
MIRROR: MaxImizing the Re-usability of RTL
thrOugh RTL to C CompileR

Md Imtiaz Rashid and Benjamin Carrion Schafer
The University of Texas at Dallas

Department of Electrical and Computer Engineering
mdimtiaz.rashid@utdallas.edu, schaferb@utdallas.edu

Abstract—This work presents a RTL to C compiler called
MIRROR that maximizes the re-usability of the generated C
code for High-Level Synthesis (HLS). The uniqueness of the
compiler is that it generates C code by using libraries of pre-
characterized RTL micro-structures that are uniquely identifiable
through perceptual hashes. This allows to quickly generate C
descriptions that include arrays and loops. These are important
because HLS tools extensively use synthesis directives in the form
of pragmas to control how to synthesize these constructs. E.g.,
arrays can be synthesized as registers or RAM, and loops fully
unrolled, partially unrolled, not unrolled, or pipelined. Setting
different pragma combinations lead to designs with unique area
vs. performance and power trade-offs.

Based on this, the main goal of our compiler is to parse
synthesizable RTL descriptions specified in Verilog which have
a fixed micro-architecture with specific area, performance and
power profile and generate C code for HLS that can then be
re-synthesized with different pragma combinations generating
a variety of new micro-architectures with different area vs.
performance trade-offs. We call this ‘maximizing the re-usability
of the RTL code because it enables a path to re-target any legacy
RTL description to applications with different constraints. In
particular we deal with pipelined descriptions in this work due
to their uniqueness. Experimental results show that our proposed
compiler is very effective, opening the door to automating the
re-optimization of legacy hardware designs previously manually
optimized using low level Hardware Description Languages
(HDLs). We aim at making this compiler framework open source
and available to the research community.

I. INTRODUCTION

More and more companies are now relying on High-Level
Synthesis (HLS) to design their hardware circuits, and in
particular the hardware accelerators that most heterogeneous
System-on-Chips (SoC) now include. These are typically Dig-
ital Signal Processing (DSP) accelerators, image processing
or encryption engines. One of the main advantages of raising
the level of design abstraction from the RT-level (RTL) to the
behavioral level is that a variety of different designs, each with
different area vs. performance and power trade-offs can be
easily generated from the same behavioral description (ANSI-
C, C++ or SystemC) by simply setting different synthesis
options. These synthesis options typically have the form of
synthesis directives in the form of pragmas inserted at the
behavioral description to force the HLS tool to synthesize
arrays as either RAM/ROM or registers, and unroll loops fully,
partially, not unroll or pipeline. One of the main problems that
often prevents companies from embracing HLS is having large
amounts of legacy RTL code. This implies that they often need
to manually re-optimize it when used in different projects that
require different area vs. performance, and power trade-offs

ANSI-C/C++/SystemC

High-Level
Synthesis

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

Verilog/VHDL

Logic
Synthesis

Place and Route

A
re

a

Latency

Power

Heterogeneous System on Chip (SoC)

On-chip Bus

HWaccHLS

Interfaces
(SPI, I2C,

UART)

HwaccRTL

CPU Memory

int buffer[4]; // pragma array=REG
// pragma unroll = all
for(x=0; x<4; x++)

out = out + buffer [x] *coef[x];

Fig. 1: Target architecture with two HW accelerators. One
generated through HLS, the other through Verilog/VHDL.

including having to completely re-timed any pipelines to make
use of smaller technology nodes or newer FPGAs.

Fig. 1 shows an overview of a typical heterogeneous SoC
composed of multiple embedded processors, on-chip memory,
diverse interfaces (i.e., SPI, I2C and UART) and two hardware
accelerators. Fig. 1 also shows the VLSI design flow to gener-
ate those accelerators. In particular, HWaccHLS is generated
using HLS, while HWaccRTL is generated using Verilog or
VHDL. As also shown in the figure, HWaccHLS allows to
generate a variety of designs (in the given dot-product snippet
by inserting a pragma to synthesize an array and loop) and then
choose the design that meets the product’s constraints best. In
contrast, when designing these accelerators at the RT-level,
the user manually fixes the micro-architecture of the design,
leading to a design with specific area, performance, and power
constraints. The designer would have to manually re-write and
re-verify the RTL code if a new design with different area
vs. performance trade-offs is needed. This is obviously time
consuming and error prone.

To address these issues, in this work we present an RTL
to C compiler that can convert synthesizable Verilog code
into ANSI-C code optimized for HLS, and in particular to
maximize its re-usability. This involves generating C code that
includes arrays and loops in the new C description that can in
turn be explored setting different synthesis directives.

Due to their uniqueness, in this work we mainly target
pipelined architectures which are often the main way that the
hardware accelerators (DSP and image processing) are synthe-
sized. We will continue extending the compiler framework in
order to support any synthesizable RTL description, but leave
that for future work. In summary, the main contributions of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

Dot
product

(a)

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

1/fmax2

RTL2C
(MIRROR)

HLS
fHLS

techlibHLS
pragmalib

RTL2

= Reg

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

1/fmax1

Area
[µm2]

Latency
[clk cycles]

!𝑃

array=reg
loop=all

array=ram
loop=0

4,926

1,878

1 7

RTL1 1/fmax2

for(x=0; x<4; y++)
out = out + buffer[x]*coef[x];

(b)

(c)

1/fmax2

Fig. 2: Motivational example.(a)Two different dot product
RTL implementations (RTL1 and RTL2); (b) Proposed flow
overview; (c) Result of HLS design space exploration of
converted C code.

this work are:
• Introduce and RTL to C compiler framework called

MIRROR that takes as input synthesizable Verilog code
and generates ANSI-C code optimized for HLS.

• Present a smart RTL structure detection method based
on perceptual hashing to convert these structures into
efficient ANSI-C code.

• Present extensive experimental results highlighting the
effectiveness of our proposed compiler framework.

II. MOTIVATIONAL EXAMPLE

Fig. 2(a) shows two circuits that implement the dot-product.
In both cases a tree-height reduction optimization is performed
to fully parallelize the computation and reduce the delay.
The main difference between both circuits is that in the first
case (RTL1) the entire dot-product is executed in a single
clock cycle, while in the second case (RTL2) the circuit
is pipelined by inserting registers after each functional unit
(FUs). In RTL1 the maximum frequency is limited by the
chained delay of the multiplier and adders (fmax1), while in
RTL2 the maximum frequency is limited in this case by the
multipliers to fmax2, where here fmax2 > fmax1.

Fig. 2 also shows an overview of our proposed flow.
In particular the RTL2C compiler that reads in the Verilog
descriptions of RTL1 and RTL2 and outputs a behavioral
description optimized for HLS. As shown, the description
should be exactly the same for both cases composed of a
for loop that does dot product on the arrays that contain the
data. Outputting this code as a for-loop instead of individual
expressions enables to set different synthesis directives to
control how to synthesize the loop and array, and thus,
generating designs with different area vs. performance trade-
offs. Out of all the synthesis directive combinations, the user
is typically only interested in the combinations that lead to the
Pareto-optimal designs, highlighted as red squares in the figure
that form the Pareto front (P̄). In this particular examples,
two of the Pareto-optimal designs are highlighted, which are

obtained by fully unrolling the loop and synthesizing the array
as registers. This leads to the largest but fastest designs, while
synthesizing the array as RAM and not unrolling the loop,
leads to the smallest, but slowest designs.

The proposed RTL to C compiler thus, enables to re-
optimize legacy RTL code that was manually optimized for
a particular set of constraints and technology node or even
FPGA and automatically generate new designs with different
design trade-offs. Based on this, we can formally define the
problem in this work as follows:

Problem Definition: Given a synthesizable Verilog descrip-
tion (RTLin), compile it to an untimed behavioral description
(CHLS)that is functional equivalent f(RTLin) = f(CHLS),
optimized for HLS such that the generated behavioral descrip-
tion CHLS = {array, loops}, contains arrays, and loops, such
that setting different synthesis directives on CHLS leads to a
variety of different micro-architectures with unique area vs.
performance and power constraints (P̄new).

III. RELATED WORK

So far, the problem of generating C/C++ descriptions from
RTL (VHDL or Verilog) has primarily had the objective of
creating simulation models to either verify the RTL code
with newly generated C/C++ code or to accelerate the RTL
simulation by abstracting the RTL code, but not to optimize
the C/C++ description for re-optimization. In [1] a translation
tool that generates a C++ model from VHDL achieved faster
simulation time compared to traditional RTL simulations. In
[2] synthesizable Verilog is translated into C++ to reduce
the number of delta cycles by merging processes together.
V2C is a Verilog to C compiler used for hardware property
verification [3]. Some commercial tools like Carbon Design
Systems (acquired by ARM) [4] can convert RTL models
into cycle-accurate and register-accurate C++ models targeted
mainly for the creation of virtual platform from legacy RTL
code.

Closer to this work, Bombieri et al. generate C++ models
by abstracting many architectural details of the original RTL
code for HLS [5], [6]. This previous work, directly converts
the RTL into C looking at the structure of the RTL description
and hence has limited capabilities. Another recent work in-
cludes Veriintel2C [7] which converts Verilog descriptions into
synthesizable C descriptions, but is limited to detecting loops
by looking at back edges in the CDFG generated from the
RTL code. Thus, it cannot convert tree structures nor pipelined
circuits as shown in the motivational example. Finally, he
authors in [8] showed with a rudimentary RTL to C compiler
how legacy RTL code can be modernized.

To the best of our knowledge this is the first work that is
able to locate and convert into optimized C code for HLS,
pipelined circuits and typical structures encountered in most
DSP and image processing applications like trees a using an
extensible database of pre-characterized micro-structures.

Verilog

(RTLin)

Parse RTL

(build AST)

CHLSExtract

micro-

structures

Micro-structures

matching
C code

generation

Front-end Back-endMain Compiler Pass

ASTRTL

RTL2C compiler

RTL micro-structures pre-characterization

RTL micro-

structures

Abstract Syntax

tree (AST)

generator

AST to

vector

translator

Hash generator

(perceptual

hashing)
0xA33FF6123232435213FBC

DB of pre-

characterized

RTL micro-

structures

RTL designs

HLSANSI-C

=

Match?

Fig. 3: Overview of complete RTL to C flow.

IV. PROPOSED RTL TO C COMPILER FRAMEWORK

Fig.3 shows an overview of the entire proposed compiler
framework. The complete framework is written in Python
and is composed of two main stages. The first stage, pre-
characterizes different RTL micro-structures identifying each
structure with a unique hash value, while the second stage does
the actual RTL to C compilation using this data. The inputs
to the compiler are thus, the synthesizable Verilog description
to be converted (RTLin)and a database of pre-characterized
RTL micro-structures. The output is the synthesizable C code
optimized for HLS (CHLS). This C code can then be passed to
an automated HLS design space explorer in order to automat-
ically generate designs with different trade-offs or manually
re-synthesized with different constraints. It is needless to say
that the original RTL description and the newly generated C
code must be functional identical: f(RTLin) = f(CHLS).
The next subsections describe the entire compilation process
in detail.

Abstract syntax tree
(ASTRTL) generator

64-bit Hash generator
(perceptual hashing)

AST to vector
translator

Library of RTL
Micro-structure

x x x x

+ +

+

mul1 mul2 mul3 mul4

add1
add2

add3

module dot_prod4 (in1, coef1, in2, coef2, in2, coef3, in3, coef3);
input in1, in2, in3, in4, coef1, coef2, coef3, coef4;
output o1; ….

@micros{
@NAME dot_prod4

@pHASH 0xFBA4541232324352132A2
@CODE {for(x=0; x<4; y++)

o1 = o1 + in[x]*coeff[x];
}

};

Database entry
generation

dot_prod4 64-bit perceptual hash: 0xFBA4541232324352132A2

0x<mul1>:<add1>:<add3><mul2>:<mul3>:<add2>:<mul4>

Fig. 4: RTL Micro-Structure pre-characterization flow.

Stage 1: RTL Micro-structures Pre-characterization: This
first stage takes as input a library of different RTL micro-
structures (MicroS) like the ones shown in the motivational
example (Fig. 2) and pre-characterizes them. Fig. 4 shows
how the database of pre-characterized micro-structures are
generated. These micro-structures are typical structures found
in most DSP and image processing applications. For this,

we used the open source OpenCore [9] RTL designs and
isolate these micro-structures, and also generate other micro-
structures from behavioral descriptions for HLS. In this case
we isolate individual loops in the behavioral description and
synthesize them with different pipelining Data Initiation In-
tervals (DIIs). These behavioral benchmarks come from the
main HLS benchmarks (CHStone [10] and S2CBench [11]). In
the behavioral benchmark case, a micro-structure is generated
by isolating individual loops or nested loops, while for the
manually written RTL designs, these are manually extracted
from the benchmarks. In total over 70+ micro-structures were
identified and pre-characterized.

Each micro-architecture (MicroSi) is fully characterized by
a unique hash value that easily identifies it and the optimized
C code that translates this RTL micro-structure into optimized
C code for HLS as shown in Fig. 4. A unique hash value
is needed to easily identify these micro-structures in new
unseen RTL descriptions. This hash value should detect when
two micro-structures are structural different, but also allow to
identify if they are similar, thus, a method to fingerprint each
micro-structure in a robust way is needed.

To address this, in this work we make use of perceptual
hashing [12], which is an algorithm commonly used in digital
forensics. The key advantage of perceptual hashing is that
it is robust enough to consider dissimilarities, but flexible
enough to distinguish between different micro-kernel struc-
tures. Traditional cryptographic hashing methods, e.g., MD5
and SHA result in completely different hashes if a single bit
changes, thus, making them not useful for this application.
Perceptual hashing, in contrast, can be used to compare two
micro-structures by calculating their Hamming distance (H).

Thus, as shown in Fig. 4, to generate the hash value, we
build an abstract syntax tree of the micro-structure, where
each node corresponds to an RTL component (e.g., adder,
multiplier, mux, etc.), and create a vector based on each node-
type following a depth-first tree traversal method. Basically,
each node in the AST is assigned a unique value which is
then concatenated to the other nodes’ values. This vector is in
turn passed to the hash generator that generates a unique 64-bit
perceptual hash. This perceptual hash value is considered the
micro-structure signature. The output of this stage is database
with an individual entry for each pre-characterize RTL micro-
structure MicroSi that contains for each micro-structure
MicroSi = {pHashi, Ci}, here pHashi is the perceptual
hash value and Ci the ANSI-C code snippet optimized for
HLS for that particular micro-structure, as shown in Fig. 4.

Stage 2: MIRROR RTL2C Compiler: The compiler itself
can be sub-divided into three main phases, as shown in Fig.3.
The next sub-sections describe these in detail.
Step 1: Compiler Front-end: This first step parses the Verilog
descriptions and creates an abstract syntax tree (ASTRLT)
from it. For this it uses a Python-based Hardware design parser
called Pyverilog [13]. The parser checks for syntax errors
in the Verilog code, performs basic technology independent
optimization like constant propagations and outputs an AST
representation (ASTRTL).

New unseen Micro-structure

Abstract syntax tree
(AST) generator

Hash generator
(perceptual hashing)

AST to vector
translator

Abstract syntax tree
(AST) generator

Hash generator
(perceptual hashing)

AST to vector
translator

Hamming Distance
H(Hashkern,Hashnew)

H<Hthresh

?

Use micro-struct
from data base

DON’T use micro-
struct from date base

0xFBA4541232324352132A2 0xFBA454123232435213F52

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

x x x x

+ +

+

buffer0 coef0 buffer1 coef1 buffer2 coef2 buffer3 coef3

out

Pre-characterized Micro-structure

Fig. 5: RTL micro-structure (MS) detection through perceptual
hashing of RTL abstract syntax tree (ASTRTL).

Step 2: Main Compiler Pass: This second stage is the main
compiler pass that analyzes the ASTRTL to generate the
optimized C code for HLS. This pass is based on a library
with different rules that are applied to the AST. These rules
are expressed in a modular and extensible way in the compiler
framework such that new rules can be easily added. The first
rule parses the ASTRTL and automatically extracts any micro-
structures in it. It then checks in the micro-structures database
generated in the first stage if any of the micro-structures
extracted match by comparing their perceptual hash.Fig.5
shows an example. if there is a match, then the portions of
the ASTRTL is substituted by the corresponding behavioral
description of that micro-structure stored in the DB. In the
example shown the structures are similar, but the new one is
pipelined, while the original in the database is not.

The similarity/difference between two micro-structures is
estimated by computing the hamming distances between their
hash values, e.g., Hashp and Hashq , Hashdiff (p, q) =
{(Hashp;Hashq)}, where a large H represents a large differ-
ence in the micro-structures being compared. In the example
given in Fig.5, the only changes between the two micro-
structures are the flip-flops are inserted between the multipliers
and the adder tree. Thus, the hash values are almost identical,
and hence, the result is that the pre-characterized micro-

structure can be used to translate this new unseen micro-
structure into ANSI-C. We tried different hamming distances
during the experimental setup and noticed that 10% threshold
lead to good results.

The compiler also leverages that most commercial HLS
tools perform automatic internal variables bitwidth opti-
mization. Basically, designers only must specify the desired
bitwidth at the primary inputs and outputs and the HLS
tool will automatically adjust the bitwidth of the internal
variables. Thus, this stage also creates a database of additional
features required by the compiler. These include the name and
bitwidth of the primary IOs, and internal signals as well as the
functional units (FUs) and assignment expressions.

This information is used in the following compiler passes
that use additional rules stored in the extensible rule database
to continue the conversion process. E.g., detecting constant co-
efficient multiplication. Many DSP applications contain these
types of operations, but these multiplications can be re-written
as either a shift in the case of powers of 2 multiplications
or shifts and addition/subtractions. Moreover, shift can be
simplified using simple bitwise extraction and concatenation.
E.g., expressions like the following:

a s s i g n o d a t a = {3 ’ h0 , d a t a [7 : 3] } ;
needs to be converted to odata = data/8;

The compiler continues with the rule-based transformation
adding to the internal database all the of the transformations
found and by generating a new internal data structure of
the ASTRTL pointing to the optimizations identified in the
internal database.
Step 3: Compiler Back-end: This last compiler stage takes
as input the analyzed AST with the different conversion
optimizations and outputs the ANSI-C code for HLS (CHLS).
As mentioned previously the only exact bitwidths that will be
set are the ones from the primary IOs, but because ANSI-C
does not allow to set custom data types we use the custom data
types that commercial HLS tools always include. E.g., Xilinx
Vivado and Siemens Catapult both use the ac type data types,
and Cadence Stratus the SystemC sc int data type that allows
to specify any bitwidths. This step is extremely important as
it affects the bitwdith of the FUs that will be generated when
synthesizing the behavioral description.

Finally, as shown in Fig.3, the user can decide to run an
automatic functional verification check to make sure that the
converted C code functionally equivalent to the original RTL
code. This process is automated if the RTL code given includes
a testbench with separate test vectors. In this case our proposed
framework automatically generates a main function wrapper
on top of CHLS passing the test vectors to the newly generated
C code that is instantiated as a function in it. gcc is then used
to compile the entire program, which is then executed and the
outputs compared against the golden outputs from the RTL
simulation.

V. EXPERIMENTAL RESULTS

Table I shows an overview of the experimental setup used to
test our proposed flow. NEC CyberWorkBench v.6.1.1 is used

TABLE I: Experimental Setup
HLS Tool NEC CyberWorkBench 6.1.1

Logic Synthesis Synopsys Design Compiler v.0-2018.06-SP1
HLS Frequency 200 MHz

Synthesis Technology Nangate 45nm Opencell
Compiler front-end Pyverilog [13]

Compiler Python 3.0

as HLS tool to convert the behavioral description back into
RTL. Synopsys Design Compiler v.0-2018.06-SP1 is used to
synthesize manually written RTL code (Verilog) and compare
it with our converted C code that is in turn synthesized back to
RTL using Cadence Stratus. In all cases the target technology
chosen is Nangate 45nm OpenCell and the target synthesis
frequency 200MHz. The compiler itself was written in Python
(4,000 lines of code) and we use Pyverilog [13] as front-end
to parse the Verilog code.

Two set of independent experiments were conducted to mea-
sure the effectiveness of our proposed flow. First, to quantify
numerically the quality of the conversion, we take several
benchmarks from the open source S2CBench benchmark suite
written in SystemC for HLS and perform a HLS DSE on
them obtaining the Pareto-optimal designs. We then choose
the Pareto-optimal design (RTL) with highest performance
(throughput) and convert it back to ANSI-C through our
proposed RTL to C compiler and re-explore it. Intuitively, if
the compiler is successful, the original DSE results and the
DSE results from the compiled behavioral description should
match. To measure the actual quality of the conversion we use
Average Distance to Reference Set (ADRS) which is typically
used to compare multi-objective optimization problems like
these ones [14].

ADRS indicates how close a Pareto-front is to the ref-
erence front. In this particular case we run an exhaustive
enumeration of all possible pragma combinations to obtain
the optimal designs. Although time consuming, this guaran-
tees to find the optimal designs in all cases. The smaller
the ADRS value is, the closer the obtained approximated
front is to the reference front. Given a reference Pareto-
front Γ = γ1 = (a1, l1), ..., γn = (an, ln) and an approximate
Pareto front Ω = ω1 = (a1, l1), ..., ωn = (an, ln) with a ∈ A
and l ∈ L, where A is the design area and l its correspondent
latency. ADRS can thus, be defined as follows:

ADRS(Γ,Ω) =
1

|Γ|
∑
γ∈Γ

min
ω∈Ω

f(γ, ω)

f(γ = (aγ , lγ), ω = (aω, lω)) = max{|aω−aγaγ
|, | lω−lγlγ

|}
The lower the distance value (ADRS) is, the more similar

two Pareto sets are. Based on this the exploration results of
the original S2CBench description and our converted C code
should both have an ADRS of 0%. We also compare our
method vs. the state of the art following the instructions from
Veriintel2C [7] to compare our compiler with this previous
work.

The second set of results uses manually written RTL code
obtained from OpenCores [9] and shows how our proposed
compiler can generate a variety of different designs from

TABLE II: Experimental results comparing quality of search
space of original C code vs. converted through our compiler

Benchmark Original Previous ([7]) MIRROR (Proposed)
ADRS[%] ADRS[%] ADRS[%]

ave8 0.0 100 0.0
fir 0.0 90.3 0.0

sobel 0.0 97.1 12.4
interp 21.8 85.1 1.07
decim 0.0 100 13.79

dct 0.0 100 0.0
Avg. 3.6 94.5 4.5

a single fixed micro-architecture (RTL code), as this is the
ultimate goal of this work.

It should noted that none of these behavioral nor RTL
benchmarks were used to build the micro-structures pre-
characterization library.

Experiment 1 : Design Space Comparison: Table II com-
pares the quality of the Pareto-optimal designs obtained from
the C code generated by our compiler (converted) compared
to the Pareto-optimal designs obtained from the benchmarks
(original) and previous work (Veriintel [7]). To reduce the
effect of any stochastic effect of the design space exploration
process, we use an exhaustive search to explore all of the
benchmarks so that we can compare the optimal designs found
in both of the behavioral descriptions.

From the results shown in the table we can make the
following observations: Observation 1: Surprisingly for one
of the benchmarks (interpolation filter - interp), the converted
C code leads to better results than the original behavioral
description (ADRS of 1.07% vs. 21.8%). Upon investigating
this, we noticed that our compiler grouped all of the three
FIR filters that form this interpolation filter into a single for
loop, while the original behavioral description has each filter
described into separate for loops. This is a more natural way
of expressing the interpolation filter, but it seems that this
leads to problems in the HLS tool, not being able to perform
optimizations across loops. Observation 2: For three of the
benchmarks our compiler generates an equivalent behavioral
description that leads to the same ADRS (ave8, fir and dct).
Observation 3: For two other benchmarks, the exploration
lead to worse results. In particular decimation (decim) and
sobel. Upon investigating this, we noticed that these bench-
marks contain multi-dimension arrays, which can be explored
by expanding and partitioning different dimensions of the
array. This leads to a wider search space as compared to
our compiled C code that does not have multi-dimension
arrays. Unfortunately, the proposed compiler currently does
not support this, but based on these results this has been
added as a future extension. Observation 4: Our proposed
work leads to much better results than the state-of-the art. This
previous work uses the back-edges in the CDFG to build loops,
but for these particular DSP and image processing applications
that are pipelined and contain multiple tree like structures (no
back-edges), this previous could not generate any loops, and
hence, the generate C code could not be explored at all. The
C code was generated we basically ‘flatten’ C code similar to
previous work that compiled RTL to C code just to create a

0 10 20

800

1,000

1,200

Latency [clk cycles]

A
re
a
[µ
m

2
]

FFT

0 10 20

500

1,000

1,500

2,000

Latency [clk cycles]

FHT

0 20 40 60
0

0.5

1

1.5

·104

Latency [clk cycles]

PCA

Manual RTL Converted (MIRROR)

Fig. 6: Manually optimized RTL code (Manual) vs. trade-off curve of obtained through our RTL to C compiler (MIRROR).

functional verification model [1], [3] .

Experiment 2 : Manually Optimized RTL : Figures 6 show
the results in terms of area and latency of three manually
written RTL designs obtained from OpenCores [9] (manual
RTL) and synthesized using Synopsys DC compiler vs. the
results of the converted C description subsequently explored to
obtain additional designs (converted). In particular a pipelined
128-point FFT, Fast Hadamard Transform (FHT) and Prin-
cipal Component Analysis (PCA). From the results shown
in these figures we can make the following observations:
Observation 1: In all cases the converted behavioral descrip-
tion can generate a design that has the exact same performance
as the manually optimized design (same latency). This is
important because it shows that the compiler does not lead
to any performance penalties. Observation 2: Although our
proposed flow does not lead to any performance penalties, the
designs have larger area in two out of the three benchmarks
(FHT and PCA). In particular for the PCA benchmark the
area for the design with same performance as the manual
RTL increases by 9%. One of the reasons observed is that
our compiler relies on the HLS tool to perform automatic
bitwidth optimization. We noticed that in this particular case
the manually optimized design did more aggressive optimiza-
tions than the tool. Observation 3: Our proposed flow is able
to generate a variety of different designs with unique area vs.
latency trade-offs from the original manually optimized RTL
code. This is one of the most significant contributions of this
work as it allows to re-target any legacy RTL description for
newer applications and products.

Based on these results we can conclude that our proposed
RTL to C compiler flow works well and that is able to expand
the search space of hand coded RTL code efficiently. We
have also shown that the compiler sometimes leads to better
results than manually written C code for HLS as it does some
optimizations like loop grouping that are not natural when
writing C code manually.

VI. CONCLUSION

In this work, we have introduced an RTL to C compiler
that has the objective to maximize the ability of maximize
the re-usability of newly converted behavioral description by

generating mainly array, loops. Experimental results show
the effectiveness of our compiler. We believe that this flow
has the potential to accelerate the adoption of HLS as well
as to allow an easy and painless path to modernize legacy
hardware designs written in Verilog or VHDL. Future work
will extend the compiler to be able to generate functions and
multi-dimensional arrays as we have seen that these leads to
additional optimal designs when explored.

REFERENCES

[1] W. Snyder, P. Wasson, and D. Galbi, “Verilator – convert
verilog code to c++/systemc,” Oct. 2016. [Online]. Available:
http://www.veripool.org/wiki/verilator

[2] W. Stoye, D. Greaves, N. Richards, and J. Green, “Using rtl-to-c++ trans-
lation for large soc concurrent engineering: a case study,” Electronics
Systems and Software, vol. 1, no. 1, pp. 20–25, Feb 2003.

[3] R. Mukherjee, “v2c - a verilog to c translator tool,” Oct. 2022.
[Online]. Available: http://www.cprover.org/hardware/v2c/

[4] C. (now ARM), “Carbon model studio,” Oct. 2017. [Online]. Available:
http://carbondesignsystems.com/

[5] N. Bombieri, F. Fummi, and G. Pravadelli, “Abstraction of rtl ips into
embedded software,” in DAC, ser. DAC ’10. New York, NY, USA:
ACM, 2010, pp. 24–29.

[6] N. Bombieri, H. Y. Liu, F. Fummi, and L. Carloni, “A method to abstract
rtl ip blocks into c++ code and enable high-level synthesis,” in DAC,
May 2013, pp. 1–9.

[7] A. Mahapatra and B. Carrion Schafer, “VeriIntel2C: Abstracting RTL to
C to maximize High-Level Synthesis Design Space Exploration,” Integr.,
vol. 64, pp. 1–12, 2019.

[8] Md Imtiaz Rashid, Qilin Si and Benjamin Carrion Schafer, “Moderniz-
ing hardware circuits through high-level synthesis,” in ISCAS, 2022, pp.
1739–1743.

[9] OpenCores, “opecores.org,” Oct. 2022. [Online]. Available:
https://opencores.org/

[10] Yuko Hara et al., “Chstone: A benchmark program suite for practical
c-based high-level synthesis,” in ISCAS, May 2008, pp. 1192–1195.

[11] B. Carrion Schafer and A. Mahapatra, “”s2cbench: Synthesizable sys-
temc benchmark suite for high-level synthesis”,” Embedded Systems
Letters, IEEE, vol. 6, no. 3, pp. 53–56, 2014.

[12] J. Fridrich and M. Goljan, “Robust hash functions for digital wa-
termarking,” in Proceedings International Conference on Information
Technology, 2000, pp. 178–183.

[13] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design
processing toolkit for verilog hdl,” in Applied Reconfigurable Comput-
ing, vol. 9040, Apr 2015, pp. 451–460.

[14] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance assessment of multiobjective optimizers: an analysis
and review,” IEEE Transactions on Evolutionary Computation, vol. 7,
no. 2, pp. 117–132, April 2003.

	Select a link below
	Return to Previous View
	Return to Main Menu

