] and the sneak-
path test [6] can detect pre-deployment faults but they 
introduce high overhead for detecting post-deployment faults. 
A low-overhead, online testing method based on changepoint 
detection has been proposed [7]. However, this solution is 
limited to CNN inferencing and is not applicable for training.  
Common fault-mitigation methods include retraining, 

remapping, and error correction [8], [11], [12]. However, 
retraining requires an already trained model [12] whereas our 
goal is to train from scratch. Remapping requires redundant 
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hardware, which leads to higher area overhead [12]. ECC-
based techniques require encoding and repeated decoding of 
weights, resulting in high area and performance overheads. A 
“free parameter tuning” method to compensate for the impact 
of SAF is proposed [11]. However, this method requires prior 
profiling to identify “ideal behavior,” which can be costly and 
is often not feasible due to difference between CNN 
workloads. In [8], the authors proposed an online quiescent-
voltage comparison, followed by neuron reordering. 
However, neuron reordering requires solving an NP-hard 
problem, which is impractical to implement using ReRAMs. 

III. FAULT-TOLERANT TRAINING ON RCS 

A. Faults in RCS 
In this paper, we focus on permanent faults in ReRAM 

cells, which can be modeled as stuck-at-1 (SA1) or stuck-at-0 
(SA0) faults and result in write failures. Permanent faults lead 
to poor accuracy for both CNN training and inferencing [17]. 
Permanent faults can arise due to manufacturing defects (pre-
deployment faults). Faults can also appear over time as the 
crossbar is utilized [4]. These (post-deployment) faults can be 
attributed to the limited write endurance of ReRAMs [4]. 
Unlike inferencing, CNN training requires multiple weight 
updates and repeatedly storing intermediate data such as 
activations, both of which involve frequent write operations. 
This can result in new faults during the training process. 
Overall, both pre- and post-deployment faults can result in 
poor accuracy of the trained model [5], [12], [15]. 
In addition, the distribution of faulty cells is also 

important. The majority of the faults tend to be clustered [16]. 
For instance, almost two-thirds of the faulty cells are clustered 
in a given area after fabrication, due to the unstable power 
supply during the forming process [16]. Post-deployment 
faults can also result in non-uniform fault distribution. During 
training, not all crossbars experience an equal number of 
writes. Hence, ReRAM crossbars which are written to more 
frequently will have more faulty cells than the rest of the RCS. 
Existing fault-tolerance methods do not consider such non-
uniform fault distribution scenarios and may not be effective 
under these conditions, as we show later in Section IV.C. 
Hence, a fault-tolerant solution for CNN training on ReRAMs 
must be applicable under non-uniform fault distribution. 

B. Fault-aware CNN Training 
1) Overall RCS Architecture 
Fig. 1 shows the architecture of the ReRAM-based CNN 

accelerator adopted in this work [3], [13]. The basic 
computation unit is the 128 × 128 ReRAM crossbar array, 
which can perform matrix-vector multiplications (MVMs) [3], 
[7], [13]. Multiple crossbars are grouped to form an in-situ 
multiply-accumulate (IMA) unit. Each ReRAM IMA also 
includes a BIST module, input registers, input DACs, sample-
and-hold (S&H) circuits, ADCs, shift-and-add (S&A) circuits, 
and output registers. A tile contains multiple IMAs, along with 

an eDRAM buffer and other functional units such as circuits 
to implement pooling layers and activation functions. 
It is well-known that CNN training/inferencing generates 

a lot of traffic and requires multicast support [5]. The output 
of one crossbar is sent as input to multiple other crossbars, 
resulting in the multicast traffic. Moreover, the proposed 
remapping strategy (discussed later in Section III.B.4) also 
relies on broadcast traffic. Hence, the ReRAM tiles must be 
connected by a suitable network-on-chip (NoC) that can 
support broadcast/multicast traffic. Mesh NoCs can handle 
multicast traffic efficiently [5] and they are easy to design. 
However, it has been shown that the hop count and energy can 
be further improved in an RCS by using a concentrated mesh 
(c-mesh) NoC [13]. A c-mesh NoC connects multiple ReRAM 
tiles to a single router. The routers are then connected to each 
other in a mesh configuration. This reduces the overall number 
of routers in the NoC. Moreover, c-mesh is also able to support 
efficient multicast, which is necessary for CNN training. 
Hence, we consider a c-mesh NoC in this work. 
2) CNN Fault Tolerance 
CNN models exhibit some inherent fault tolerance [5]. 

However, different components of a CNN exhibit varying 
levels of fault tolerance. Remap-D considers this information 
as a criterion to choose pairs of crossbars for remapping, as 
described in Section III.B.4. To identify which tasks of a CNN 
are more fault-tolerant, we inject faults in the ReRAM 
crossbars associated with specific parts of CNNs and note the 
accuracy obtained after training. We investigate the relative 
fault tolerance between the forward and backward phases of 
CNN training. Our experiments indicate that the backward 
phase is consistently less tolerant to faults than the forward 
phase. We found that this observation to be true for all the 
CNNs and datasets considered in this work. Hence, we need 
not repeat these experiments for all CNNs. From these 
experiments, we conclude that the effect of faults on the 
backward phase is more critical than that on the forward 
phase. This is because the backward phase is responsible for 
updating the CNN weights through gradient calculation. 
Faults in the backward phase result in incorrect gradients, 
which get accumulated after each weight update, resulting in 
poor accuracy. Our remapping method uses this information 
to prioritize the remapping of tasks from crossbars that are 
associated with these less fault-tolerant portions of the CNNs. 
3) Online Fault Detection with BIST 
The fault density information is necessary for Remap-D. 

To determine the fault density of a crossbar during CNN 
training, we incorporate a low-cost BIST module in each 
ReRAM IMA. Existing BIST architectures aim to identify the 
type and location of faults for each ReRAM cell, which can be 
expensive. However, our remapping solution requires only the 
overall fault density information; we do not need precise 
information about each cell. This makes our BIST solution 
simpler and more area-efficient than conventional BIST. The 
BIST module is activated after each epoch to determine the 
fault density of each crossbar. Fig. 2(a) shows the components 
of the BIST module. The BIST workflow is controlled by a 
finite-state machine (BIST controller) and associated BIST 
peripherals. Fig. 2(b) lists the states in the BIST controller. 
The BIST controller includes an idle state (S0), three states 

for testing SA1 faults (S1, S2, S3), and three states for testing 
SA0 faults (S4, S5, S6). The logic block contains the state-
transition logic, the output generation logic, and a counter for 
controlling the state transitions. To determine the number of  

Fig. 1. Illustration of the target RCS architecture. 
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SA1 faults in a crossbar array, the BIST controller goes from 
state S0 (idle) to state S1 and sets the appropriate values for 
“W/R” (write/read) and “T/N” (test/normal); “W_val” (write 
value) is set to write logic “0” to all the ReRAM cells. ReRAM 
cells are written in a row-by-row manner [18]. Hence, for a 
𝑐 × 𝑐 crossbar it will take c cycles to finish writing the entire 
crossbar. In our case, the row-by-row write to a ReRAM 
crossbar array in the WR_ZERO state takes 128 ReRAM 
cycles (since we assume a 128 × 128 sized crossbar) [18]. 
Next, the BIST controller switches from state S1 to state S2. 
In state S2, an input voltage (logic “1”) is applied to the 
crossbar input. Since all the cells in the crossbar are set to logic 
“0” at this point, the expected fault-free output is also logic 
“0” (the output of a ReRAM crossbar is the product between 
the input and stored logic values). However, SA1 cells will 
result in a non-zero output. The output current reflects the 
number of SA1 faults in a column. Read operations for all the 
columns in the crossbar are performed in parallel. Hence, the 
state machine stays in state S2 for one ReRAM cycle. Next, 
for obtaining the fault information, the BIST controller 
switches from state S2 to state S3. In state S3, the peripherals 
(such as ADC and S&A circuits) process the output to 
determine the local fault density; this step takes one ReRAM 
cycle as the outputs of the crossbar columns can be processed 
with CMOS-based logic and fit in one ReRAM cycle [13]. 
Overall, SA1 detection takes a total of 130 ReRAM cycles: 
128 ReRAM cycles for writing logic “0” to all ReRAM cells, 
one ReRAM cycle for applying read voltage, and one ReRAM 
cycle for processing crossbar outputs to calculate the local 
SA1 fault density. Note that the ReRAM crossbars in the RCS 
operate at 10 MHz while the CMOS peripherals operate at 1.2 
GHz [13], [18]; hence, one “ReRAM cycle” is 100 ns. 
The SA0 fault density of a ReRAM column can be 

determined following a similar approach to detecting SA1. 
The only difference is the use of the “flip” logic to perform 1’s 
complement. After BIST is completed, the BIST controller 
returns to state S0 and sets the finish flag. Like detecting SA1, 
SA0 detection also requires 130 ReRAM cycles. Overall, the 

entire process takes 260 ReRAM cycles, which corresponds 
to a negligible performance overhead of 0.13% for CNN 
training considering full system evaluation [3], [14]. Note that 
although the BIST procedure introduces two additional writes, 
they are negligible compared to the total number of writes due 
to weight updates in one epoch. Hence, the write operations 
due to BIST have minimal effect on cell write endurance. 
Also, we have assumed that the CMOS-based peripherals 
(such as the BIST module itself, ADC, etc.) are fault-free 
because CMOS manufacturing is a mature process, the 
devices are likely to be tested thoroughly before being 
deployed, and aging is of less concern at lower operating 
frequencies (as is the case here). 
4) Dynamic Remapping in Remap-D 
Existing remapping-based methods either rely on complex 

remapping algorithms (e.g., a genetic algorithm for solving 
Knapsack problems [8]) that require additional digital co-
processor(s) [8], or they require additional fault-free ReRAM 
crossbars [12], which may not be always available. In contrast, 
Remap-D does not require additional redundant hardware or 
the need to solve NP-hard problems [8]. In Remap-D, we 
remap the weights of a faulty crossbar (the corresponding tile 
is referred to as “sender”; recall that a tile has multiple 
crossbars) with that of another crossbar (its corresponding tile 
is referred to as “receiver”). The remapping happens if: (a) the 
“receiver” crossbar has a lower fault density than the “sender” 
crossbar, and (b) the task mapped on the “receiver” crossbar 
is more fault-tolerant than the task on the “sender” crossbar. 
To prevent frequent remapping, we carry out remapping only 
if the fault density of the sender crossbar exceeds a given 
threshold. This threshold can be determined by the user 
depending on the application’s accuracy requirement. If the 
number of faults in a crossbar is less than the threshold, the 
weights mapped on the crossbar will not be remapped. 
The remapping procedure is triggered at the end of each 

epoch when no computations are being performed and hence 
this procedure does not lead to pipeline bubbles/stalls. Before 
the weights are updated for the next epoch, the BIST module 
for each crossbar array is activated to initiate remapping. Next, 
each crossbar determines whether to request remapping based 
on the local fault density and the fault tolerance of the mapped 
task. The corresponding tiles (i.e., senders) then send a 
remapping request. Since the sender tile is unaware of the 
status of other tiles in the RCS, the remapping request is 
broadcasted to all the remaining tiles. The purpose of this 
request is to find a potential receiver tile to remap and alleviate 
the impact of faults on model accuracy. If a tile is not a sender, 
then it will be categorized as a potential receiver. The receiver 
tile will reply to the remapping request if the necessary 
conditions for remapping are satisfied. Each sender may 
receive multiple responses from potential receiver tiles. The 
sender then chooses the receiver based on proximity (i.e., NoC 
hop count) for remapping. This is done to avoid long-range 
traffic in the NoC, and thereby reduce performance overheads. 
Fig. 3 illustrates the overall procedure with a 4 × 4 mesh 

NoC: request by broadcast (Fig. 3(a)), responses from 
multiple potential receivers (Fig. 3(b)), and the weight 
remapping (Fig. 3(c)). We use the XY tree multicast technique 
with dimension-ordered routing for efficient broadcast on a c-
mesh based NoC [5]. As shown in Fig. 3(a), multiple senders 
(e.g., S1 and S2) broadcast remapping requests to all other on-
chip tiles. The broadcast paths are shown in red and yellow 
arrows for the two senders, respectively. Next, due to the non-
uniform fault distribution, multiple tiles may reply to the 

        
                              (a)                                                           (b) 
Fig. 2. (a) The BIST module used in the target RCS. The BIST controller 
and associated peripherals are marked in red and thick lines. This figure is 
for the illustration purpose only. The signal ‘c’ is the output of a counter that 
controls the state transition timings. (b) The states of the BIST controller. 

 
Fig. 3. Illustration of the dynamic remapping method proposed in this work 
(S: Sender, R: Receiver). Here, we show the three different steps in the 
remapping procedure: (a) the faulty tiles (senders) broadcast remapping 
requests to all other tiles, (b) other tiles respond to the senders for potential 
remapping, and (c) each sender chooses its nearest responding tile as the 
receiver and remaps the weights. 

State BIST Action 
S0 Idle state 

S1 Write logic “0” to 
ReRAM cells 

S2 Apply read voltage 

S3 Read SA1 
information 

S4 Write logic “1” to 
ReRAM cells 

S5 Apply read voltage 

S6 Read SA0 
information 
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requests as potential receivers (e.g., R1 to R7). This unicast-
based communication is marked with green arrows. Finally, 
the senders (S1 and S2) choose the corresponding receivers 
(R1 and R5) based on the physical proximity (measured as hop 
count) to exchange their weights. Note that the use of an NoC 
enables us to perform multiple remappings in parallel if the 
communication paths do not overlap. In Section IV.C, we will 
show that the performance overhead of remapping is low. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 
Simulation setup: We use PytorX [15] to evaluate CNN 

training on the RCS. The RCS simulated on PytorX includes 
128 × 128 sized crossbars along with peripherals, such as 
ADC, DAC, etc. In PytorX, the faults are simulated by making 
the ReRAM cell resistance to be stuck at high or low values. 
The PytorX simulations are run on an Nvidia GeForce RTX 
3090 GPU with 24 GB memory. To simulate the 
communication along the c-mesh NoC, we use the BookSim 
simulator [19]. The message injection rates from the ReRAM 
crossbars are calculated from the PytorX simulations and are 
used as input to the Booksim to inject packets. We modified 
Booksim to implement the proposed remapping method (Fig. 
3) to obtain the performance overhead introduced by Remap-
D. To calculate the area of the proposed BIST hardware, we 
use the NeuroSim simulator [14]. 
Fault density: We consider both pre- and post-

deployment faults. The fault distribution is non-uniform due 
to the clustering of manufacturing defects [16] and unequal 
wear out during use. To model such a non-uniform fault 
distribution, we assume that 20% of crossbars have a high 
density of pre-deployment faults (fault density of 0.4-1%), 
while the remaining 80% of crossbars have a low fault density 
(0-0.4%) as an example. Note that high pre-deployment fault 
densities (beyond 1%) are not realistic from the perspective of 
the manufactured chip since the faulty chip can be tested 
offline and discarded [6], [16]. The SA0 to SA1 fault density 
ratio for pre-deployment faults in RCS is typically 9:1 [11]. 
For the post-deployment faults, we assume that new faults 
occur every epoch. Note that new faults may not appear after 
every epoch; our assumption represents a worst-case scenario. 
We assume that n% of the crossbars have m% new faulty cells 

after each training epoch. We vary m from 0.1% to 1% and n 
from 0.1% to 2% to simulate different fault scenarios.  
CNN models and datasets: We use VGG-11/16/19 [2], 

ResNet-12/18 [1], and SqueezeNet [20] as CNN models to 
demonstrate the effectiveness of the proposed method. We 
create ResNet-12 by removing 6 convolution layers from 
ResNet-18. In all cases, we train these CNNs from scratch in 
the presence of different fault configurations. We train each of 
these models for 50 epochs using the CIFAR-10 [21] dataset. 
We also demonstrate the scalability and effectiveness of our 
solution with SVHN [22] and the CIFAR-100 [21] datasets. 
Baseline methods: We consider two baseline methods for 

comparison. The first method uses the AN code [10]. The 
second baseline remaps the weights to fault-free crossbars 
based on weight significance [12] (we refer to this solution as 
“Remap-WS”; WS indicates “weight significance”). This 
method requires an analysis of pre-trained weights and the 
availability of redundant ReRAM cells for remapping. In 
contrast, Remap-D allows training from scratch without the 
need for additional fault-free crossbars. 

B. Determining Fault Tolerance and Fault Density 
We first evaluate our BIST module using HSpice 

simulations. The ReRAM cell behavior in the presence of 
faults is modeled following [4]. Fig. 4 shows the output 
current after we apply the test inputs to detect SA0 and SA1 
faults. Recall that for detecting SA0 faults, the BIST 
controller: (a) writes logic “1” to all the ReRAM cells (state 
S4 in Fig. 2), followed by (b) applying input voltage (logic 
“1”) to all crossbar rows (state S5 in Fig. 2), and finally (c) 
reads the crossbar output to determine the SA0 fault density 
(state S6 in Fig. 2). SA1 faults are detected using a similar 
procedure. Fig. 4 shows how the crossbar output current varies 
when the number of faulty ReRAM cells in a column is varied. 
For illustration, here we have considered a 4 × 4  sized 
crossbar, but the variation of current in the presence of faults 
is observed for larger crossbars as well. Fig. 4 shows a positive 
correlation between the output current and the number of 
faults. For instance, in Fig. 4(a), less current flows to the 
output as more cells are stuck at “0” (i.e., open circuit). Hence, 
through a calibration step, we can determine the number of 
faulty cells in a ReRAM crossbar by observing the output 
current after the test inputs are applied by the BIST controller. 
We follow a similar BIST procedure for detecting SA1 faults. 
ReRAM cells are prone to variations [4]. For instance, the 

SA1 resistance of a ReRAM cell can vary between 1.5 KΩ to 
3 KΩ while the SA0 resistance can vary between 0.8 MΩ to 3 
MΩ [4]. Therefore, we assess the effectiveness of our BIST 
module in the presence of these variations. Fig. 4 also shows 
the output current as a function of the number of faulty cells 
for different SA0 and SA1 resistances. Here, we have 
randomly varied the SA0 resistance between 0.8 MΩ to 3 MΩ 
and the SA1 resistance between 1.5 KΩ to 2 KΩ, respectively, 
to model the ReRAM fault behavior. Fig. 4 clearly shows that 
the output current is a reliable indicator of fault density despite 
the variation in SA0/SA1 resistance of the ReRAM cell.  
Fig. 5 shows the accuracy of the models trained with 

CIFAR-10 in the presence of faults. For this experiment, we 
inject faults on the crossbars that implement the computation 
associated with the forward phase tasks (referred to as 
“forward” in Fig. 5) and the backward phase tasks (referred to 
as “backward” in Fig. 5). From Fig. 5, we can see that faults 
in the backward phase lead to more accuracy loss (up to 45%) 
after training. In contrast, faults in the forward phase have a 

   
                                    (a)                                                               (b) 

Fig. 4. The magnitude of the crossbar output currents during testing with 
respect to the number of (a) SA0, and (b) SA1 faults in a ReRAM column.  
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Fig. 5. Accuracy achieved after training the five CNN models in the 
presence of 2% fault density in the forward and backward phases. 
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very small impact on the training accuracy. These results show 
that the forward phase is more tolerant to faults than the 
backward phase. The backward phase is responsible for 
generating weight updates through gradient calculation. Faults 
in the backward phase result in incorrect gradients, which 
eventually causes training to fail. This observation was 
consistent across all the considered datasets. Hence, we use 
this fault tolerance information to guide our task-remapping 
policy. We also performed similar experiments with respect to 
the type of layer (convolution versus fully-connected) or the 
position of the layer (first few layers versus last few layers) to 
identify more inherently fault-tolerant portions of a CNN. 
However, we did not observe a consistent trend in fault 
tolerance for these cases across all CNNs and datasets. Hence, 
we do not consider these cases for Remap-D. 

C. Dynamic Remapping-based Fault Tolerance 
We next demonstrate the effectiveness of Remap-D in the 

presence of both pre- and post-deployment faults. We assume 
that 0.5% new post-deployment faults appear on 1% of the 
crossbars after every training epoch. Fig. 6 shows the accuracy 
achieved by different CNNs in the presence of both pre- and 
post-deployment faults using five different fault-tolerant 
solutions. As shown in Fig. 6, the AN code-based solution 
incurs a 13.41% accuracy loss on average compared to the 
fault-free case in the presence of both pre- and post-
deployment faults. This happens because the AN code is 
unable to correct erroneous outputs at higher fault densities 
[5]. As explained in Section IV.A, the faults are distributed 
non-uniformly. Hence, some of the crossbars have a 
significantly higher number of faulty cells than the rest. As a 
result, the AN code is unable to correct the erroneous outputs 
of the crossbars with high fault density, resulting in a 
substantial accuracy drop. In addition, the AN code-based 
solution incurs 6.3% area overhead [10]. 
Similar to AN code, static mapping also fails to recover 

the lost accuracy in the presence of both pre- and post-
deployment faults as shown in Fig. 6. This happens as the 
mapping is static in nature and is performed at 𝑡 = 0. Hence, 
static mapping cannot mitigate the effects of post-deployment 
faults. This shows the necessity of dynamic remapping 
strategies. Remap-WS [12] remaps the top-5% most-
significant weights with faults to fault-free ReRAM columns 
to preserve the inferencing accuracy. However, Remap-WS is 
targeted for inference, where a set of pre-trained weights are 
available. This assumption does not hold true for CNN 
training. Fig. 6 shows that Remap-WS leads to a significant 
accuracy drop. This happens because it only protects 5% of 
the faulty weights, leaving 95% of the faults unaddressed. 
Some of these remaining faults can be associated with the less 
fault-tolerant phases, which impact training accuracy. 
Moreover, the implementation of Remap-WS is associated 

with two major challenges: (a) it remaps the data from faulty 
crossbars to fault-free crossbars; this requires additional spare 
hardware (hence, high area overhead), and (b) it requires a 
weight significance classifier to analyze the weights, which 
can induce considerable overhead because it must be applied 
repeatedly during training. 
For a thorough analysis, we also consider a remapping 

solution (referred to as Remap-T-n% in Fig. 6) that remaps the 
topmost n% important weights to fault-free crossbars. Unlike 
Remap-WS, Remap-T-n% preemptively remaps the top n% 
important weights in every epoch, irrespective of whether 
these weights are mapped to faulty cells or not. We define 
weights to be “important” based on the absolute value of 
gradients associated with them. As shown in Fig. 6, Remap-
T-n% can recover some of the lost accuracies. However, this 
kind of remapping needs at least n% additional spare 
hardware. For instance, Remap-T-10% achieves near-ideal 
accuracy with 10% area overhead. Hence, such a remapping 
strategy is also not practical. 
Similar to Remap-T-10%, the proposed remapping-based 

solution (“Remap-D” in Fig. 6) is able to achieve near-ideal 
accuracy. The weights of the faulty crossbars are remapped to 
other crossbars based on the local fault density and fault 
tolerance of the phases involved. This prevents significant 
accuracy loss after training. We observe only 0.91% accuracy 
drop on average for all the CNNs considered using Remap-D. 
However, unlike Remap-T-n%, Remap-D does not require 
spare fault-free crossbars. It utilizes fault-density and fault-
tolerance information to remap tasks to the already available 
crossbars (which may or may not be fault-free); hence, it does 
not require additional crossbars. Moreover, Remap-D does not 
require the a priori analysis of the weights. Overall, the 
proposed solution provides a better accuracy-performance-
area trade-off compared to Remap-T-n%. Remap-D achieves 
near-ideal accuracy with relatively lower overhead. 
Next, we present the effectiveness of Remap-D under 

different post-deployment fault scenarios. Since the 
occurrence of post-deployment faults is workload-dependent 
and hence unpredictable in general, it is important to study the 
effectiveness of Remap-D by varying the number and location 
of faults. Fig. 7 shows the results of this experiment. For this 
experiment, we inject m% new faults on n% of the available 
crossbars after each epoch. In Fig. 7, we examine the 
effectiveness of the proposed dynamic remapping method by 
varying the values of m and n from 0.1% to 1% and from 0.1% 
to 2%, respectively. Here, we consider up to 1% new faults 
per epoch as higher post-deployment fault densities are not 
realistic. If 1% new faults appear after each epoch, then after 
50 epochs of training, we may have a maximum of 50% faulty 
ReRAM cells in some crossbars. This fault density is already 
too high. If a crossbar has 50% defective cells, the user is 
likely to discard the product/crossbar. Hence, we do not 
consider more than 1% new faults per epoch. 
Fig. 7 shows the accuracy achieved after VGG19 and 

ResNet-12 are trained with different fault configurations using 
the proposed solution. We observe similar trends with other 
CNNs. As shown in Fig. 7, the accuracy drop using Remap-D 
is negligible compared to the ideal case. At higher m and n, 
the drop in accuracy is higher. However, even in the worst 
case where 2% of the crossbars have 1% new faults after each 
epoch, Remap-D experiences an accuracy loss of only 2.48% 
after 50 epochs of training. Recall that this is a worst-case 
scenario that is unlikely to occur. In practice, post-deployment 

 
Fig. 6. Accuracy achieved after training the different CNN models in the 
presence of both pre- and post-deployment faults with different fault-tolerant 
solutions. “Remap-WS” denotes the remapping method presented in [12].  
Remap-T-n% remaps the top n% weights to fault-free crossbars. Our 
proposed method is denoted as “Remap-D.” “Static” denotes the cases that 
the fault-tolerant mapping is done once at 𝑡 = 0. 
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faults will not occur every epoch; hence, the accuracy drop 
will be considerably lower than what we report here. 
Next, we analyze both the area and timing overheads 

introduced by Remap-D. To analyze the performance impact 
of Remap-D, we use Booksim [19] to simulate the on-chip 
traffic. We modified Booksim to incorporate the different 
steps of the remapping process (Fig. 3). We applied the Monte 
Carlo method to study the timing overhead for different fault 
situations. We did 50 rounds of simulation; in each round, we 
injected faults at different locations of the RCS. Our 
experiment shows that Remap-D introduces only 0.22% 
performance overhead on average and 0.36% in the worst-
case scenario in our experiments. This happens because the 
use of an NoC enables multiple sets of communication to 
happen in parallel. As a result, we can remap the weights from 
multiple faulty crossbars parallelly. To evaluate the area 
overhead, we use NeuroSim [14]. NeuroSim provides 
analytical area models for a typical RCS; these models have 
been calibrated using circuit layouts. We implement the BIST 
circuit in NeuroSim. The simulation results show that the 
BIST module introduces an area overhead of only 0.61%. 
Overall, Remap-D achieves near-ideal accuracy at a negligible 
area cost of 0.61% while AN code and Remap-T-10% require 
6.3% and 10% area overhead [10], respectively. 

D. Scalability 
To demonstrate the scalability of Remap-D, Fig. 8 shows 

the accuracy with larger and more complex datasets, such as 
SVHN and CIFAR-100. Compared to the CIFAR-10 dataset, 
which has 10 classes, CIFAR-100 has 100 classes and is more 
challenging to learn. The SVHN dataset has more images than 
the CIFAR-10 dataset. SVHN represents a significantly 
harder, real-world problem (recognizing digits and numbers in 
natural scene images). Fig. 8 shows the accuracy achieved 
after training on a faulty RCS using Remap-D. Here, we 
assume both pre- and post-deployment faults. As shown in 
Fig. 8, Remap-D has an average accuracy loss of 1.32% on the 
CIFAR-100 dataset, while the models without a fault-
tolerance solution experience an accuracy drop of 33.42% on 
average. For the SVHN dataset, Remap-D has an accuracy 
drop of at most 0.45% compared to the fault-free case. The 
results in Fig. 8 demonstrate that the proposed method is 
applicable to more complex CNN datasets as well. 

V. CONCLUSION 
We have investigated the inherent fault tolerance in 

different CNN components and leveraged this to develop a 
new remapping-based solution for training. We have also 
developed a BIST-based fault detection method to determine 
the fault density of crossbars to guide the dynamic remapping 
technique. By remapping the less fault-tolerant tasks from 
high fault-density crossbars to less faulty ReRAM crossbars, 
we can train VGGs/ResNets/SqueezeNet from scratch, which 
results in only 0.85% accuracy drop on average. The timing 
overheads during training for fault detection and additional 
on-chip traffic are 0.13% and 0.35%, respectively. Moreover, 
the BIST circuit introduces only 0.61% area overehead; the 
additional traffic introduces less than 0.5% power overhead. 
The proposed solution enables fault-tolerant CNN training 
with negligible area, timing, and power overheads. 
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                             (a)                                                      (b) 
Fig. 7. Accuracy of (a) VGG19 and (b) ResNet-12 under different post-
deployment fault scenarios. The parameter n represents the percentage of 
new faulty crossbars in the RCS while m represents the percentage of new 
faulty cells in these crossbars per epoch. 
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Fig. 8. Accuracy of the trained CNN models in the presence of both pre- 
and post-deployment faults with different datasets. The pre- and post-
deployment fault configurations are the same as that of Fig. 6. 
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