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Abstract—Spiking readout architectures are a promising low-
power solution for high-density e-skins. This paper proposes the
end-to-end model-based optimization of a high-density neuro-
morphic e-skin solution, from the taxel readout to the texture
classification. Architectural explorations include the spike coding
and preprocessing, and the neural network used for classification.
Simple rate coding preprocessing to spiking outputs from a
modeled low-resolution on-chip spike encoder is demonstrated to
achieve a comparable texture classification accuracy of 90 % at
lower power consumption compared to the state of art. The mod-
eling has also been extended from single-channel sensor recording
to time-shifted multi-taxel readout. Applying this optimization to
an actual tactile sensor array, the classification accuracy is boosted
by 63 % for a low-cost FFNN using multi-taxel data. The proposed
Spike-based SNR (SSNR) and Spike Time Error (STE) metrics
for the taxel readout circuitry are shown to be good predictors of
the accuracy.

Index Terms—electronic skin, spiking readout, neuromorphic,
end-to-end optimization, spike encoding metrics

I. INTRODUCTION

To enable next-generation robotic and prosthetic applica-
tions, artificial hands require fine-grained sensing modalities,
such that they can sense and analyze their environment in
a human-like fashion. As contact parameters during object
manipulation are hard to infer from mere visual data, high-
resolution tactile sensing is required [1]. Distributed tactile
sensors fulfill the same function as the skin does for humans
and therefore is also referred to as electronic skin (e-skin), as
shown in Fig. 1. Such e-skin consists of an array of sensors that
measure parameters such as the normal/shear force, humidity,
and temperature. Using data collected from these sensors, a
processing unit must classify the objects with which the robotic
hand is interacting. In this paper, the focus is on normal force
sensing for texture classification of objects through capacitive
sensors – chosen because of their simple structures and readout
electronics, and their ability to detect static force [2].

To mimic the functionality of human skins, the e-skin
requires the monitoring and transmitting of information from
thousands of distributed sensing elements. For conventional
readouts (shown in Fig. 2(a)), the analog sensor output is
multiplexed onto a central ADC for conversion, producing

Fig. 1: High-density electronic skin: a) Equipping a robotic hand with
a combination of a large-area e-skin with high-spatial resolution e-
skin on the fingertips allows classification of macro and micro tactile
features. The chip-scale e-skin at the fingertips is connected to a
central board with Neural Network hardware. b) The high-density e-
skin converts sensor signals to spikes at taxel level.

synchronous frames of tactile information that are periodically
sent for processing [3]. This high-rate, periodic sensing and
transmission of the tactile frames is, however, power-inefficient
[4], even though tactile stimuli may be sparse in time. In state-
of-the-art e-skins [5], [6], the communication bandwidth is
reduced by encoding the sensor data into sparse ”events” – re-
ferred to as spikes – which are then transmitted asynchronously.
Such event-based encoding of sensor data, however, is typically
performed at the software level. Therefore, while an event-
based approach is used on the data transmission, the sensor
data are still converted in a frame-based approach, as shown
in Fig. 2(b). State-of-the-art e-skin solutions often use off-the-
shelf components with overdesigned specifications, which often
results in a large system power consumption [5], [7] and a
low spatial resolution [8], which prohibits fine-grained tactile
sensing of objects. An interesting approach to tactile sensing
is to use neuromorphic sensors with sensor-to-spike encoding
performed at hardware level [9], as shown in Fig. 2(c). This
neuromorphic system offers a lot of potential for high-density
e-skin applications with high spatial resolution and low system
power consumption.
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Fig. 2: State-of-the-art electronic skin readouts can be classified in
three major categories: a) synchronous frame generation using a
central ADC and further digital processing; b) asynchronous spike
generation in software followed by a spiking neural network; c) asyn-
chronous spike generation performed on-chip at per-taxel level. The
spike count is accumulated to form the rate code and be compatible
with the frame-based input of the neural network

This paper describes the end-to-end optimization of such
a neuromorphic e-skin design, from the taxel readout to the
texture classification. First, in Section II, a model for the
spiking neuromorphic taxel readout is derived. This model
includes the effect of hardware non-idealities and the encoding
method of the spikes. Then, two metrics for the accuracy of the
taxel readout are proposed: the Spike-based SNR (SSNR) and
the Spike Timing Error (STE). In Section III, the modeling of
a taxel array is discussed, as well as the preprocessing method
used to feed the spikes to the processing algorithms, i.e. both a
convolutional neural network (CNN) and a feedforward neural
network (FFNN). Section IV then discusses the results of the
e-skin parameter optimization and compares its performance
to prior work on texture recognition. Section V concludes the
paper.

II. SPIKING READOUT MODEL AND METRICS

A. Continuous-time Capacitive Readout Model

The capacitive readout model simulates the spike train gener-
ation due to the changes in the normal force transduced by the
taxel. The continuous-time (CT) readout circuit is composed of
a front-end circuit and comparators, as shown in Fig. 3(a). The
choice of this architecture is because of its simple architecture
and its CT nature, allowing for asynchronous spike generation.
A change in the capacitive taxel output corresponds to a change
in the output voltage of the frontend circuit. Such change results
in spikes when the corresponding change exceeds a pre-defined
threshold value. The signs of the spikes are decided by the
direction of the output voltage change.

The readout circuit and its spike generation have been
modeled in MATLAB. The model accepts an array of discrete
samples as input, representing the transient behavior of the
Csensor output. Readout parameters, such as the frontend
circuit gain and the threshold, can be configured. The spike
train output is stored as an array of time stamps representing
the spike times. Readout circuit non-idealities, such as the
amplifier offset, the amplifier noise, the comparator offset, and
the comparator noise can be added to the model, as shown in
Fig. 3(b).
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Fig. 3: a) Proposed capacitive tactile sensor with spiking readout
circuit, and b) high-level model for system simulations.

B. Generating Multi-Taxel Signals from Single-Channel
Recordings

A key limitation with publicly-available tactile datasets of
texture recording is that they mostly contain sensor signals
recorded from a single channel. Therefore, this limits classi-
fication algorithms that use recordings from multiple sensors
in an array. Previous modeling of human fingertips [10], [11]
provides evidence that a population of neurons cooperates to
convey tactile sensory information during texture scanning.
Therefore, in this paper, a methodology to generate multi-taxel
signals from a single channel recording during texture scanning
is presented (Fig. 4). To simulate a texture being scanned
across the sensors in an array, time delays are introduced to
the simulated sensor outputs across the y-axis (see Fig. 4).
The unit time delay tdelay is proportional to the ratio of the
spatial resolution and the texture scanning speed. To generate
simulated sensor output across the x-axis (see Fig. 4), the
texture profile across the x-axis is assumed to have the same
profile across the y-axis. The multi-taxel signal outputs are then
individually used as input to the taxels.

Fig. 4: To simulate multi-taxel signals from single-channel recordings,
time delays are introduced. The time delays model the delay in which
consecutive sensors see the same texture profile during finger scanning.
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C. Error Metrics

While for a conventional sensor readout system, well-defined
accuracy metrics exist for hardware designers, such as the
Signal to Noise Ratio (SNR) and Signal to Error Ratio (SER),
there exist no widely-accepted metrics for readouts with spike-
based output [12]. Moreover, since the goal of such systems
typically is to be directly processed by classification algorithms,
the question is which accuracy metrics at the sensor level can
predict well the classification performance of the processing
algorithm.

The proposed spike encoding metrics are based on the differ-
ence between the REAL spike train generated from the spike
encoder model with non-idealities and the TRUE spike train
generated by the ideal spike encoder. Therefore, the two metrics
quantify the random and systematic variations on the generated
spike trains due to the readout non-idealities. Such spike train
variations typically degrade the classification accuracy due to
overfitting. An example of the generation of false spikes by a
noisy spike encoder model can be seen in Fig. 5.

The following two error metrics are proposed:
1) Spike-based SNR: The SSNR metric is a rate coding-

based metric since it only deals with the deviation in the spike
rate due to the non-idealities. As shown in equation (2), the
SSNR is defined as the ratio of the number of TRUE spikes
to the number of FALSE spikes, which equals the difference
between REAL spikes and TRUE spikes:

SSNR = 20 ∗ log Ntrue spike

abs(Nreal spike −Ntrue spike)
[dB] (2)

2) Spike Timing Error: The STE metric is more related
to the spike temporal code. It measures differences in the
spike rates but also quantifies the deviation in the spike timing
due to the non-idealities. The closest FALSE spike to each
TRUE spike is found. As shown in equation (3), the standard
deviation of the time difference ∆t depicts how dispersed ∆t
is. To eliminate the effect of the number of spikes on the
time difference, the standard deviation of the spike times is
normalized by multiplication with the number of spikes. The
STE is defined as follows:

STE =

∑
(∆t−∆t)2

Nreal spike
∗ (Nreal spike −Ntrue spike)[s

2] (3)

III. TEXTURE CLASSIFICATION USING NEURAL NETWORKS

A. Texture Dataset

A 12-class publicly-available tactile dataset of texture record-
ings, VIBTAC12 [13], is used as sensor input. Each texture
class contains 10 unique accelerometer recordings. Due to
the lack of available texture datasets recorded with a tactile
capacitive sensor, the VIBTAC12 dataset is used instead. To
model the normal force captured by a capacitive sensor, the z-
axis output of the three-dimensional accelerometer data in the
VIBTAC12 dataset is selected.

Fig. 5: The TRUE spike train is generated with the ideal readout circuit
model while the REAL spike train is generated while considering
readout non-idealities

B. Spike Pre-processing

Feedforward neural networks (FFNN) and convolutional neu-
ral networks (CNN) are applied to perform texture classification
tasks. However, since both FFNN and CNN accept frames as
input instead of spikes, the spatio-temporal spike trains to be
generated are pre-processed to generate a frame, as shown in
Fig. 6. For every sensor, the spike train is divided into time
windows. The number of spikes during each time window
is then accumulated, forming a matrix of the instantaneous
rate codes across time windows. The rate code matrices of
individual taxels are then concatenated in a manner that pre-
serves the spatial location of individual taxels. This is done by
concatenating the rate code matrices of neighboring taxels.

C. Neural Network Implementation

The size at the input layer depends on the number of taxels
× the number of time windows. In our experiments, we use
9 taxels and 40 time windows. Meanwhile, the number of
output neurons depends on the number of texture classes (12 in
our example). Both networks consist of ReLU neurons at the
hidden layer, followed by spike accumulation and a Softmax
output layer [9]. The CNN has two convolution layers and two
2x2 pooling layers. The first convolution layer has 16 output
channels, while the second layer has 32. Both convolution
layers use 3x3 kernels and padding=1.

Hyperparameter tuning yields optimum values of the training
epochs (100), the learning rate (1e−3), and the number of neu-
rons in the hidden layer (100). A fair comparison is guaranteed
by application of the same hyperparameters to all the FFNN
and CNN classifications performed in this paper . The mean
classification accuracy and the standard deviation are obtained
using a 10-fold cross-validation [14]. The Adam optimizer [15]
is used to train the network.

IV. OPTIMIZATION RESULTS

A. Optimizing e-Skin Parameters

Enabled by the end-to-end e-skin model, it is possible to tune
design parameters related to both the spiking readout and the
rate coding preprocessing and to predict its immediate effect
on the texture classification performance. In contrast to current
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Fig. 6: Rate encoding preprocessing of spikes: a) single-channel
recording is used to simulate multi-taxel signals through time delays;
b) spike train output generated by the spike encoder model is divided
into time windows; c) spikes are accumulated per window while
discarding the polarity, forming an instantaneous rate code across
several windows; (d) multi-taxel frame information is assembled while
preserving the spatial location of each sensor.

e-skin designs where off-the-shelf components are used, an e-
skin pipeline designed on a custom ASIC offers significantly
more design freedom and consumes less power. Guided by the
end-to-end model optimization, this freedom allows the design
of high-density e-skins with relaxed readout requirements and
simpler, hardware-friendly spike preprocessing, as will be dis-
cussed below.

1) Spiking Readout: The parameters related to the spike
encoder model, such as the threshold voltage and the number
of sensors, are tuned. As shown in the texture classification
accuracy graph of Fig. 7(a), a sweep of the threshold voltage
shows an optimum threshold value of around 0.09V for both the
FFNN and the CNN. This translates into an equivalent bit res-
olution of around 3.5 bits, which is significantly more relaxed
than the commercial ADCs used in state-of-the-art e-skin (10-
24 bits) [5], [11]. Interestingly, a further threshold/resolution
decrease translates again into diminishing accuracy. A possible
explanation is that having too many spikes can jeopardize the
back-propagation, as seen in [9].

The effect of the number of sensors on the classification
accuracy is also modeled, as shown in Fig. 8. An increasing

(a)

(b)

Fig. 7: Classification accuracy versus (a) the spiking readout threshold
and (b) the preprocessing time window length.

Fig. 8: Accuracy vs number of sensors in a sensor array for feed
forward neural network. Spike train is generated by continuous-time
capacitive readout model.

number of correlated taxels (time-shifted only) leads to more
input data for the neural networks, thus to better training results
and higher classification accuracy. By increasing the number
of taxels from one to 16, the accuracy increased by 63%.
Interestingly, the classification accuracy saturates at >16 taxels
to about 90%. Possibly, the increase in the input layer size due
to the increased number of taxels results in a more complex
network model, making it less robust to generalization and more
prone to overfitting.

2) Pre-Processing: An important pre-processing parameter
– the time window length – is also tuned, as shown in Fig.
7(b). A shorter time window results in more time windows,
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therefore, increasing the input layer size of the NN. Meanwhile,
a longer time window translates into a reduction in the temporal
information carried by the rate code matrix. This is because the
accumulation of spikes per time window inherently results in
the loss of fine temporal information carried by the spike train,
as the individual spike times of accumulated spikes inside a
window are discarded. For both the FFNN and the CNN, a
time window length of 0.1 seconds results in the maximum
classification accuracy. Interestingly, reducing the size of the
window length results in a lower accuracy. Similar to what is
seen in Section IV-A1, the increase in the input layer size due
to a shorter time window length results in a more complex
network model that is more prone to overfitting.

B. Correlation between Metrics

As discussed in Section II-C, an important contribution of
this paper is to derive signal encoding metrics that predict well
the classification performance. A single taxel with a constant
threshold is tested to investigate the correlation between the
proposed spike-based error metrics and the traditional texture
classification accuracy. As shown in Fig. 9 (a) and (b), there is
a strong positive correlation between the classification accuracy
and the SSNR, while the accuracy and STE have a strong
negative correlation. Such correlation is expected as the SSNR
measures the robustness of the rate code to the noise, while the
STE quantifies the amount of noise on the spike train through
variations in the spike timing. Through the proposed metrics, an
alternative way of validating the signal encoding fidelity of e-
skin designs is developed, independent from the neural network
hyperparameters and its complex tuning.

C. Multi-Taxel Readout Consideration

As seen in Section IV-A1, the number of taxels in the array
helps to increase the classification accuracy. However, this
characterizations assumes an ideal, uniform taxel response. As
seen in Fig. 10, introducing mismatch on the taxels results in
a reduction in the classification performance. The taxel non-
uniformity is modeled as mismatch on the thresholds due to,
for instance, random intra-die variations, resulting in some sort
of fixed pattern noise (FPN). To reduce the mismatch, the taxel
sizing will have to be increased, possibly limiting both the
minimum spatial resolution and the number of taxels achievable
while maintaining a robust classification performance.

D. Comparison with State-of-the-art e-Skins

The resulting design is compared with state of art e-skin
designs for texture classification in Table I. A key insight
is that, through an end-to-end optimization coupled with the
design freedom of an ASIC design, the e-skin achieves a
comparable texture classification accuracy of 90% despite a
low precision spike encoder of 3.5 bits. Furthermore, the
data rate required to transmit information is reduced by up
to three orders of magnitude (compared to [18]) due to the
event-based spike encoding. Lastly, a hardware-friendly rate
code preprocessing through spike accumulation is performed,
in contrast to complex sofware-based feature extractions [18],
[19]. While a higher classification accuracy is seen in cited

(a)

(b)

Fig. 9: Classification accuracy versus (a) Spike-based SNR (SSNR)
and (b) Spike Timing Error (STE)

Fig. 10: Classification accuracy versus the standard deviation of the
mismatch between taxels.

work, it is to be noted that previous work uses less texture
classes for classification.

V. CONCLUSIONS

This paper has presented the optimization of a high-density
e-skin design, from the spiking taxel readout to the spike
preprocessing and the texture classification hardware (FFNN
and CNN). The model simulates and generates multi-taxel data
from a single channel sensor recording, increasing the clas-
sification accuracy by 63%. Two proposed spike-based signal
encoding metrics have been demonstrated to predict well the
classification accuracy. The model shows that a relaxed spiking
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TABLE I: Comparison of state-of-the-art texture classification systems for robotic applications.

Reference
Sensor Readout

(ADC Resolution,
Sampling Rate)

Hardware Setup No. of
Sensors

Estimated
Data Rate Preprocessing Classifier No. of

Classes

Classification
Accuracy
(Chance)

This work On-chip Spikes
(3.5b,variable)

End-to-End Model
(Hardware Spike Encoding) 9 51.32 Hz Rate code CNN 12 90%

(8.33%)

Ref [16] Frames
(10b,9.6 kHz)

Off-the-shelf
Sensors + ADC,

Classification in software

4
(Multi-modal) 96 kHz

Cumulative
Multi-Bandpower

(in software)

Multi-layer
Perceptron

(MLP)
12 79%

(8.33%)

Ref [17] Software Spikes
(unreported,300 Hz)

In-house MEMS sensors
+ Commercial ADC,

Classification in software
6 100 Hz None

Extreme Learning
Machine (ELM)

chip
10 92%

(10%)

Ref [11] Software Spikes
(24b,380 Hz)

In-house piezoresistive sensors
+ Commercial ADC,

SNN Classification in software
4 9.12kHz

(Estimated) None

SNN (w/
Calcium

plasticity)
+ KNN

10 94.2%
(10%)

Ref [18] Software Spikes
(10b,200 Hz)

In-house sensors
+ Commercial ADC,

SNN Classification in software

2
(Multi-modal)

115.2 kHz
(Bluetooth baudrate)

Wavelet
Transform

SNN
(Tempotron) 2 99.45%

(50%)

Ref [19] Software Spikes
(24b,300 Hz)

In-house piezoresistive sensors
+ Commercial ADC,

Classification in software
4 28.8 kHz

(Estimated)

Wavelet
Transform +

Cross-Wavelet
Transform

Transform +
KNN 3 97.6%

(33.33%)

readout resolution (3.5 bits), a small network (100 neurons in
the hidden layer) with a simple rate coding pre-processing of
spikes can achieve a texture classification accuracy of 90 %
using a CNN, which is comparable to the state of the art, but
at a lower power consumption.
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