
PumpChannel: An Efficient and Secure
Communication Channel for Trusted Execution
Environment on ARM-FPGA Embedded SoC

Jingquan Ge †, Yuekang Li †, Yang Liu ‡ † ∗ , Yaowen Zheng †, Yi Liu †, Lida Zhao †
† School of Computer Science and Engineering, Nanyang Technological University

‡ Zhejiang Sci-Tech University
{jingquan.ge, yuekang.li, yangliu, yaowen.zheng}@ntu.edu.sg, {yi009, LIDA001}@e.ntu.edu.sg

Abstract—ARM TrustZone separates the system into the rich
execution environment (REE) and the trusted execution environ-
ment (TEE). Data can be exchanged between REE and TEE
through the communication channel, which is based on shared
memory and can be accessed by both REE and TEE. Therefore,
when the REE OS kernel is untrusted, the security of the commu-
nication channel cannot be guaranteed. The proposed schemes
to protect the communication channel have high performance
overhead and are not secure enough.

In this paper, we propose PumpChannel, an efficient and
secure communication channel implemented on ARM-FPGA
embedded SoC. PumpChannel avoids the use of secret keys, but
utilizes a hardware and software collaborative pump to enhance
the security and performance of the communication channel.
Besides, PumpChannel implements a hardware-based hook in-
tegrity monitor to ensure the integrity of all hook code. Security
and performance evaluation results show that PumpChannel is
more secure than the encrypted channel countermeasures and
has better performance than all other evaluated schemes.

Index Terms—ARM-FPGA, TrustZone, TEE, REE, Commu-
nication, kernel

I. INTRODUCTION

In recent years, ARM-based electronic devices have flooded
the market. These products have been deeply integrated into
daily life, so that they inevitably store or process sensi-
tive privacy data. To protect these data, ARM TrustZone-
based Trusted Execution Environment (TEE) was proposed
and continuously enhanced [1]–[5]. Nowadays, as consumers
pay more attention to information security, the application
scenarios of TrustZone-based TEE are not limited to common
ARM-based devices such as smartphones and tablets. Various
types of IoT and embedded devices, including drones and
vehicle electronic equipment, have begun to deploy TEE in
their systems [6], [7].

TrustZone-based TEE is isolated from Rich Execution En-
vironment (REE), so that attackers in the REE cannot access
resources of TEE directly. The normal applications run in REE
while the Trusted Applications (TAs) are executed in TEE.
The only way for an REE process to access the resources
of TEE is to invoke TAs. Each TA has a corresponding
client application (CA) in REE. To access the resources of
TEE, a CA process needs to create its own communica-
tion channel to exchange data with the corresponding TA.

∗ The corresponding author.

Normally, this channel is established based on the shared
memory which can be accessed by both REE and TEE.
However, the communication channel is not secure when REE
OS kernel is untrusted. Many researchers have successfully
exploited this type of vulnerabilities [8]–[10]. Even without
the kernel privilege, attackers in user space can deceive the
TAs to process deliberately crafted data in the fake memory
addresses [11], [12]. Worse still, the REE OS kernel can access
physical addresses freely due to the existence of the Physmap
mechanism [13]. Therefore, the data in these communication
channels can be easily stolen or tampered with by the untrusted
REE OS kernel (e.g., man-in-the-middle attack). To protect the
communication channel between TEE and REE, researchers
have proposed several software defense schemes [12], [14]–
[16]. However, these software defense schemes are either not
secure enough or have too much performance overhead.

Benefiting from the special architecture combining hardware
and software, ARM-FPGA embedded SoC has been widely
used in drones, vehicle electronic equipments, machine vi-
sion systems and other IoT devices [17], [18]. Similar to
smartphones and tablets, these security-sensitive devices also
require TrustZone-based TEE to protect sensitive data [6], [7],
[19]. Since both the software and hardware on the ARM-
FPGA embedded SoC can be freely programmed, it provides
researchers with more possibilities to implement secure and
efficient hardware/software co-design for TEE.

In this paper, we propose PumpChannel, a hardware-
software collaborative design to protect the communication
channel of TrustZone-based TEE on ARM-FPGA embedded
SoC. PumpChannel consists of a pump in hardware and
hooks in software, which can pull/push the sensitive data
out of/into the communication channel. When a CPU core
enters REE kernel mode from REE user mode or TEE, the
data are pumped from the communication channel into the
memory owned by PumpChannel. They will be pumped from
the memory owned by PumpChannel into the communication
channel when a CPU core enters TEE or returns to REE
user mode from REE kernel mode. Therefore, the malicious
REE kernel cannot steal or tamper with sensitive data in the
communication channel. To ensure the integrity of all the
hooks, we design the hook integrity monitor in the hardware,
which can continuously check whether the code segment of

2023 Design, Automation & Test in Europe Conference (DATE 2023)	

 978-3-9819263-7-8/DATE23/© 2023 EDAA

	

each hook has been modified. The performance evaluation
results show that PumpChannel incurs less than 28% overhead
on different CA executions and less than 82% overhead on
TA invocation in different payload sizes. The two types of
performance overhead are better than other defense schemes.
Our main contributions are summarized as follows:
• We create a hardware-software collaborative design—

PumpChannel—on ARM-FPGA embedded SoC. It provides
a secure communication mechanism for TEE, which can
stop the untrusted REE kernel from accessing the commu-
nication channel.

• PumpChannel avoids security vulnerabilities and encrypted
calculations caused by the use of secret keys, so it has better
security and performance.

• We utilize PumpChannel and other schemes to run attack
and performance evaluation experiments. The results show
that PumpChannel is not only secure but also efficient.

II. BACKGROUND

This section provides necessary backgrounds of PumpChan-
nel, including the architecture of TrustZone-based TEE, the
communication channel between REE and TEE, and the ARM-
FPGA embedded SoC. Besides, since the attack experiments
in Section V utilize direct mapping in kernel address space
(Physmap), we introduce its background knowledge in detail.

A. Architecture of TrustZone-based TEE

TrustZone [20] is a hardware security extension of ARM
processor, which has been widely deployed in mobile phones,
tablets, drones, automotive electronics and other IoT devices.
Based on TrustZone technology, the system can be separated
into two domains: the Rich Execution Environment (REE)
and the Trusted Execution Environment (TEE). Various Client
applications (CAs) run in REE, while Trusted Applications
(TAs) run in TEE. Each TA in TEE has a corresponding CA in
REE to interact with. There are two TEE-related components
in REE OS, namely TEE client and TEE driver. TEE client is
a dynamic library that provides convenient APIs for the CA,
while TEE driver is responsible for the interaction between
CA and TA.

B. Communication Channel between REE and TEE

Before REE and TEE exchange data to each other, the
communication channel needs to be established between the
two domains. This communication channel is based on the
cross-domain shared memory [2] that can be accessed by both
REE and TEE. It is the communication channel between the
corresponding CA and TA. Generally, cross-domain shared
memory is a physically continuous memory pool. When the
system is running, the shared memory is mainly managed by
the TEE driver, including allocation and release. The smallest
unit of cross-domain shared memory is a 4KB block, and each
block corresponds to a unique ID. The CA process accesses
the corresponding shared memory block by specifying the ID.
The TEE driver obtains the physical address according to the
shared memory ID, and sends the physical address to the TEE.

Then, TA gets this physical address and reads the data input
of CA. After the TA’s calculation process is completed, the
calculation result will be stored into the corresponding shared
memory. Then, the CA process reads the output data from the
shared memory and continues to process the data.

C. Direct Mapping in Kernel Adress Space—Physmap

In the kernel address space, there is a large continuous
virtual memory area called “Physmap”, which contains the
direct mapping of part or all of the physical memory. In x86-
64 and AArch64 architecture systems, Physmap directly maps
all of RAM physical addresses [13]. Physmap can allocate or
deallocate memory without touching the kernel’s page table
[21], so it is essential to improve kernel performance. In
AArch64 architecture, Physmap is mapped with RW (readable
and writeable) permissions in every kernel version. This leaves
an exploitable vulnerability for attackers. The existence of
Physmap will cause the virtual address of the user process and
the kernel virtual address to be mapped to the same physical
address, resulting in virtual address aliases or synonyms [22].
Since AArch64’s Physmap maps all physical memory, mali-
cious kernel modules can access the memory of user processes
through kernel-resident synonym. More importantly, Physmap
mechanism bypasses the page table access mechanism, so all
protections based on the page table are invalid.

III. THREAT MODEL AND ASSUMPTIONS

PumpChannel aims to build a secure and efficient trusted
communication channel between CA and TA on the ARM-
FPGA embedded SoC to resist potential attacks from the un-
trusted REE OS kernel. PumpChannel is a software/hardware
collaborative design, so our security assumptions are divided
into software and hardware. In software, we assume that
components running in TEE (including TAs, TEE OS, and the
secure monitor) are all trusted and booted up by the TrustZone-
based secure boot technology [23]. We also assume that the
legitimate CA process in REE will not maliciously use TA
or leak cross-domain communication data to the REE OS
kernel. In hardware, we assume that all the hardware modules
of PumpChannel can only be accessed by the hooks or the
OP-TEE driver.

In this paper, the attacker with kernel privilege in the REE
can modify and monitor the code in the REE OS kernel, but
cannot manipulate the process scheduling and OP-TEE driver
code. Specifically, an attacker can launch two types of attack
on the communication channel for TEE. First, the attacker can
obtain the address of the communication channel and access
(stealing or tampering with) the sensitive data in it. Second,
the attacker can utilize Physmap to bypass the protection of
the page table and freely access physical addresses. With this
ability, the attacker can steal the secret key of the encrypted
communication channel.

IV. DESIGN AND IMPLEMENTATION

This section details the design and implementation of our
hardware/software collaborative design — PumpChannel. We

first describe the components of PumpChannel and the func-
tion of each component in Section IV-A. Section IV-B shows
the data and control flow of PumpChannel.

A. Overview of PumpChannel

ARM Cortex-A53

Mode Switch Hooks

software

Main Memory

AXI Bus

FPGA
Channel
Mapper

PumpChannel
Memory

Pump Machine Hook
Integrity
Monitor

Environment Switch Hooks

Component of PumpChannel Communication Bus

hardware

Fig. 1. The architecture of PumpChannel

As shown in Figure 1, PumpChannel consists of 6 modules,
of which 4 modules are implemented in hardware and 2
modules in software. The hardware modules of PumpChannel
are respectively named Pump Machine, Channel Mapper,
PumpChannel Memory and Hook Integrity Monitor. While
Mode Switch Hooks and Environment Switch Hooks are the
software modules of PumpChannel. Next, we describe the
main functions of each module in detail.

1) Hardware Modules of PumpChannel:
Channel Mapper: The current → pid of the legal CA and

the physical addresses of the corresponding communication
channel are stored in it. The purpose of storing current → pid
is to allow the legitimate CA process to only access their own
communication channel.

Pump Machine: It pumps sensitive data into or out of the
communication channel according to the process and address
information stored in the Channel Mapper.

PumpChannel Memory: This memory is implemented
based on the block RAM [24] of FPGA and utilized to tem-
porarily store sensitive data pumped out of the communication
channel.

Hook Integrity Monitor: It can monitor whether the code
segment of every hook function has been modified.

2) Software Modules of PumpChannel:
Mode Switch Hooks: They include two hooks, user-kernel

hook and kernel-user hook. The mode switch from user mode
to kernel mode of each CPU core is hooked by the user-kernel
hook. The kernel-user hook hooks the opposite mode switch.
The two hooks trigger the Pump Machine module to pump
data into or out of the communication channel.

Environment Switch Hooks: They include two hooks,
REE-TEE hook and TEE-REE hook. The environment switch
from REE to TEE is hooked by REE-TEE hook. The opposite

environment switch is hooked by TEE-REE hook. The Pump
Machine module can be triggered by the two hooks to pump
data into or out of the communication channel.

B. Data and Control Flow of PumpChannel

In this section, we detail the data and control flow of
PumpChannel. As shown in Figure 2, We divide the entire
system into four states, which are REE user mode, REE kernel
mode, TEE kernel mode and TEE user mode. Mode Switch
Hooks are in the middle of REE user mode and REE kernel
mode to hook the switch of these two states. Environment
Switch Hooks hook the switch between TEE and REE, so they
are in the middle of REE kernel mode and TEE kernel mode.
Both the data and control flow of the entire design has 6 steps.
Next, we describe the steps of control and data flow.

1) REE User Mode → REE Kernel Mode: When the system
switches from REE user mode to REE kernel mode, step
{A}, {1} and {2} will be executed. {A}: The user-kernel
hook sends pump out signal to Pump Machine. The pump out
signal can trigger the Pump Machine module to pump data.
{1}: When Pump Machine receives pump out signal, it will
pump the sensitive data out of all the communication channels
and store them into PumpChannel Memory. {2}: After step
{1} is completed, Pump Machine will clear all the data of the
communication channels to 0.

2) REE Kernel Mode → REE User Mode: Step {C} and
{6} will run when the system switches from REE Kernel Mode
to REE User Mode. {C}: The kernel-user hook sends the
pump in and current → pid signals to Pump Machine. The
pump in signal can trigger Pump Machine to pump data. {6}:
When Pump Machine receives pump in and current → pid
signals, it will pump the current process’s sensitive data from
PumpChannel Memory into the current process’s communica-
tion channel.

3) REE Kernel Mode → TEE Kernel Mode: At the moment
when REE Kernel Mode switches to TEE Kernel Mode, step
{B} and {3} will run. {B}: Same as the kernel-user hook, the
REE-TEE hook sends pump in and current → pid signals to
Pump Machine. {3}: When pump in and current → pid
signals are received by Pump Machine, the current pro-
cess’s sensitive data will be pumped by Pump Machine from
PumpChannel Memory into the current process’s communica-
tion channel.

4) TEE Kernel Mode → REE Kernel Mode: When the
system switches from TEE kernel mode to REE kernel mode,
step {D}, {4} and {5} will be executed. {D}: The TEE-REE
hook sends pump out signal to Pump Machine. {4}: When
pump out signal reaches Pump Machine, the sensitive data
will be pumped out of all the communication channels and
stored into PumpChannel Memory by Pump Machine. {5}:
After step {4}, Pump Machine zeros the physical addresses
of all the communication channels.

5) Hook Integrity: Step {E} and {F} is to ensure the
integrity of all the hooks in PumpChannel’s design. {E}: Hook
Integrity Monitor cyclically checks the static code segment of
the Mode Switch Hooks and calculates the hash value. If it

CA Process

Software (ARM)

Hardware (FPGA)

Shared Memory

0xFFFF99998

...

Mode
Switch
Hooks

Shared Memory

0x000000000

...

Environment
Switch
Hooks

Shared Memory

0xFFFF99998

...

TA Process

Shared Memory

0xFFFF99998

...

Kernel Mode

Hook
Integrity

Monitor #1

Hook
Integrity

Monitor #2

Pump Machine

REE OS TEE OS

User Mode User Mode Kernel Mode

{2}/{5}

{1}

{6}

{3}

{4}

{A}/{C}{E} {F}{B}/{D}

Data Page

Control Flow

Data Flow

PumpChannel Memory

0xFFFF99998

...

Fig. 2. Data and control flow of PumpChannel

is found that the code segment of the Mode Switch Hooks
has been modified, the Hook Integrity Monitor will correct
it immediately. {F}: Same as step {E}, the Hook Integrity
Monitor will check the static code segment of Environment
Switch Hooks cyclically and correct it in real time.

V. SECURITY ANALYSIS

In this section, we describe a security analysis for
PumpChannel. First, we introduce our attack experimental
setup. Second, We present the comparative attack results
of the original communication channel and PumpChannel.
Finally, we show the successful attack on the secret key of
SeCReT scheme to present the vulnerability of encrypted
communication channel.

A. Attack Experimental Setup

Our experimental platform is the ZCU102 Evaluation Board
[25], which is a complete development kit for designers who
are interested in exploring designs using Xilinx Zynq Ultra-
Scale+ MPSoC [26]. Zynq UltraScale+ MPSoC is the Xilinx
second-generation Zynq platform, which combines Cortex-
A53 64-bit quad-core processor, Cortex-R5 dual-core real-
time processor and FPGA together into a single device. We
perform all the experiments on the embedded Linux system
running on the Zynq UltraScale+ MPSoC. The version of
Linux kernel is 4.14.0-xilinx-v2018.2. The cross compiler we
use is petalinux-2018.2. We deploy OP-TEE 3.6.0 on Zynq
UltraScale+ MPSoC.

B. Comparative Attacks on the Original Communication
Channel and PumpChannel

To prove that PumpChannel can more securely protect
sensitive data in the communication channel, we design the
comparative attack experiments. The attacker installs his own
malicious kernel module in the REE kernel. The attacker’s
intention is to utilize malicious code in the REE kernel to
tamper with the data in the communication channel. The
attacker modifies the input data of the communication channel

to make the decryption TA output an illegal result. In the
attack experiments, we separately attack the original OP-
TEE communication channel and PumpChannel. In our at-
tack experiment against the original OP-TEE communication
channel, the legitimate CA process is running on CPU core
#1 and the attacker process is running on CPU core #2.
The result of the experiment is that the input data has
been successfully tampered with by the attacker using the
Physmap method. In contrast, we conduct the same attack
experiment on PumpChannel. In this experiment we find that
when the attacker process enters kernel mode, all data in
the communication channel is 0 before being tampered with.
More importantly, after the attacker process tampers with
the data in the communication channel, the CA process still
get the correct result. It indicates that the attack failed. The
results of the comparative attacks prove that PumpChannel can
effectively resist malicious kernel tampering with data in the
communication channel. So PumpChannel is more secure than
the original communication channel of OP-TEE.

C. Attacks on the Encrypted Communication Channel
To prevent directly tampering with the data in the commu-

nication channel, researchers proposed two encrypted chan-
nel schemes, namely SeCReT [14] and SeCReT Opt [15].
However, in both schemes, the secret keys used to encrypt
the communication channel are not secure enough to resist
Physmap attacks. To demonstrate this, we specially design
attack experiments against SeCReT and SeCReT Opt. The
attacker process utilizes other techniques to obtain the physical
address of the key page, and then uses Physmap to access
these physical addresses. The experimental results show that
both the secret keys of SeCReT and SeCReT Opt have been
successfully stolen. PumpChannel avoids the use of secret
keys, which also avoids the security vulnerabilities of secret
key.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PumpChan-
nel by running three tests on ZCU102 development board. The

TABLE I
LMBENCH MICRO-BENCHMARK OVERHEAD.

Test Case Original
Linux

SeCReT
Enabled

SeCReT Opt
Enabled

TrustICT En-
abled

PumpChannel
Enabled

open/close 1.00x 1.63x 1.59x 6.85x (10.81µs) 2.16x
read 1.00x 3.73x 4.45x 10.28x (3.43µs) 6.55x
write 1.00x 3.74x 4.24x ≈6.67x (3.33µs) 8.52x
fork+exit 1.00x 1.18x 1.23x 3.78x (353.86µs) 1.44x
fork+exec 1.00x 1.18x 1.22x ≈3.78x (384.64µs) 1.37x

AES Encrypt

AES Decrypt
SHA-256

AES-256 Encrypt

AES-256 Decrypt
1.2

1.4

1.6

1.8

1.40x 1.38x
1.35x 1.37x 1.37x

1.69x 1.69x

1.49x

1.64x

1.53x

1.28x 1.26x 1.27x 1.28x 1.28x

O
ve

rh
ea

d

SeCReT
TrustICT

PumpChannel

Fig. 3. Time overhead of different CA execution

performance experimental setup are the same as Section V. In
general, PumpChannel adds about 198 LOC to REE OS and 49
LOC to TEE OS. To reduce random noise, our experimental
data is the average of 10,000 cycles. We compare SeCReT,
SeCReT Opt, TrustICT and PumpChannel in the evaluation
tests to show the performance advantages of PumpChannel.

In our performance tests, We compared PumpChannel with
three other schemes. In addition to SeCReT and SeCReT Opt
mentioned in Section V, we also include TrustICT [16].
TrustICT utilizes TZASC to dynamically set the access per-
mission of the physical addresses of the communication chan-
nel. Since the use of secret keys is avoided, TrustICT is the
most close work to PumpChannel. Since none of these three
schemes have open source code, their performance evaluation
results are directly copied from their papers.

A. Evaluation of REE OS

PumpChannel executes a hook function every time the
mode is switched. This mechanism will introduce performance
overhead to REE OS. We measure this overhead by running
LMBench test suites [27]. Table I shows the results of LM-
Bench. In general, the LMBench overhead of PumpChannel
is slightly higher than SeCReT and SeCReT Opt, but much
lower than TrustICT. This overhead is a bit large because Mode
Switch Hooks need to trigger Pump Machine and clear data
of all communication channels. The performance overhead
of TrustICT is much larger than PumpChannel. The main
reason is that TrustICT’s multi-core/multi-threaded technology

128 256 512 1024 2048 4096

100

101

102

103

Payload Sizes (Bytes)

O
ve

rh
ea

d

SeCReT
SeCReT Opt

TrustICT
PumpChannel

Fig. 4. Time overhead of TA (AES encrypt) invocation in different payload
sizes

is based on software, which will greatly increase the system
performance overhead.

B. Evaluation of CA and TA

PumpChannel modifies the original communication channel,
so it will definitely affect the communication between CAs
and TAs. We test 5 CA executions using OP-TEE’s own test
suite, including AES encryption, AES decryption, SHA-256,
AES-256 encryption and AES-256 decryption. A complete CA
execution contains multiple operations, including loading TA
images, preparing key, allocating and freeing shared memory,
environment switching, reading and writing shared memory,
etc. Figure 3 shows the time overhead of different CA exe-
cutions. It can be seen from Figure 3 that TrustICT has the
largest CA execution time overheads, followed by SeCReT.
PumpChannel has the smallest time overheads for CA exe-
cution. On average, TrustICT increases its time overhead by
approximately 60%, and SeCRet increases by approximately
35%. The time overhead of PumpChannel is less than 28%.

Figure 4 presents the time overhead of the TA invocation in
different payload sizes. In this test, we use AES encryption as
a typical representative. Overall, PumpChannel has very low
overhead under all payload size conditions. The performance
advantage of software and hardware coordination keeps the
overhead of PumpChannel always below 2.00x. The SeCReT
scheme has the worst performance overheads among the four
schemes. This is mainly because the secret key protection
mechanism of SeCReT is very complicated. Compared with
SeCReT, SeCReT Opt optimizes the secret key protection

mechanism, so its overhead is extremely smaller than SeCReT.
TrustICT’s overhead is much larger than SeCReT Opt and
PumpChannel. The main reason is that TrustICT’s multi-
core/multi-threaded scheduling mechanism will greatly in-
crease the time to access the communication channel.

VII. RELATED WORK

TrustZone-based TEE: A number of research works uti-
lize TrustZone-based TEE to improve the security of critical
applications in mobile devices, multifunctional embedded and
IoT devices. AdAttester [28] provides a verifiable mobile ad
framework based on TrustZone. TrustOTP [29] isolates the
software-based OTP token in the TEE to realize trusted display
of one-time passwords. TrustShadow [30] leverages TrustZone
to guarantee secure execution of unmodified applications.
Unfortunately, all these works did not consider the security
of the communication channel between REE and TEE.

Protection of Communication Channel: For the purpose
of resisting malicious attacks from the REE OS kernel, re-
searchers have proposed several protection schemes. Jang et
al. [14], [15] proposed the SeCReT/SeCReT Opt counter-
measures, which encrypt the communication channel with a
specially protected secret key. SOTPM [31] encrypts sensitive
data in the application layer before writing the data into the
shared memory. However, none of these encryption schemes
can guarantee the security of the secret key. To better solve
the security issues, Wang et al. [16] proposed TrustICT. Using
TZASC, TrustICT can dynamically set the access permission
of the shared memory. However, they are either not secure
enough or have high performance overhead.

VIII. CONCLUSION

In this paper, we utilize software and hardware collaborative
technology to design PumpChannel on ARM-FPGA embedded
SoC, which is a secure and efficient communication channel
between REE and TEE. PumpChannel can dynamically pump
the data into or out of the communication channel, so that
the untrusted REE OS kernel cannot steal or tamper with the
data in the communication channel. Moreover, PumpChannel
can scan critical code segments in real time to ensure that the
integrity of all hooks is not damaged. The experiment results
show that PumpChannel is more efficient and more secure.

ACKNOWLEDGMENT

This research is supported by National Research Foundation
through its National Satellite of Excellence in Trustworthy
Software Systems (NSOE-TSS) project under the National
Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-
NSOE003-0001.

REFERENCES

[1] Sierraware. (2018) Sierratee trusted execution environment.
https://www.sierraware.com/open-source-ARM-TrustZone.html.

[2] Linaro. (2017) optee-os. https://github.com/OP-TEE/opte os.
[3] Qualcomm. (2017) Qseecomapi.h. https://android.googlesource.com/

platform/hardware/qcom/keymaster/+/master/QSEEComAPI.h.
[4] Google. (2017) Trusty tee. https://source.android.com/security/trusty/.

[5] Samsung. (2017) About knox. https://www.samsungknox.com/en/about-
knox.

[6] Trustonic. (2017) Not just droning on! the rise of kinibi-m.
https://www.trustonic.com/opinion/not-just-droning-rise-kinibi-m/.

[7] ——. (2017) Securing connected cars of the future.
https://www.trustonic.com/automotive/.

[8] CVEdetail.com. (2013) cve-2013-3051.
https://www.cvedetails.com/cve/CVE-2013-3051/.

[9] D. Rosenberg. (2013) Unlocking the motorola bootloader.
http://blog.azimuthsecurity.com/2013/04/unlocking-motorola-
bootloader.html.

[10] N. Keltner. (2014) Here be dragons: Vulnerabilities in trustzone.
https://atredispartners.blogspot.com/2014/08/here-be-dragons-
vulnerabilities-in.html.

[11] K. Lady. (2016) Sixty percent of enterprise android phones af-
fected by critical qsee vulnerability. https://duo.com/blog/sixty-percent-
of-enterprise-android-phones-affected-by-critical-qsee-vulnerability.

[12] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “BOOMERANG:
exploiting the semantic gap in trusted execution environments,” in NDSS
2017.

[13] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir: Re-
thinking kernel isolation,” in Proceedings of the 23rd USENIX Security
Symposium, 2014, K. Fu and J. Jung, Eds., pp. 957–972.

[14] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment,” in NDSS 2015.

[15] J. Jang and B. B. Kang, “Securing a communication channel for the
trusted execution environment,” Comput. Secur., vol. 83, pp. 79–92,
2019.

[16] J. Wang, Y. Wang, L. Lei, K. Sun, J. Jing, and Q. Zhou, “Trustict: an
efficient trusted interaction interface between isolated execution domains
on ARM multi-core processors,” in SenSys. ACM, 2020, pp. 271–284.

[17] Enclustra. (2017) Zynq ultrascale+ drone controller.
https://www.enclustra.com/en/projects/zynq-ultrascale-drone-controller/.

[18] Xilinx. (2017) Unleash the unparalleled power and flexibility of
zynq ultrascale+ mpsocs. https://www.xilinx.com/support/documenta-
tion/white papers/wp470-ultrascale-plus-power-flexibility.pdf.

[19] TrustedFirmware. (2019) how to run op-
tee on zynqmp zcu10x and ultra96 board.
https://optee.readthedocs.io/en/latest/building/devices/zynqmp.html.

[20] ARM. (2009) Arm security technology building a secure system using
trustzone technology. https://developer.arm.com /documentation/PRD29-
GENC-009492/c?lang=en.

[21] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O
ports to process management. ” O’Reilly Media, Inc.”, 2005.

[22] E. J. Koldinger, J. S. Chase, and S. J. Eggers, “Architectural support for
single address space operating systems,” in ASPLOS, 1992.

[23] ARM. (2019) Trusted firmware-a. https://github.com/ARM-
software/arm-trusted-firmware.

[24] Xilinx. Block memory generator v8.4 logicore ip product guide.
https://www.xilinx.com/support/documentation/ip documentation/
blk mem gen/v8 4/pg058-blk-mem-gen.pdf.

[25] ——. (2019) Zcu102 evaluation board user guide.
https://www.xilinx.com/support/documentation/boards and kits/zcu102/
ug1182-zcu102-eval-bd.pdf.

[26] ——. (2020) Zynq ultrascale+ device technical reference manual.
https://www.xilinx.com/support/documentation/user guides/ug1085-
zynq-ultrascale-trm.pdf.

[27] L. W. McVoy and C. Staelin, “lmbench: Portable tools for performance
analysis,” in Proceedings of the USENIX Annual Technical Conference,
1996, pp. 279–294.

[28] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using trustzone,” in MobiSys, G. Borriello,
G. Pau, M. Gruteser, and J. I. Hong, Eds. ACM, 2015, pp. 75–88.

[29] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming smart-
phones into secure one-time password tokens,” in CCS, I. Ray, N. Li,
and C. Kruegel, Eds. ACM, 2015, pp. 976–988.

[30] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with ARM
trustzone,” in MobiSys. ACM, 2017, pp. 488–501.

[31] D. Shim and D. H. Lee, “SOTPM: software one-time programmable
memory to protect shared memory on ARM trustzone,” IEEE Access,
vol. 9, pp. 4490–4504, 2021.

	Select a link below
	Return to Previous View
	Return to Main Menu

