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Abstract—Post-training quantization of neural networks consists
in quantizing a model without retraining nor hyperparameter
search, while being fast and data frugal. In this paper, we
propose LatticeQ, a novel post-training weight quantization
method designed for deep convolutional neural networks (DC-
NNs). Contrary to scalar rounding widely used in state-of-the-
art quantization methods, LatticeQ uses a quantizer based on
lattices – discrete algebraic structures. LatticeQ exploits the inner
correlations between the model parameters to the benefit of
minimizing quantization error. We achieve state-of-the-art results
in post-training quantization. In particular, we achieve ImageNet
classification results close to full precision on Resnet-18/50, with
little to no accuracy drop for 4-bit models. Our code is available
here, and a more thorough version of the paper here.

Index Terms—Artificial Intelligence, Neural networks, Quanti-
zation, Post-training

I. INTRODUCTION

Post-training quantization (PTQ) can be critical for rapid
deployment of neural network models on embedded targets. We
introduce a post-training quantization technique for DCNNs,
which achieves state-of-the-art classification performance under
various data availability hypotheses. Our method relies on a new
quantizer that uses linear correlations between the parameters
of convolution layers to minimize quantization error.

II. PRELIMINARY OBSERVATIONS

Fig. 1: Correlation diagram of layer 4.0 conv2 kernels (3× 3).

On Figure 1, we plot in row i and column j the points
(wi, wj) for each filter f = (w1, ..., w9) in a chosen 3 × 3

convolution layer of a Resnet50. On the long diagonal, we plot
the histogram of wi. Kernel weights are strongly correlated.
From this observation, we justify the main assumption of our
method: a quantizer “shaped as a parallelogram” is more data
efficient than a uniform quantizer “shaped as a square” (see
Figure 2).

Fig. 2: Uniform quantization (left) and lattice quantization (right).
Red dots are quantization points, blue dots are FP weights.

III. RELATED WORK IN POST-TRAINING QUANTIZATION

[2] introduces bias correction and per-channel bit allocation.
[3] designs a quantizer to minimize the MSE loss of the
quantization operation. More recent approaches use a few
samples of data. [5] tries to optimize weights rounding. [7]
proceeds by bit optimization. [4] notices that blockwise opti-
mization yields better results than usual layerwise optimization.
Although degradations are still observed when quantizing to
low precisions.

IV. METHODS

A. Quantization

In order to quantize the weights, LatticeQ uses lattices, which
are algebraic structures that discretize the notion of vector space.
Each lattice has a basis, meaning that each point of the lattice
can be written as an integer linear combination of the vectors
of this basis. This integer linear combination is the encoding
of LatticeQ. Thus, our quantization points are of the following
form:

Let Λ be a lattice, and B = (bi)1≤i≤n ∈ Rn a basis of Λ.
Given b the bitwidth, our quantization set is Q = {q ∈ Rn, q =∑n

i=1 fibi, ∀i ∈ {1, ..., n}, −2b−1 ≤ fi ≤ 2b−1 − 1}.
The quantization process for a 3×3 layer is the following: we

flatten the weights and group them by blocks of 3. Then, using
the quantization basis, we search for the nearest quantization
point to this block. The vector found is the quantization point
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for this block. For scalar quantization, the quantization operation
relies on a simple round function, but to quantize on any lattice
means to solve the Closest Vector Problem (CVP), which is
finding the closest lattice point to a real vector: “Given x ∈
Rn and Λ a lattice of Rn, find λ ∈ Λ such that: d(x, λ) =
min{d(x, l), l ∈ Λ}.”

In order to solve the closest vector problem, we use the basic
and well-known nearest plane algorithm [1].

B. Basis search
Once the problem of quantizing on a lattice is adressed,

there remains to find the most relevant lattice. For the data
free approach, we opt for a simple random search with restarts,
where restarts simply consist in running the algorithm several
times in a row and keeping the best result of all the runs. We
look for a lattice that reduces the mean cube error loss (MCE)
between the full precision weights of the layer (or channel),
and their quantized version.

V. EXPERIMENTS

A. Zero-shot LatticeQ

TABLE I: LatticeQ with per-channel quantization and bias
correction from [2] on ImageNet.

Top-1 accuracy
Network Method W4A32 W3A32 W2A32

Resnet-18 (69.8)
LatticeQ (Ours) 69.0 66.7 41.7

Banner et al. 67.5 43.2 1.2
OMSE+opt 67.1

Resnet-50 (76.0)
LatticeQ (Ours) 75.6 73.6 47.3

Banner et al. 74.8 67.4 0.4
OMSE+opt 74.7

VGG16-bn (73.4) LatticeQ (Ours) 72.9 70.9 40.7
Banner et al. 71.6 65.9 0.1

Densenet-121
(74.4)

LatticeQ (Ours) 73.3 68.9 10.4
Banner et al. 69.8 54.2 0.5
OMSE+opt 71.7

Mobilenet-v2
(71.9)

LatticeQ (Ours) 68.2 48.9 0.3
Banner et al. 62.8 13.9 0.1

B. LatticeQ with data samples

TABLE II: LatticeQ with 512 training images

Top-1 accuracy
Network Method W4A32 W3A32

Resnet-18 (69.8)
LatticeQ (Ours) 69.3 68.6

Adaround 68.6
Bitsplit 69.1 66.8

Preresnet-18
(71.0)

LatticeQ (Ours) 70.5 69.3
Brecq 70.3 69.0

We evaluate our method on the ImageNet [6] classification
task. We report bitwidths settings and top-1 accuracy for each
tested model, and we also provide the results from [2], [3], [5]
and [4], [7] for comparison. As we see, in both tested hypotheses,
LatticeQ reaches state-of-the-art accuracy for quantization.

VI. ANALYSIS

Fig. 3: Resnet18 per-layer quantization error comparison
between LatticeQ and Cubic LatticeQ (scalar quantization).
Vertical axis is MCE.

TABLE III: Comparison between baseline per-channel LatticeQ
and baseline per-channel Cubic LatticeQ (scalar quantization).

Network Method FP32 W4A8

Resnet-18 LatticeQ 69.8 67.2
Cubic LatticeQ 69.8 57.6

We experimentally show the advantages, both in quantization
error (Figure 3), and task loss (Table III), in using a deformable
lattice for quantization rather than a cubic lattice (i.e. uniform
scalar quantization). This confirms our hypothesis that the inner
correlations of the parameters of a neural network can be
exploited for the purpose of quantization.

VII. CONCLUSION

In this paper, we introduced LatticeQ, a new post-training
quantization method which exploits the flexibility of lattice
quantizers for DCNN quantization, and gains from 2% on Resnet
4-bit weight quantization and up to 40% on 2-bit quantization.
We believe that lattice quantization has potential beyond post-
training, since our method also shows great performance when
training data is available, and that our work could inspire other
quantization methods outside of the realm of scalar quantization.
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